CEUR-WS.org/Vol-2350/paper6.pdf

Collaborative Learning of Concept Representations for Video Data

Francisco Torres, Hoda Eldardiry, Gaurang Gavai, and Chad Ramos
Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA USA, torres@parc.com

Abstract

We present an approach for collaborative learning of repre-
sentations for concepts embodied in unstructured datasets.
Our approach learns both machine and expert interpretable
representations, where “’expert” refers to expertise in the con-
cept domain, as distinguished from a machine learning ex-
pert. In this paper, we focus on mining video data, but the
approach is applicable to other types of data as well. Given a
large video dataset and an expert-provided example clip that
captures some notion of a desired concept, our proposed tech-
nology collaborates with the expert to discern the concept,
even when it is not initially clear in the expert’s mind. Since
the expert may be exploring different possibilities, labeling a
large set of data and then training a classifier to recognize the
concept is not the right approach because it lacks the needed
agility. For the learning to happen as the concept evolves, we
use “learn-evolve-explain” cycles that generate (1) deep rep-
resentations of the discerned concept, which can be used by a
model for queries, and (2) visual representations that explains
the discerned concept to the human expert. We summarize
open source software developed to perform a collaborative
video query and discuss our proposed road map for future
work.

1 Introduction

Key to the impact of many emerging Atrtificial Intelligence
technologies is the collaborative nature of the learning.
Many systems leverage a variety of complementary play-
ers, and the better these players can collaborate, the more
efficient the learning becomes. These collaborating players
include machine learning programs, humans, and physical
subsystems, each playing various roles. Machine learning
methods learn models, inferentially process data streams,
mine for interesting patterns, and sometimes generate ex-
planations of results. Physical subsystems sense the envi-
ronment and capture changing contexts. Human participants
manage high level activities and mission development by
creating demonstrations for teaching, providing feedback on
the output, and strategically reorganizing the machine learn-
ing and physical subsystems when necessary. Ideally, human

Copyright held by the author(s). In A. Martin, K. Hinkelmann, A.
Gerber, D. Lenat, F. van Harmelen, P. Clark (Eds.), Proceedings of
the AAAI 2019 Spring Symposium on Combining Machine Learn-
ing with Knowledge Engineering (AAAI-MAKE 2019). Stanford
University, Palo Alto, California, USA, March 25-27, 2019.

users can delegate much of the more mundane work to ma-
chine learning and physical subsystems, allowing the human
expert to focus on high level context and goals.

1.1 Learning challenges

This work focuses on two players in a collaborative learning
approach: (1) the machine learning program, and (2) a hu-
man with expertise in the concept under investigation. Our
learning methodology enables an agile and exploratory col-
laboration, while addressing the challenges listed below.

Typical machine learning constraints that can be relaxed
by collaborative learning include:

e Up-front problem specification. Most learning ap-
proaches require the expert to concretely specify the prob-
lem they are trying to solve up front. This limits the abil-
ity to conduct exploratory learning. Users who are not
machine learning practitioners would benefit from an ap-
proach where the user presents one to a few instances of
some concept of interest and then engages in an intuitive
collaboration.

e Labeled data requirements. Supervised machine learn-
ing typically relies on a lot of labeled data for training.
This is expensive and poses a burden on the expert.

e Unexplained model behaviors. When an inference
model generates an output without some explanation, an
expert may not understand why this output was generated.
Expecting the expert to fill in this understanding gap by
observing model behavior for a large enough set of exam-
ples is not practicable at the scale and complexity of many
modern Al systems. In the absence of such understand-
ing, using the overall system outside of a narrow context
becomes risky, yet broader use may be necessary to ac-
complish strategic goals or react to a changing context.

1.2 Expert-guided collaborative learning of
concepts

Consider a domain expert studying a particular concept that
arises throughout a large video dataset. This expert wants
a technology that can locate video clips that capture the
concept, since manual review of all the video is impracti-
cal. Our approach is to build a technology that uses “learn-
evolve-explain” cycles; in this paper we report results for the
“learn” and “evolve” steps and discuss our proposal on how

to architect the “explain” step. In our approach, the expert
begins by providing an example video clip. This clip will
show some notion of the desired scenario, but it will have
activities and objects superfluous to the scope of the target
concept as well. Furthermore, the expert may evolve her un-
derstanding of concept details and nuances as the algorithm
builds representations for recognizing the intended concept
and gets feedback from the expert. The learn-evolve-explain
cycle works as follows:

o LEARN: Learn feature representation of the concept
depicted by the clip.
1) Use an ensemble of deep neural networks pre-trained
on action recognition to extract deep feature representa-
tions of the example clip.

e EVOLVE: Collaboratively evolve and clarify the con-
cept.
2) Search for similar clips using ensemble scoring.
3) Present proposed matching clips to the expert. Also
present “near misses” so the expert sees actions that the
algorithm considers to be outside the scope of the target
concept.
4) Get an expert’s feedback on the search results, and then
learn a better machine representation of the concept of in-
terest. By giving feedback, the expert also implicitly clar-
ifies ambiguities and uncertainties, both for the algorithm
and herself.
5) Return to step 1 for another learning cycle, until the
expert is satisfied.

o EXPLAIN: Generate a human-interpretable repre-
sentation.
6) After enough iterations of Learn + Evolve steps, a gen-
erative algorithm generates an “evaluation” video clip that
focuses on the target concept, suppressing and minimiz-
ing additional content.
7) The expert either accepts this explanatory clip, or en-
gages in further learn-evolve-explain cycles.

