
To be Fair: a Case for Cognitively-Inspired Models of Meaning

Simon Preissner
Center for Mind/Brain Sciences

University of Trento
simon.preissner@gmx.de

Aurélie Herbelot
Center for Mind/Brain Sciences &
Dept. of Information Engineering

and Computer Science
University of Trento

aurelie.herbelot@unitn.it

Abstract

In the last years, the cost of Natural Lan-
guage Processing algorithms has become more
and more evident. That cost has many facets,
including training times, storage, replicabil-
ity, interpretability, equality of access to ex-
perimental paradigms, and even environmen-
tal impact. In this paper, we review the re-
quirements of a ‘good’ model and argue that a
move is needed towards lightweight and inter-
pretable implementations, which promote sci-
entific fairness, paradigmatic diversity, and ul-
timately foster applications available to all, re-
gardless of financial prosperity. We propose
that the community still has much to learn
from cognitively-inspired algorithms, which
often show extreme efficiency and can ‘run’
on very simple organisms. As a case study,
we investigate the fruit fly’s olfactory system
as a distributional semantics model. We show
that, even in its rawest form, it provides many
of the features that we might require from an
ideal model of meaning acquisition. 1

1 Introduction

In recent years, the Natural Language Processing
(NLP) community has seen an increase in the pop-
ularity of expensive models requiring enormous
computational resources to train and run. The
cost of such models is multi-faceted. From the
point of view of shaping the scientific commu-
nity, they create a huge gap between researchers in
wealthy institutions and those with less resources
and they often make replication prohibitive. From
the point of view of applicability, they make the
end-user dependent on high-tech hardware which
they may not afford, or on cloud services which
may have problematic privacy side-effects (and

1Copyright c©2019 for this paper by its authors. Use per-
mitted under Creative Commons License Attribution 4.0 In-
ternational (CC BY 4.0).

are not available to those with poor Internet ac-
cess). Training such models can often take a long
time and extraordinary amounts of energy, gener-
ating CO2 emissions disproportionate to the mod-
els’ improvements (Strubell et al., 2019). From a
pure modelling point of view, finally, complexity
often comes with a loss of interpretability, which
weakens theoretical insights. Whilst we appreciate
that a part of NLP is focused on engineering ap-
plications rather than modelling natural language
proper, the linguists and cognitive scientists in the
community have a duty to provide transparent, ex-
planatory simulations of particular phenomena.

Such considerations call for smaller and more
interpretable systems. In this paper, we offer an
example investigation into one of the most widely
used techniques in NLP: the vectorial representa-
tion of word meanings. Our starting point is the
set of requirements that should be fulfilled by an
ideal model of lexical acquisition, which is ex-
pressed in QasemiZadeh et al. (2017): (A) high
performance on fundamental lexical tasks, (B) ef-
ficiency, (C) low dimensionality for compact stor-
age, (D) amenability to incremental learning, (E)
interpretability. As we will show in §2, state-
of-the-art systems still fail to integrate all those
points. (A-D) are however basic features of hu-
mans and animal cognition. It seems, therefore,
that we should find inspiration in algorithms from
cognitive science, which in turn would allow us to
derive interpretability (E) from the clear underpin-
nings of biological or psychological theories.

We propose that a good place to find appropri-
ate algorithms is the natural world, as many or-
ganisms display core cognitive abilities such as
incremental learning, generalization or classifi-
cation, which many NLP systems need to emu-
late. Such faculties develop in extremely sim-
ple systems, which are good contenders for the
type of models we advocate here. One success



story from ‘algorithmic’ cognitive science is based
on the neural architecture of the fruit fly’s olfac-
tory system, which clusters patterns of chemicals
into categories of smells (Stevens, 2015), and has
inspired the so-called Fruit Fly Optimization Al-
gorithm (Pan, 2011; here: Fruit Fly Algorithm
or ‘FFA’). The FFA has been implemented as a
lightweight neural algorithm that performs ran-
dom indexing for locality-sensitive hashing (LSH)
(Dasgupta et al., 2017). This LSH algorithm has
successfully been applied to various tasks, partic-
ularly in information retrieval and for data com-
pression (Andoni and Indyk, 2008). As a simple
LSH algorithm, the FFA compresses data while
preserving the notion of similarity of the origi-
nal data, which is one of the core mechanisms
involved in constructing vector representations of
word meaning. To our knowledge, it has however
never been taken as the basis for building distribu-
tional semantic models from scratch, even though
it seems to naturally fulfill a number of require-
ments of those models.

