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Abstract—Computational modelling is now tightly integrated
into many fields of research in science and industry. Computa-
tional fluid dynamics software, for example, gives engineers the
ability to model fluid flow around complex geometries defined
in Computer-Aided Design (CAD) packages, without the expense
of constructing large wind tunnel experiments. However, such
modelling requires translation from an initial CAD geometry to
a mesh of many small elements that modelling software uses
to represent the approximate solution in the numerical method.
Generating sufficiently high-quality meshes for simulation is a
time-consuming, iterative and error-prone process that is often
complicated by the need to interact with multiple command-line
tools to generate and visualise the mesh data. In this paper we
describe our approach to overcoming this complexity through the
addition of a meshing console to Nekkloud, a science gateway for
simplifying access to the functionality of the Nektar++ spectral/hp
element framework. The meshing console makes use of the
NekMesh tool in Nektar++ to help reduce the complexity of
the mesh generation process. It offers a web-based interface
for specifying parameters, undertaking meshing and visualising
results. The meshing console enables Nekkloud to offer support
for a full, end-to-end simulation pipeline from initial CAD
geometry to simulation results.
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I. INTRODUCTION

Scientists and engineers have been making use of large-scale
computation for many years to support modelling, simulation
and analysis of complex physical processes. As computational
infrastructure has become ubiquitous and more easily acces-
sible, simulations at larger scales and higher resolution have
become something that domain scientists expect to be able
to undertake themselves, without having to rely on direct
support from computer scientists or those with specialist
technical training. Science gateways have emerged as a means
of providing user-friendly interfaces to complex scientific
tools and workflows on a variety of infrastructure, initially
focusing on platforms such as computational grids [1]. Modern
science gateways are just as likely to target cloud and cluster
infrastructure, standalone resources, or to abstract away the
underlying computational environment from the user entirely,
offering the possibility of transparent access to advanced
research infrastructure, as discussed in [2]. Science gateways
can offer huge usability benefits [3] to end-users wanting to

undertake challenging scientific processes and can provide an
array of scientific community benefits to their target domains.
These include support for reproducibility of processes and
results, through the sorts of approaches described in [4],
including sharing and provenance of configurations.

One of the most challenging (and frequently overlooked)
aspects of modelling complex geometries, which arise from
Computer-Aided Design (CAD) packages, is the translation of
a CAD geometry into a mesh used to represent the geometry
in the numerical method [5]. Generating meshes that are
sufficiently high-quality for simulation is well-known to be a
time-consuming, iterative and error-prone process that requires
detailed technical knowledge to address issues that may be
encountered as the mesh is constructed. It is frequently made
more complex by the need to interact with multiple command-
line tools to generate and visualise the mesh data. Ultimately,
the process poses a significant technical challenge for entry-
level users and a time drain for more experienced users. In
many cases, this preprocessing phase can consume much of the
overall time required to prepare and undertake a simulation.

We present an extension to an existing science gateway,
Nekkloud [6], to provide a “meshing console” offering new
functionality to support the generation of high-order mesh
structures used in computational simulations in areas such as
fluid and airflow modelling. This work focuses on enhancing
the user experience of an iterative scientific workflow by pro-
viding a simple gateway-style interface that hides underlying
complexity, while providing an improved means of managing,
storing and sharing task configurations in order to capture
domain-specific knowledge. This in turn supports the storage
of a provenance trail enabling scientists to understand how a
given output was achieved and to reproduce it in future.

The target software application for the meshing console is
NekMesh [7], [8], a high-order mesh generator that is part of
the open-source Nektar++ [9], [10] framework for undertaking
high-order spectral/hp element analysis, a process similar in
its approach to the finite element method. Nektar++ provides
a set of libraries and a group of solvers that can be used to
simulate problems in areas including automotive, aeronautical
and mechanical engineering, and biomedical applications. The
Nekkloud web application, which the meshing console is
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part of, was developed to address some of the challenges of
working with Nektar++, offering a straightforward and flexible
web-based interface for specifying, running and monitoring
simulation jobs. Integration of meshing support into Nekkloud
via addition of the meshing console will open up the specialist
capabilities of NekMesh to users in a range of engineering
and science domains. The console is designed to support the
complex iterative workflow required to generate high-quality
meshes. The resulting mesh data can be used within Nektar++
jobs, supporting a complete computational pipeline from an
initial CAD geometry through to visualised simulation results.

