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Abstract

Ambiguity and diversity in human cognition can be regarded
a final frontier in developing equivalent systems of artificial
intelligence. Despite astonishing accomplishments, modern
machine learning algorithms are still hardly more than adap-
tive systems. Deep neural networks, for example, represent
complexity through complex connectivity but are not able
to allow for abstraction and differentiation of interpretable
knowledge, i.e., for key mechanisms of human cognition.
Like support vector machines, random forests and other sta-
tistically motivated algorithms, they do neither reflect nor
yield structures and strategies of human thinking. Therefore,
we suggest to realign the use of existing machine learning
tools with respect to the philosophical paradigm of construc-
tivism, which currently is the key concept in human learn-
ing and professional teaching. Based on the idea that learning
units like classifiers can be considered models with limited
validity, we formulate five principles to guide a constructivist
machine learning. We describe how to define such models
and model limitations, how to relate them and how relation-
ships allow to abstract and differentiate models. To this end,
we propose the use of meta data for classifiers and other mod-
els. Moreover, we argue that such meta data-based machine
learning results in a knowledge base that is both created by
the means of automation and interpretable for humans.

Over the last decade, it has become widely accepted to
address computational systems intelligent. Not only jour-
nalists, but also scientists have adapted this habit in their
publications. In fact, many classical engineering tasks like
monitoring or regulating have profited from the employment
of machine learning (Abellan-Nebot and Romero Subirón
2010; Mohanraj, Jayaraj, and Muraleedharan 2012). The
same holds true for pattern recognition, most prominently
in automated image and video analysis (Zafeiriou, Zhang,
and Zhang 2015; Yang et al. 2011). And even though ulti-
mate challenges like the infamous Turing test are left un-
satisfied (You 2015), some exceptional results in specialized
tasks like playing the game of go (Silver et al. 2016) make
current learning machines look intelligent on a human level.
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A final frontier for learning systems, however, is the va-
riety of alternative cognitive functions observable in a di-
verse set of individuals or from ambiguous stimuli (Korn-
meier and Bach 2012). While philosophy has acknowledged
and embraced the subjectivity and limitations of human cog-
nition during the last decades (Prawat and Floden 1994),
current learning systems regard cognition a complex, yet
technical task to be solved. In particular, established algo-
rithms do neither provide convincing answers to the chal-
lenges provided by an ambiguous environment; nor do they
offer concepts that explicitly allow for contradictory judge-
ments comparable to differences in social perception.

The main reason for this shortcoming is that so far both
algorithms and researchers have failed to incorporate a con-
structivist point of view. Constructivism implies not only
cognition to be a highly individual phenomenon, but also hu-
mans to take an active role in their perception of the world –
and that there is no such thing as a human-independent re-
ality (Reich 2009). Yet algorithms and applications aiming
to predict things other than laws of nature are implicitly
founded on exactly this outdated asumption.

In the following, we introduce axioms that allow machine
learning to follow constructivist principles. Key features of
this approach are the use of modern tools from empirical sci-
ences, model-oriented learning, the ability to handle ambi-
guity, the ability to integrate supervised and unsupervised
learning into a unified framework, the ability to create an
individual knowledge base and the ability to abstract, differ-
entiate or discard learned knowledge automatically.

1. The key component of cognitive
functionality is a model.

Since the introduction of artificial neural networks as a
theoretical concept (McCulloch and Pitts 1943), many math-
ematicians and computer scientists have considered neurons
the key component of learning systems. In education and
psychology, however, cognitive functions are often seen as
certain skills or abilities acquired and exposed by an indi-
vidual human and described in terms like the concept of
competence, which, e.g., is widely used in the modern Euro-
pean education system (Méhaut and Winch 2012).

Functionalistic psychology explains cognitive functions
of humans by the concept of mental models (Rouse and Mor-



ris 1986). Initially, mental models have been used to under-
stand motor control, e.g., of hand movements (Veldhuyzen
and Stassen 1977). In a more general sense, however, mental
models are described as “hypothetical constructs” (Wickens
2000) that can be ordered hierarchically (Rasmussen 1979)
and allow a human to make predictions about his physical
and social environment (Oatley 1985). It has also been post-
ulated that such models cannot be of static nature but rather
underlay continuous modifications (Oatley 1985).

Philosophers, too, consider models an important tool in
human knowledge acquisition (Klaus 1967, p. 412) or even
the only tool, respectively (Stachowiak 1973, p. 56). While
varying and concurring theoretical definitions exist, most
model concepts assume an image, an origin of the image and
a relationship between them. This definition is, e.g., matched
by the idea of mathematical modeling as proposed by Hein-
rich Hertz and others (Hertz 1894; Hamilton 1982). With
the rise of robotics and artificial intelligence, engineers have
adapted and extended this idea by postulating the concept
of a cybernetic model, which involves a generalized subject
and an object of the model (Rose 2009).