In the following, we present the FFA and show
how it can be adapted to create vector spaces of
word meaning (§4). We then apply the FFA in
an incremental setup (§5) and assess its worth as
a model, according to the various criteria high-
lighted above (§6), including a possible interpre-
tation of the FFA’s output.

2 Related work

In Distributional Semantics (DS: Turney and Pan-
tel, 2010; Erk, 2012), the meaning of words
is represented by points in a multidimensional
space, derived from word co-occurrence statistics.
The quality of models usually correlates with the
amount of data that is used. With increasing pro-
cessing resources and larger corpora available, a
variety of approaches have been developed in that
area (e.g., Bengio et al., 2003; Pennington et al.,
2014; Mikolov et al., 2013). State-of-the-art mod-
els perform remarkably well and are often a core
component of NLP applications. Recent work on
DS (e.g., ELMo (Peters et al., 2018) and BERT
(Devlin et al., 2018) shifts the scope of represen-
tations from word meaning to sentence meaning,
pushing performance, but also model complexity,
even further.

The latest DS techniques yield high perfor-
mance, but they have multiple shortcomings. First,
they require massive amounts of text, followed

by computationally intensive procedures involv-
ing weighting, dimensionality reduction, complex
attention mechanisms etc. The high complex-
ity of most current architectures often comes at
the cost of flexibility: once a language model
is constructed, any new data requires a re-run
of the complete system in order to be incorpo-
rated. This makes incrementality unsatisfiable in
those frameworks (Sahlgren, 2005; Baroni et al.,
2007). Further, architectures themselves have be-
come increasingly complex, at the expense of
transparency. We recall that even Word2Vec
(W2V: Mikolov et al., 2013), which is a compara-
tively simple system by today’s standards, has at-
tracted a large amount of literature which attempts
to explain the effects of various hyperparameters
in the model (Levy and Goldberg, 2014; Levy
et al., 2015; Gittens et al., 2017). Finally, high-
performance DS representations are hardly or not
at all interpretable. As a result, much research has
been dedicated to producing representations that
are intuitively interpretable by humans (Murphy
et al., 2012; Luo et al., 2015; Fyshe et al., 2015;
Shin et al., 2018). These approaches typically at-
tempt to preserve or reconstruct word labels for
the basis of the dimensionality-reduced represen-
tations, but they can themselves require intensive
procedures. In summary, it becomes apparent that
the ideal vector-based semantics model that ful-
fills all requirements highlighted in our introduc-
tion has not yet been found.

The Fruit Fly Algorithm we present here can
be related to two existing techniques in com-
puter science: Random Indexing and Locality-
Sensitive Hashing. Random Indexing (RI) is a
simple and efficient method for dimensionality
reduction (cf. Sahlgren, 2005), originally used
to solve clustering problems (Kaski, 1998). It
is also a less-travelled technique in distributional
semantics (Kanerva et al., 2000; QasemiZadeh
et al., 2017; QasemiZadeh and Kallmeyer, 2016).
Its advocates argue that it fulfills a number of
requirements of an ideal vector space construc-
tion method, in particular incrementality. As
for Locality-Sensitive Hashing (LSH: Slaney and
Casey, 2008), it is a way to produce hashes that
preserve a notion of distance between points in
a space, thus satisfying storage efficiency whilst
maintaining the spatial configuration of a repre-
sentation. A comparison of various hash functions
for LSH, including RI, is provided by Paulevé



Figure 1: Schematic of the adapted FFA, with input
size m = 4 and output size n = 6 (dense representa-
tion: 2). Darker cells correspond to higher activation.

et al. (2010).