In Section II we provide more detail of the mesh generation
process, its challenges, and the motivation for the development
of the meshing console. Section III describes the meshing con-
sole architecture and an overview of its implementation within
Nekkloud. In section IV we look at the end-user experience
of using the meshing console and the user community benefits
the system can offer, with conclusions in Section V.

II. MESH GENERATION

The process of undertaking a simulation over a two- or
three-dimensional model begins with a CAD geometry that
will have been developed in one of a number of different
CAD packages. When undertaking finite element analysis on
such a model, it is necessary to break the domain up into a
series of smaller units over which governing partial differential
equations can be integrated numerically. This is the process of
mesh generation which aims to provide a representation of the
initial domain that is as geometrically accurate as possible.

Historically finite element/volume-based solvers relied on
the generation of linear meshes for the solution of govern-
ing equations. Recent developments in high-order methods,
which provide exponential error decay rates for sufficiently
smooth solutions, increase data locality and improve cache
efficiency. This makes them highly suitable for modern High-
Performance Computing (HPC) architectures where limiting
data movement is becoming increasingly important. One class
of such high-order methods is the spectral/hp element method,
used in the Nektar++ framework among others, which provides
lower dispersion and diffusion errors than low-order methods.
High-order methods generally use larger elements and are
more dependent on a geometrically-accurate discretisation of
the physical domain that linear meshes are not able to provide.
They must use high-order curvilinear meshes which provide
an enhanced sub-element level of geometrical accuracy. The
generation of potentially highly curved elements however in-
troduces additional challenges, the main one being the validity
of elements, primarily that of avoiding self-intersection within
elements. These difficulties make curvilinear mesh generation
non-trivial and require high-order tools.

NekMesh undertakes the process of high-order mesh gener-
ation and manipulation for use in high-order solvers. It accepts
a CAD geometry as input, with support for various input file
formats. The meshing functionality makes use of the OPEN
CASCADE [11]/Open CASCADE Community Edition [12]
software to support the mesh generation process.

A. The user perspective

Beyond the technical aspects of the mesh generation pro-
cess, there is the question of the end user workflow followed
to obtain a satisfactory mesh structure using NekMesh. From
this perspective, mesh generation is typically an iterative and
time-consuming process. It is not uncommon for it to require
the majority of the work undertaken for an end-to-end analysis
of a given test case.

The user selects an initial set of mesh parameters that they
believe to be acceptable for their desired mesh structure. These
parameters are placed in a configuration file that NekMesh
reads. The user then runs NekMesh to generate the mesh.
The resulting mesh must then be converted into a format that
can be visualised, generally VTK format. The user inspects
the visualised mesh to check the quality of the generated
structure. They may then need to tweak values from their
initial input parameter set and re-run the meshing process
to correct or improve any issues that they have spotted on
visual inspection of the mesh. This process continues until
the user is satisfied with a mesh they deem suitable for
simulation. After simulation, they may realise that further
improvement of the mesh is necessary, in which case they will
need to tweak meshing parameter values and re-mesh again.
The loop continues until the user obtains a converged mesh,
i.e. simulation results do not change with further refinement.

The aim of the Nekkloud meshing console has been to
automate this process as far as possible, while providing a
straightforward and user friendly interface for the aspects of
the process that require manual intervention.

III. MESHING CONSOLE ARCHITECTURE AND
IMPLEMENTATION

The Nekkloud [6] web application is a science gateway
that was originally developed to support running parallel
Nektar++ computations on cloud computing infrastructure.
Since development of the initial prototype, some years ago,
Nekkloud has been extended to include the ability to run jobs
on cluster and standalone server platforms and to integrate the
TemPSS (Templates and Profiles for Scientific Software) [13]
tool that allows configuration of application input parameters
via a structured, tree-style, visual interface. Nekkloud builds
on top of lower-level tools offering flexibility for future de-
velopment but with more technical complexity than would be
required with a modern gateway framework. With the various
mature tools now available to aid the development of science
gateways, opportunities include building on top of the service
layer of a framework such as Apache Airavata [14], or devel-
oping a portlet-style interface that integrates with a framework
such as the Catania Science Gateway Framework [15]. The
Nekkloud web application makes use of a custom simulation
job deployment library that leverages SAGA-Python [16], a
Python library for interacting with a range of job submission
middleware and the web application is developed in Python
using the Django web framework.