Cybernetics, however, did neither reflect time-related as-
pects nor issues involved with individual model subjects.
This matter was adressed by Herbert Stachowiak, who was
influenced by cybernetics when developing his General
Model Theory (Hof 2018). He postulated any model to be
limited to specific subjects, specific temporal ranges and
specific purposes (Stachowiak 1973, p. 133). Limitations, to
this end, are considered a matter of fact rather than a mat-
ter of definition. Thus, such models circumvent ambiguity
by viewing an otherwise ambiguous model with unknown
validity limits as a number of models of limited validity.

2. Learning constitutes from constructing,
reconstructing or deconstructing models.

Modern education is dominated by the ideas of construct-
ivism and constructivist learning (Fox 2001). At its heart,
this approach is based on the assumption that humans ac-
quire knowledge and competences actively and individually
through processes called construction, reconstruction and
deconstruction (Duffy and Jonassen 1992). Construction is
associated with creation, innovation and production and im-
plies searching for variations, combinations or transfers of
knowledge (Reich 2004, p. 145). Analogously, reconstruct-
ion is associated with application, repetition or imitation
and implies searching for order, patterns or models (Reich
2004, p. 145). Deconstruction is in the context of construct-
ivism associated with reconsideration, doubt and modifi-
cation and implies searching for omissions, additions and
defective parts of acquired knowledge (Reich 2004, p. 145).

Learning algorithms have been used for half a century
to transform sample data into models in a mathematical
sense, that is: into generalized mathematical relationships
between image and origin. The two major approaches or
objectives, known as supervised and unsupervised learn-
ing, either do or do not require a given target parameter.
Artificial neural networks and their relatives are among the
most popular and prominent algorithms for learning with a

given target parameter (Singh, Thakur, and Sharma 2016),
but statistically motivated approaches like support vector
machines (Cristianini and Shawe-Taylor 2000) or random
forests (Breiman 2001) are also widely used for supervised
learning; a specialized field of supervised learning is re-
inforcement learning, which is popular in robotics (Kober
and Peters 2012) and adaptive control (Lewis, Vrabie, and
Vamvoudakis 2012). For unsupervised learning, too, bio-
logically inspired approaches like self-organizing maps (Ko-
honen 2001) as well as statistically motivated approaches
like k-means (Jain 2010) are employed.

To some extent, machine learning parallels modern edu-
cation concepts. A construction process in the construct-
ivist sense may be matched by an unsupervised learning,
i.e., identifying clusterings or dimensionality reduction, and
can, e.g., be implemented with self-organizing maps, k-
means, autoencoders or feature clustering (Schmid 2018).
A reconstruction process in the constructivist sense may be
matched by a supervised learning, i.e., classification or re-
gression tasks, and can, e.g., be implemented with artificial
neural networks or random forests (Schmid 2018). Few re-
searchers, however, have discussed a constructivist approach
to machine learning (Drescher 1989; Quartz 1993), and even
less how to design a deconstruction process. While domain-
specific applications with manual re-engineering options ex-
ist (Herbst and Karagiannis 2000), to the best of our know-
ledge, there is currently only one working implementation
of an algorithmic deconstruction process (Schmid 2018).

3. Deconstructing models computationally
requires model-based meta data.

In order to automate and implement a deconstruction pro-
cess, successfully learned models must be held available
for comparison or re-training. More over, possible match-
ings with novel models must be identifiable in an unambi-
guous manner by calculation or logical operations, respec-
tively. For Stachowiak models, features regarding validity
limitations exist for any model employed, which allows to
discriminate models. Here, we outline how such meta data
can be identified for models created by machine learning.

Machine learning implies learning from examples termed
training vectors. For a supervised training vector V resulting
from sensor data, for instance, this implies

V = (I,O) (1)
= (i0, ..., im−1, o0, ..., on−1) (2)

with am dimensional input I and a n dimensional outputO.
A Stachowiak-like training vector V∗ will, in addition,

possess three pragmatic features:

V∗ = (V, TV ,ΣV , ZV) (3)

with

TV = τ (4)
ΣV ⊂ Σ (5)
ZV ⊂ Z (6)

where TV is a point τ in time, and ΣV and ZV are subsets of
the infinite sets of model subjects Σ and of model purposes



Z, respectively. When using sensor data as training data, T
and Σ for each vector may be given by sensor meta data and
Z by the application context of the data collection.