3 Data

In the spirit of ‘training small’, the corpus used
for our experiments is a subset of 100M words
from the ukWaC corpus (Ferraresi et al., 2008),
minimally pre-processed (tokenized and stripped
of punctuation signs); this results in a corpus of
87.8M words. Following common practice, we
quantitatively evaluate the FFA as a lexical acqui-
sition algorithm by testing it over the MEN simi-
larity dataset (Bruni et al., 2014), which consists
of 3000 word pairs (751 unique English words),
human-annotated for semantic relatedness.

For our experiments, we compute two co-
occurrence count spaces over our corpus, with dif-
ferent context sizes (±2 and±5 around the target).
We only consider the 10k most frequent words in
the data, ensuring we cover all 751 words in MEN.

4 Model

The Fruitfly Algorithm mimics the olfactory sys-
tem of the fruit fly, which assigns a pattern of bi-
nary activations to a particular smell (i.e., a com-
bination of multiple chemicals), using sparse con-
nections between just two neuronal layers. This
mechanism allows the fly to ‘conceptualize’ its en-
vironment and to appropriately react to new smells
by relating them to previous experiences. Our im-
plementation of the FFA is an extension of the
work of Dasgupta et al. (2017) which allows us to
generate a semantic space by hashing each word –
as represented by its co-occurrences in a corpus –
to a pattern of binary activations.

As in the original implementation, our FFA is a
simple feedforward architecture consisting of two
layers connected by random projections (Fig. 1).
The input layer, the projection neuron layer or PN
layer, consists of m nodes {x1...xm} which en-
code the raw co-occurrence counts of a target word
with a particular context. To satisfy incremental-
ity, m is variable and can grow as the algorithm
encounters new data. If a new context is observed,
then a node xm+1 is recruited to encode that con-
text. A logarithmic function is applied to the in-
put in order to diminish frequency effects of nat-
ural languages (Zipf, 1932). This ‘flattens’ acti-
vation across the PN layer, reducing the impact of
very frequent words (e.g., stopwords). The second
layer (Kenyon Cell layer or KC layer) consists of n
nodes {y1...yn}. It is larger than the PN layer and
fixed at a constant size (n does not grow). PN and
KC are not fully connected. Instead, each KC cell
receives a constant number of connections from
the PN layer, randomly and uniformly allocated.
In other words, the mapping from PN to KC is a
bipartite connection matrix M so that Mji = 1 if
xi is connected to yj and 0 otherwise. The connec-
tivity of each PN is thus variable, albeit uniformly
distributed. The activation function on each KC
is simply the sum of the activations of its con-
nected PNs. In the end, hashing is carried out via
a winner-takes-all (WTA) procedure that ‘remem-
bers’ the IDs of a small percentage of the most
activated KCs as a compact representation of the
word’s meaning. So WTA(yi) = 1 if yi is one of
the k top values in y and 0 otherwise.

The FFA’s hyperparameters are expressed as a
5-tuple (f,m, n, c, h), where f is the flattening
function, m is the size of the PN layer (initially
0), n is the size of the KC layer, c is the number
of connections leading to any one KC, and h is the
percentage of activated KCs to be hashed.

Note that, since both the connectivity per KC
and the size of the KC layer are constant, the
overall number of connections is constant. Thus,
the expansion mechanism (which increments m)
does not create new connections: it randomly
selects existing PNs and reallocates connections
from those PNs to the new PN. In the reallocation
process, we encode a bias towards taking connec-
tions from those PNs with the most outgoing con-
nections in order to ensure even connectivity of the
PN layer. For example, in a setup with parameters
(f = ln,m = 300, n = 10000, c = 14, h = 8),



the average number of connections going out from
each PN is (n × c)/m = 466.67: some PNs have
466 connections, some have 467 or more. The
next newly encountered word will lead to the cre-
ation of x301 and the expansion process will real-
locate b(n× c)/301c = 465 already existing con-
nections to x301. For this, it will choose PNs with
467 or more connections with a higher probabil-
ity than those with 466 connections. The parame-
ters after the expansion process are (f = ln,m =
301, n = 10000, c = 14, h = 8).