In this section we describe the architecture and implemen-
tation of the Nekkloud “meshing console”, an additional set
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of functionality added to Nekkloud’s web-based user inter-
face that enables users to undertake mesh generation using
NekMesh. The meshing console enables a user to upload their
CAD geometry, iterate over the meshing, visualisation and
optimisation loop described in Section II-A, and then obtain
the resulting meshed geometry as a file in Nektar++ XML
format. The resulting file can be downloaded by the user for
use outside of the Nekkloud environment, or it can be used
as input directly into a new Nektar++ computation within the
Nekkloud environment. Figure 1 shows the workflow for a
user working with the Nekkloud meshing console.

Meshing 
Console User

Nekkloud CAD 
Geometry File Store

CAD geometry developed by 
meshing console end user or 
imported from external source CAD 

Geometry File

Mesh 
Configuration 

Setup

Update
parameters
if required

Run 
Computation

Visualise Resulting Mesh
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Download 
Nektar++
XML file

Use Nektar++ 
XML file in new 
Nekkloud job

Fig. 1. Example of the workflow followed to undertake the meshing process.

The processing status of a meshing task within the meshing
console can be monitored using the task’s job ID. Regular
Nekkloud simulation jobs and meshing jobs are differentiated
by job IDs beginning with either “job-” or “mesh-job-”.

The NekMesh tool requires an input Mesh Configuration
File (MCF). An MCF typically includes a list of interlinked
parameters defining the properties to use for mesh generation.
This includes core parameters required for all computations,
such as the source geometry or the dimensionality of the mesh,
but also sub-parameters that are only required in certain cases,
triggered by other parameters. We leverage TemPSS, which
is integrated into Nekkloud, to simplify MCF creation. A
TemPSS template for the MCF parameters has been developed
(see Figure 2). TemPSS builds on [17], a project based on
the Bootstrap front-end framework, for displaying templates.
When a user enters the required parameters into the MCF
template in the web-based meshing console interface, TemPSS
converts the parameters into a complete MCF file that is passed
to the NekMesh tool. This workflow simplifies the process of
creating/editing MCFs and encapsulates details of parameter
names, combinations and applicability within the TemPSS
template removing the need for users to acquire this knowledge
before they can generate meshes. Users will generally want to

create a new MCF template when undertaking a new meshing
task and then edit this slightly for each iteration of the meshing
process. The MCF XML format can be somewhat unintuitive
to inexperienced users and the use of a template and automated
MCF generation helps to ensure the specification of sensible
values and correct formatting of the MCF. This can also assist
more experienced users (e.g. by helping to avoid unintentional
formatting or typing errors). We therefore consider the MCF
generation to be an important element in linking together and
supporting the complete mesh generation process.

Fig. 2. A completed, valid TemPSS template tree for an example meshing
job to generate a NACA wing mesh. Some unused parameters are hidden.

To avoid having to upload input CAD geometry data mul-
tiple times, uploaded geometry files are stored in the meshing
console for reuse, for example if several iterations of the
meshing process are required to achieve the desired result.

When a user has uploaded their geometry file (or selected
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a previously uploaded file), and completed the MCF template
(see Figure 2), the meshing process can be undertaken. The
green tick beside the tree’s root node shows that the tree is
complete and valid. Nekkloud passes the completed MCF tree
to the TemPSS service which applies a transform to generate
a NekMesh MCF input file. TemPSS returns a URL to the
generated file which is downloaded to a temporary location
on the Nekkloud server for use by NekMesh. A processing
job is set up to run the NekMesh tool, passing the path to the
MCF file (including the input geometry location) as input.

At present, Nekkloud runs NekMesh jobs locally on the
Nekkloud server, a multi-core system. Most of the meshing
code is not currently parallelised but the use of a multi-
core server means that multiple meshing jobs can be run
concurrently. It would, however, be possible in future to use
Nekkloud’s functionality for deploying large-scale computa-
tions to remote processing platforms to run NekMesh jobs.