If a machine learning-based model M is considered an
approximation of n training vectors V with

M∼ {V0, ...,Vn−1} (7)

then meta data for a Stachowiak-like modelM∗ with

M∗ = (M, TM,ΣM, ZM) (8)

can be derived from the underlying n Stachowiak-like train-
ing vectors V∗ (Schmid 2018) by:

TM=
[
min(TV∗

0
, ..., TV∗

n−1
),max(TV∗

0
, ..., TV∗

n−1
)
]

(9)

ΣM= ∪n−1i=0 ΣV∗
i

(10)

ZM= ∪n−1i=0 ZV∗
i

(11)

By extracting and administrating these meta data for ev-
ery model a machine learning algorithm has learned, learned
models become discriminable. Most importantly, overlaps or
contradictions in model validity become thereby identifiable
and may be resolved algorithmically.

4. Deconstructing models implies to either
abstract, differentiate or discard them.

Using the pragmatic features T , Σ, Z of Stachowiak-like
models as meta data, machine learning-generated models
can be matched and discriminated automatically. In partic-
ular, this allows to implement learning through deconstruc-
tion of given models. With regard to the degree of meta data
matching exposed by the respective models, four types of
deconstruction operations will be distinguished here.

The degree of relationship between two given
Stachowiak-like modelsMa andMb is termed

1. complete,
if TMa

= TMb
, ΣMa

= ΣMb
, ZMa

= ZMb
.

2. subjective-intentional (ΣZ),
if TMa 6= TMb

, ΣMa = ΣMb
, ZMa = ZMb

;
3. temporal-intentional (TZ),

if TMa = TMb
, ΣMa 6= ΣMb

, ZMa = ZMb
;

4. temporal-subjective (TΣ),
if TMa

= TMb
, ΣMa

= ΣMb
, ZMa

6= ZMb
;

The deconstruction of two completely related models can
basically either confirm the congruency and validity of both
models or render both invalid, which leads to both being dis-
carded. As a third option, this deconstruction process allows
to test whether the combination of both models may be split
in two submodels of more limited temporal validity.

Two ΣZ-related models Ma and Mb share a common
set of model subjectives and model purposes, but differ in
their temporal validity. ΣZ deconstruction therefore builds
and evaluates a temporal union ofMa andMb; by this, the
initial model is either replaced by a unified model with larger
temporal validity – or left untouched.

Deconstruction of two TZ-related modelsMa andMb,
which share a congruent temporal validity and a common set

of model purposes but differ regarding their subjective valid-
ity, either promotes Ma to a model Mc of intersubjective
validity – or leavesMa untouched.
TΣ deconstruction leaves two TΣ-related models Ma

andMb untouched. Instead, it will construct novel models
based on their outputs, yielding models of a higher level.
This is possible only because Ma and Mb share a con-
gruent temporal validity and a common set of model sub-
jectives while differing in their model purpose. All together,
a TΣ deconstruction process can be regarded as a way of
automated abstraction or generalization of knowledge.

5. A hierarchically ordered set of models
constitutes an enriched knowledge base.

Any set of models created by machine learning algorithms
represents information inherited in the underlying training
data and can therefore be considered a knowledge base. In
a constructivist approach, however, each model of such a
set possesses explicit validity limitations, which contributes
additional knowledge and complexity. Temporal gaps in the
knowledge base, e.g., can thereby be identified explicitly. A
hierarchical ordering also indicates hot spots of abstraction,
i.e., models of higher hierarchy levels.

The degree of abstraction and differentiation within such
a knowledge base can be quantified by assessing the number
of models, the average temporal validity, etc. Alternatively,
this can be achieved by building and visualizing a meta data-
based ordering. Apart from their temporal validity, mod-
els of such a set can also be ordered according to their
model purposes or level of abstraction, respectively. For uni-
form model subjects or identical learning algorithm, respect-
ively, a three-dimensional plot may visualize both temporal
extensions and the extend of successful abstraction.

Moreover, each individual model represents a supervised
learning application, i.e., a classifier or regressor, and can be
used as such after the knowledge base has been established.
To this end, a hierarchically ordered set of models created by
constructivist machine learning inherits not only structured,
but also applicable knowledge. Models that match a given
test sample – and are therein valid classifiers or regressors –
can be identified by simply matching the meta data. Con-
sequently, application of the knowledge base can be rejected
in scenarios where no knowledge is available.

Conclusions
In the present work, we suggest principles for using exist-
ing machine learning algorithms with respect to construct-
ivist theories of human learning. Based on five axioms intro-
duced here, a constructivist approach of creating explainable
knowledge can be implemented. This approch allows, in par-
ticular, to create an ambiguity-free knowledge base. While
there is no restriction regarding potential applications for
constructivist machine learning, it is likely that tasks where
ambiguous knowledge and results need to be avoided will
profit most from this learning paradigm. Future work on
this approach will focus on parallelization strategies for con-
structivist machine learning and on developing task-oriented
comparisons with human cognitive functionality.
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