The expansion of dimensions from the PN layer
to the KC layer in combination with random pro-
jections can be interpreted as a form of ‘zooming’
into a concept for a particular target word: mul-
tiple context words are randomly projected onto
a single KC. If several of these context words
are important for the target (i.e., their PNs have
high activation), the corresponding KC will be ac-
tivated in the final hash. We can imagine this pro-
cess as aggregating dimensions of the original co-
occurrence space, thus generating latent features
which give different ‘views’ into the raw data. For
example, one might imagine that a random pro-
jection from the PNs beak, bill, bank, wing, and
feather, have one KC in common. This KC might
be somewhat activated by the PNs bank and bill in
finance contexts, but more crucially, it will consis-
tently be strongly activated for target words related
to birds and thus selected for the final hashes of
those words. Note that this behaviour lets us back-
track from a dimensionality-reduced representa-
tion to the most characteristic contexts for a par-
ticular target word, and gives interpretability to the
KCs. We will come back to that feature in §6.

5 Experiments and results

In order to characterize the behavior and perfor-
mance of our incremental FFA, we evaluate the
quality of its output vectors against the MEN test
set by means of the non-parametric Spearman rank
correlation ρ. In order to run the experiments with
a sound configuration of the hyperparameters f ,
n, c, and h, we first perform a grid search, apply-
ing various configurations of the FFA to the counts
(window size: ±5) of the 10k most frequent words
of a held-out corpus.2 For this setting, the grid
search yields the following optimal configuration:

2we restricted the grid search and the subsequent exper-
iment setup to a vocabulary of 10k words for more conve-
nient experimentation. The actual FFA potentially has no
such limit

Figure 2: ρ-values of co-occurrence counts, hashed
spaces, and Word2Vec models (window sizes ± 2
(lines) and ± 5 (dotted)). The blue dot shows the per-
formance on POS-tagged data with FFA-5.

(f = ln, n = 40000, c = 20, h = 0.08); we use
this for all further experiments.3 (The grid search
revealed in fact that the factor of expansion n

m is
minimally important.)

Next, we incrementally generate a raw
frequency-count model of the 10k most frequent
words of our corpus, parallelly expanding the FFA
with every newly encountered word. Every 1M
processed words, the aggregated co-occurrences
are hashed by the FFA and the corresponding
word vectors (i.e., binary hashes) are stored for
evaluation. We compare a) the raw frequency
space (input to the FFA); b) the final hashes
(output of the FFA); c) a separate Word2Vec
(W2V) model trained on exactly the same data,
using standard hyperparameters and a minimum
count set to match the 10k target words of our
co-occurrence space. We repeat this experiment
for window sizes ±2 and ±5.

Figure 2 shows the results of our incremental
simulation. For the window size ±5, we reach ρ =
0.100 for raw counts, ρ = 0.345 for the FFA out-
put, and ρ = 0.600 for W2V. The 2-word-context
setup yields very similar results. The FFA hashing
thus has a clear and positive effect (+0.245 from
80M words on for the ±5 setup). The amount
of improvement is already large at the beginning
of training (+0.136 at 5M words) and slowly in-
creases with corpus size. Results are comparable
to W2V for very small corpus sizes, but start lag-
ging behind after around 10M words.

3The source code of this implementation of the FFA
will be released for public use on git@github.com:
SimonPreissner/semantic-fruitfly.git



6 Discussion

Investigating cognitive algorithm from scratch re-
quires a clear stance on evaluation: we cannot ex-
pect a very simple model to beat the performance
of heavily-trained systems, but we can require it
to give satisfactory results whilst also being a good
model in the strong sense of the term, that is, simu-
lating all observable features of a given real-world
phenomenon. Our discussion keeps this in mind,
as we focus on the ‘wish list’ highlighted in §1.