The meshing console also provides the ability to view a
generated mesh. This requires visualisation of the mesh data
for which there are two core approaches: server-side or client-
side. The most suitable option is dependent on the size and
type of a mesh and its associated mesh data. Larger, higher-
resolution meshes will result in larger file sizes. In the case
of a three-dimensional mesh, the mesh file can contain either
full, internal mesh structure data or only surface mesh data.
Surface mesh files are significantly smaller due to the vastly
reduced amount of data required when omitting the internal
mesh structure for a three-dimensional model.

• Client-side visualisation: Places the processing require-
ments for visualising a mesh structure onto a local user’s
system. This in turn means that the resulting performance
and reliability of the visualisation process is, to some
extent, reliant on the hardware of a given user’s system.

• Server-side visualisation: Uses server-side hardware,
which may include specialist GPU hardware, to under-
take the visualisation, streaming the resulting rendered
image to the end-user’s system. User interaction with
a visualised model results in messages being sent from
the client to the server which then enacts the changes
and streams the updated display back to the user. This
approach removes the need to transfer large mesh data
files to an end-user’s system but network latency can
be an issue and there needs to be sufficient server-side
capacity to handle the expected user numbers and load.

At present, the meshing console makes use of client-side
visualisation via the VTK.js library [18], a JavaScript imple-
mentation of the widely used Visualisation Toolkit. VTK.js
requires data to be provided in a specific format consisting
of one or more gzip compressed data slices and a metadata
file that acts as a directory for the data files. A tool is
provided to convert a regular VTK grid file into the VTK.js file
format. To visualise a generated Nektar++ XML mesh file it is
therefore necessary to first convert the Nektar++ file into VTK
format. This can be done using Nektar++’s FieldConvert tool,
however, this generates a full volume mesh including internal

mesh elements. The approach taken was to use NekMesh’s
built-in file conversion capabilities to generate a much smaller
surface mesh file. The VTK.js tool vtkDataConverter is run
on the VTK file to generate data suitable for visualisation
with VTK.js. This data is placed at a temporary location from
where it can be accessed via HTTP by the user’s browser.
When downloading the data for display, the VTK.js library
requests the metadata file for a mesh, reads this and then makes
HTTP requests for the associated data files in order to obtain
all necessary data to display the mesh. Since visualisation is
currently undertaken on linear surface meshes (even in 3D),
the data sets are quite small, even for larger 3D problems.
This makes client-side visualisation practical and with a good
quality network connection, a user can expect to wait no more
than a few seconds for the server-side file conversion and
download of the data to the client to complete. Figure 3 shows
the high-level structure of the meshing console architecture.
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Fig. 3. Architecture of the meshing console within the wider Nekkloud
application structure.

IV. USER EXPERIENCE AND COMMUNITY SUPPORT

A. Using the meshing console

From a user perspective, the meshing console offers a
straightforward interface that enables a user to go from a CAD
geometry to a complete Nektar++ XML mesh file without
the need to manually edit configuration files or directly run
command-line tools. Users log in to the regular Nekkloud
web interface and select the “Meshing” option from the menu.
This opens the meshing console view through which they can
generate meshes. The interface sets out the meshing process
as a series of 4 steps. Steps 1 and 2, shown in Figure 4, cover
the initial configuration process for the desired meshing task.

In step 1, the user has the choice of uploading a new CAD
geometry file or selecting one that was previously uploaded.
Clicking the “Select/manage uploaded files” option opens a
panel that shows previously uploaded geometry files belonging
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to the current user. A further option, instead of uploading a
geometry file, is to enter a NACA code. A NACA code is a 4-
digit code describing one of 78 airfoil structures. The numbers
in the 4-digit code describe various properties of the airfoil and
an airfoil geometry can be generated by plugging these values
into a specific algorithm. The NekMesh tool is able to accept
a NACA code as input, in place of a CAD geometry file.

Fig. 4. Nekkloud screenshot showing the section of the meshing console user
interface covering mesh generation steps 1 and 2.

Step 2 covers the setup of the meshing process by specifying
the mesh configuration parameters. This is done by populating
the TemPSS template tree. The tree shown in Figure 4 has its
nodes contracted but clicking on a node expands it to show
the sub-parameters (see Figure 2). Some parameters differ
when using either a NACA code or a regular CAD geometry
file as input. Under the MeshingConfiguration node,
a CADSource element is present and this allows selection
between a NACA airfoil code or an uploaded CAD file. This
selection, in turn, shows any additional values that are specific
to the type of input data. The drop down select box, at the
bottom of the panel, labelled “Load mesh configuration from
a previous job” lists all the current user’s previous jobs. If a
user is running another iteration of a meshing process for a
previously used geometry, this option can be used to populate
the configuration with the previous job’s values and one or
more previously selected values can be modified as required.