Performance: hashing increases performance
over the raw co-occurrence space by over 20
points overall. The system is however outper-
formed by W2V after seeing around 10M words.
In the spirit of providing a comprehensive evalu-
ation of the modelling power of the FFA, we at-
tempt to pull apart aspects of the learning process
that are captured by its very simple algorithm, and
those that are not. In other words, which feature
results in the large increase over baseline perfor-
mance? What does the FFA fail to model with re-
spect to W2V? We know that the algorithm gener-
ates latent features out of the original space dimen-
sions, encapsulated in each KC. We have tuned
the size of the KC layer, so the number of fea-
tures captured by the FFA should be optimal for
our task. We assume that the performance dis-
played by the algorithm is due to correctly gen-
eralizing over contexts. As for its lack of perfor-
mance, we can make hypotheses based on what
we know from other DS models. The FFA does
not perform any subsampling or weighting of its
input data, and the log function we use to mini-
mize the impact of very frequent items is probably
too crude to fulfill that purpose. When we infor-
mally inspect the performance of the algorithm on
a POS-tagged version of our corpus, keeping only
verbs, nouns and adjectives in the input and filter-
ing some highly frequent stopwords (punctuation,
auxiliaries), we obtain ρ ≈ 0.51 over the whole
corpus,4 coming close to W2V’s performance and
thus indicating that indeed, a higher-level ‘atten-
tion’ mechanism could be added to the input layer.
(Note that the olfactory system of actual fruit flies
only has ≈ 50 odorant receptors, which makes
it potentially less crucial to successfully suppress
large parts of the input.)

Dimensionality: The size of the hashes pro-
duced by the FFA is variable; in the experiments, it

4We use the top 4000 dimensions of the co-occurrence
matrix, with n = 16000, c = 20 and h = 0.08.

was set to 3200,5 which is much larger than the op-
timal 300-400 dimensions of W2V. However, the
hash corresponds to a sparse vector of integers and
is thus efficiently stored and manipulated. The hy-
perparameter grid search revealed that the factor of
expansion from PN layer to KC layer is much less
important than expected, although the expansion is
a core characteristic of the FFA and intuitively, its
factor should have an effect on performance. This
suggests that the FFA does not require inconve-
niently high-dimensional hash signatures to reach
its performance. However, it will take further ex-
periments, especially with larger vocabularies, to
fully characterize this behaviour.

Incrementality: the FFA is fully incremental.
Note that in our experiments, the W2V space is
retrained from scratch after each addition of 1M
words to the corpus while the FFA simply incre-
ments counts in its stored co-occurrence space. It
is also in stark contrast with weighted count-based
distributional models which require some global
PMI (re-)computation to outperform the raw co-
occurrence count vectors.

Time efficiency: our FFA runs without costly
learning mechanisms; its two most costly opera-
tions are (1) the expansion of the PN layer along
with new vocabulary and (2) the projection from
PN layer to KC layer. Following Zipf’s Law, most
new words are encountered within the first few
millions of words. As a consequence, the fre-
quency of expansion operations on the PN layer is
high at first, but decreases rapidly, resulting in fast
scaling to large amounts of text. Hashing is solely
dependent on the number of connections per KC
and the size of the KC layer (both constant).

Interpretability: the FFA’s two-layer architec-
ture allows for uncomplicated backtracking. Each
of the activated nodes in a word’s hash represents a
single KC. The connections of these ‘winner’ KCs
with the PN layer let us reconstruct which context
words originally contributed to the largest activa-
tions in the KC layer. To illustrate this, we use
the hashes obtained at the last iteration of our in-
cremental experiment (based on window ±5) and
identify the k = 50 most characteristic PNs for
each hash, ignoring stopwords. Table 1 reports
the characteristic PNs shared by various sets of in-
put words. For example, for the words hawk, pi-

5This results from expressing the (n=40k-dimensional) bi-
nary vector as the positions of its 1s, which make up h = 8%
of the vector. This yields a much smaller representation of
length n× h = 3200.



Hashed Words Mutual Important Words
hawk, pigeon,
parrot

tailed, breasted, black, red,
dove

library, collec-
tion, museum

collection, national, new, art

beard, wig man, wearing, long, like, hair
cold, dirty get, said, war, mind

Table 1: Top PNs for selected sets of words. The im-
portance of a PN for a word is estimated by the number
of connections to KCs that are activated in the word’s
hash (window size ± 5).

geon, and parrot the tailed, black, breasted, red,
and dove PNs are among the most influential, con-
tributing to many of the activated KCs. Similarly,
we can connect beard to wig and cold to dirty; the
shared important words of the latter seem to en-
code shared collocates (cold/dirty war, cold/dirty
mind, get cold/dirty).

7 Conclusion

We started this paper suggesting that NLP should
explore a different class of algorithms for its
most fundamental tasks. We argued that it is
worth investigating cognitively-inspired architec-
tures, which may not (yet) perform at state-of-the-
art level, but give us insights into potentially more
plausible ways to model linguistic faculties in the
mind. We also made a case for ‘small’ and ‘fair’
systems, in reach of all researchers and end-users.

As illustration, we have explored what the ol-
factory system of a fruit fly can do for the rep-
resentation of word meanings. The algorithm is
certainly ‘fair’ in terms of complexity and re-
quired resources. Being based on an actual cogni-
tive mechanism, it naturally encodes requirements
such as (processing and storage) efficiency. Its
simplicity lends itself to incremental learning and
interpretability. Performance on a relatedness data
set highlights that the raw model successfully cap-
tures latent concepts in the data but would proba-
bly require an extra attention layer, as indicated by
the stronger results obtained on additionally pre-
processed data.

We hope to have demonstrated that such study
is accessible to all, and actually sheds insights into
the minimal components of a model in a way that
more complex systems do not achieve. We par-
ticularly draw attention to the fact that the inter-

esting behaviour of the fruit fly with respect to in-
terpretability and incrementality makes it a worthy
competitor for other distributional models – or at
the very least, a source of inspiration.

References

Alexandr Andoni and Piotr Indyk. 2008. Near-optimal
hashing algorithms for approximate nearest neigh-
bor in high dimensions. Communications of the
ACM, 51(1):117.

Marco Baroni, Alessandro Lenci, and Luca Onnis.
2007. Isa meets lara: An incremental word space
model for cognitively plausible simulations of se-
mantic learning. In Proceedings of the workshop on
cognitive aspects of computational language acqui-
sition, pages 49–56.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Jauvin. 2003. A neural probabilistic lan-
guage model. Journal of machine learning research,
3(Feb):1137–1155.

Elia Bruni, Nam-Khanh Tran, and Marco Baroni. 2014.
Multimodal distributional semantics. Journal of Ar-
tificial Intelligence Research, 49:1–47.

Sanjoy Dasgupta, Charles F Stevens, and Saket
Navlakha. 2017. A neural algorithm for a
fundamental computing problem. Science,
358(6364):793–796.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Katrin Erk. 2012. Vector space models of word mean-
ing and phrase meaning: A survey. Language and
Linguistics Compass, 6(10):635–653.

Adriano Ferraresi, Eros Zanchetta, Marco Baroni, and
Silvia Bernardini. 2008. Introducing and evaluating
ukwac, a very large web-derived corpus of english.
In Proceedings of the 4th Web as Corpus Workshop
(WAC-4) Can we beat Google, pages 47–54.

Alona Fyshe, Leila Wehbe, Partha P Talukdar, Brian
Murphy, and Tom M Mitchell. 2015. A composi-
tional and interpretable semantic space. In Proceed-
ings of the 2015 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, pages 32–
41.