After completing steps 1 and 2, the user can request gener-
ation of the mesh in step 3 (see Figure 5). A status message
alongside the “Generate mesh” button shows when a mesh is
being generated and whether or not generation was successful.
For the type of studies being undertaken by Nektar++ users,
processing times are generally of the order of minutes.

Once the mesh generation process completes, an entry
will appear in the table in step 4. If the meshing task was
successful, the user can download the resulting Nektar++ XML

Fig. 5. Nekkloud screenshot showing the section of the meshing console user
interface covering mesh generation steps 3 and 4.

mesh geometry file. The generated MCF file, based on the
content entered into the TemPSS tree in stage 2 can also
be accessed. The standard output and standard error streams
are captured during the running of each NekMesh job and
made available to the user to view/download. Before using
the mesh in a simulation job, the user will want to undertake
a visual check to see if the generated mesh is acceptable.
Clicking the “View mesh” button undertakes the conversion of
the generated Nektar++ XML mesh surface geometry file into
VTK.js data for visualisation within the browser. The mesh is
then displayed in a panel (see Figure 6) that allows the user to
interact with the displayed mesh in two or three dimensions.

Fig. 6. Screenshot showing the meshing console visualisation window that
allows a user to view and manipulate a mesh.

B. User community benefits

We consider that the meshing console significantly reduces
the barriers to entry for users wanting to undertake mesh
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generation using open source tooling within the Nektar++
ecosystem. While the system is currently at a prototype stage
and we do not have detailed feedback from a wide community
of users, early feedback from initial test usage suggests that the
system’s benefits are immediately obvious and it is clear how
the web-based interface offers a smoother route to generating
a Nektar++ mesh, even before the ability to import the mesh
straight into a new Nekkloud job is considered. As the tool
is made available to a wider user base and more detailed
feedback is obtained, we intend to undertake an iterative
process of optimising the tool to address issues raised by users.

More broadly, the meshing console offers various potential
longer-term benefits that are often key properties of science
gateway-style environments. These include support for repro-
ducibility of scientific processes and storage of a provenance
trail that can be used to understand how a given state was
reached and why. When a mesh is generated, the input geom-
etry and MCF are stored (enabling re-creation of the populated
template tree) alongside the mesh. This is particularly valuable
for an iterative process such as mesh generation, allowing the
user to build on a previous state when undertaking several
iterations within a meshing process. This avoids the need to
manually manage multiple input configurations, which can be
error-prone, and stores each iteration of the process as a new
data point. At the end of the process it is possible to see and
retain details of the stages that the user went through which
can simplify future jobs, make errors easier to detect and allow
a given state to be straightforwardly reproduced in future.

V. CONCLUSIONS AND FURTHER WORK

The Nekkloud Meshing Console provides a valuable addi-
tional element to an existing science gateway. It demonstrates
the power of a user-facing web-based interface to complex sci-
entific processes and shows how end-users, who may lack low-
level computing knowledge, can benefit from the capabilities
of scientific software. For the target scientific community, the
meshing console represents a major usability enhancement for
accessing a leading-edge tool that can otherwise be used only
via a command-line. The meshing console is also considered
useful to support teaching, enabling students to easily explore
the effect of parameter changes on generated meshes.

We plan to undertake various pieces of further work. These
include user interface enhancements to better group jobs from
individual users that represent multiple iterations of a given
meshing process and a plan to offer more flexibility by making
job data selectively visible to different user groups, supporting
skills development for new users and simplifying collabora-
tion. We will be undertaking updates to address user feedback
that is received as the user base grows and it is likely that
future large-scale meshing jobs or an increase in user numbers
will require a more advanced computation framework. This
could be serviced either via Nekkloud’s existing computation
layer, or via a more traditional task-queuing system with a
scalable base of worker compute nodes that could be hosted
on a cloud platform. We also plan to further investigate the
use of server-side visualisation for large meshes.
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