Alex Gittens, Dimitris Achlioptas, and Michael W Ma-
honey. 2017. Skip-gram- zipf+ uniform= vector ad-
ditivity. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 69–76.



Pentii Kanerva, Jan Kristoferson, and Anders Holst.
2000. Random indexing of text samples for la-
tent semantic analysis. In Proceedings of the An-
nual Meeting of the Cognitive Science Society, vol-
ume 22.

Samuel Kaski. 1998. Dimensionality reduction by ran-
dom mapping: Fast similarity computation for clus-
tering. In 1998 IEEE International Joint Confer-
ence on Neural Networks Proceedings. IEEE World
Congress on Computational Intelligence (Cat. No.
98CH36227), volume 1, pages 413–418. IEEE.

Omer Levy and Yoav Goldberg. 2014. Neural word
embedding as implicit matrix factorization. In Ad-
vances in neural information processing systems,
pages 2177–2185.

Omer Levy, Yoav Goldberg, and Ido Dagan. 2015. Im-
proving distributional similarity with lessons learned
from word embeddings. Transactions of the Associ-
ation for Computational Linguistics, 3:211–225.

Hongyin Luo, Zhiyuan Liu, Huanbo Luan, and
Maosong Sun. 2015. Online learning of inter-
pretable word embeddings. In Proceedings of the
2015 Conference on Empirical Methods in Natural
Language Processing, pages 1687–1692.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Brian Murphy, Partha Talukdar, and Tom Mitchell.
2012. Learning effective and interpretable semantic
models using non-negative sparse embedding. Pro-
ceedings of COLING 2012, pages 1933–1950.

Wen-Tsao Pan. 2011. A new evolutionary computation
approach: fruit fly optimization algorithm. In Pro-
ceedings of the conference on digital technology and
innovation management.

Loı̈c Paulevé, Hervé Jégou, and Laurent Amsaleg.
2010. Locality sensitive hashing: A comparison of
hash function types and querying mechanisms. Pat-
tern Recognition Letters, 31(11):1348–1358.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. arXiv preprint arXiv:1802.05365.

Behrang QasemiZadeh and Laura Kallmeyer. 2016.
Random positive-only projections: Ppmi-enabled
incremental semantic space construction. In Pro-
ceedings of the Fifth Joint Conference on Lexical
and Computational Semantics, pages 189–198.

Behrang QasemiZadeh, Laura Kallmeyer, and Au-
relie Herbelot. 2017. Projection aléatoire non-
négative pour le calcul de word embedding. In
24e Conférence sur le Traitement Automatique des
Langues Naturelles (TALN), pages 109–122.

Magnus Sahlgren. 2005. An introduction to random
indexing. In Proceedings of the Methods and Appli-
cations of Semantic Indexing Workshop at the 7th In-
ternational Conference on Terminology and Knowl-
edge Engineering (TKE).

Jamin Shin, Andrea Madotto, and Pascale Fung.
2018. Interpreting word embeddings with eigenvec-
tor analysis. 32nd Conference on Neural Informa-
tion Processing Systems (NIPS 2018), IRASL work-
shop.

Malcolm Slaney and Michael Casey. 2008. Locality-
sensitive hashing for finding nearest neighbors [lec-
ture notes]. IEEE Signal processing magazine,
25(2):128–131.

Charles F Stevens. 2015. What the flys nose tells the
flys brain. Proceedings of the National Academy of
Sciences, 112(30):9460–9465.

Emma Strubell, Ananya Ganesh, and Andrew Mc-
Callum. 2019. Energy and policy considera-
tions for deep learning in nlp. arXiv preprint
arXiv:1906.02243.

Peter D Turney and Patrick Pantel. 2010. From fre-
quency to meaning: Vector space models of se-
mantics. Journal of artificial intelligence research,
37:141–188.

George Kingsley Zipf. 1932. Selected studies of the
principle of relative frequency in language. Harvard
university press.