The learning algorithm and the expert jointly discern the
target concept of interest starting with an example clip, with-
out requiring a fixed concrete problem specification up front.
In steps 2 through 5, the learning of the concept of interest
evolves using an expert-guided ongoing collaborative ap-
proach. As part of step 5, a target bootstrapping algorithm
takes its internal representations of all matching clips vali-
dated by the expert and forms a consensus representation, all
in terms of machine feature representations. Finally, steps 6
and 7 aim to create a human-understandable representation
that explains the internal model representation of the target
concept.

1.3 Technology elements

The technology elements of this work can be summarized as
follows:

e A video clip representation approach (section 3)
e A search algorithm (section 4)

e A method to refine the search given expert user feedback
(section 5)

e A method to refine the machine representation of the tar-
get concept given expert user collaborative feedback (sec-
tion 6)

e A method to generate a clip that captures only the concept,
while de-emphasizing other details (future work on our
proposed road map, section 9)

2 Related work

Our approach uses transfer learning, in that it uses embed-
dings from pre-trained deep neural nets in a context other
than the original training objective. Using embeddings from
a pre-trained deep neural net in a context other than the train-
ing objective often proves useful (Goodfellow et al. 2016).

Also, active deep learning is similar in some respects
to the expert-guided collaborative learning we are describ-
ing in this paper; both aim to make best use of the ex-
pert’s time. For example, Gal et al (Gal, Islam, and Ghahra-
mani 2017) take advantage of specialized models such as
Bayesian neural networks to construct efficient deep active
learning paradigms. Interesting strategies such as deep ad-
versarial active learning (Ducoffe and Precioso 2018) also
reduce the amount of expert input required. While active
learning approaches focus on efficient use of expert input,
they typically assume that the concept of interest has already
been discerned and aim to achieve more efficient labeling.
Our approach could be used as an active learning tool when
the classes are well understood beforehand, but our primary
focus in on collaborative learning of a concept that is not
specified up front, starting with as little as one example from
an expert. We do see potential value in integrating modern
active learning algorithms like (Gal, Islam, and Ghahramani
2017) and (Ducoffe and Precioso 2018) with the collabora-
tive learning discussed in this paper.

3 Video clip representation

To prepare data for use, we divide a video dataset into clips,
and we compute a signature for each clip using an ensem-
ble of deep learning neural networks. Currently, we define
a clip to be 10 seconds long, although exploring this pa-
rameter and overlap of clips is on our road map. Below we
discuss our ensemble model approach for feature represen-
tation. Our ensemble design captures two properties of the
content in each video clip: appearance and motion. We pre-
train our ensemble using a publicly available video dataset
that contains a broad set of human actions.

3.1 Definitions
e Video clip: a short section of video, e.g., a 10 second clip.

e Video clip signature: a set of deep embedded feature vec-
tors that encode clip characteristics.

e Feature vector: a vector of embedded features for a video
clip computed using a neural network; in general a func-
tion of the clip and the neural network.

e Stream: a deep neural network model that uses video data
processed in multiple ways, as part of a collection of
streams in a multi-stream architecture.

3.2 Learning an ensemble model of deep neural
networks

The ensemble we have been studying comprises three RGB
and three warped optical flow deep nets adopted from the
Temporal Segment Networks (TSN) work by Wang et al
(2016). For each mode, the three networks were trained on
the three published splits of UCF-101 data (Soomro, Za-
mir, and Shah 2012). The results reported here correspond
to the six 1024-element global_pool embedded feature vec-
tors in the six deep nets, which are the last feature vectors
before the final layers that classify outputs into the 101 UCF
classes. Once computed, we store video clip signatures as
structured data in a database, enabling structured queries for
comparing signatures.

The TSN approach takes a short video, divides it into a
specified number of snippets, analyzes each snippet using
both a spatial (RGB) convolution neural network and a tem-
poral (optical flow) neural network, and then applies con-
sensus functions to arrive at a final determination of the ac-
tion. Optical flow shows the velocity of pixels, and warped
optical flow attempts to suppress background motion, such
as effects of camera, rather than actor, movement. Whereas
Wang et al. (2016) report that an optical flow neural net per-
formed nearly as well as a warped optical flow neural net in
their work and takes less computation time to prepare, we
have been using warped optical flow neural nets in order to
increase robustness to camera motion. Our use cases have
focused on cameras mounted on moving vehicles, unlike the
UCF-101 dataset, and our initial tests suggested that warped
optical flow could perform better than optical flow alone.

We chose TSN modeling because the UCF-101 dataset
used in the TSN work has a mean clip length of 7.2 sec,
comparable to the clip lengths of interest to us. Action con-
cepts like “walking with a dog”, ”band marching”, “riding
a bike down a path”, and ”walking across the street” are the
focus in our approach, as opposed to longer, more compli-
cated activities, like a video of someone going through all
the steps to bake a cake or build a piece of furniture. TSN
emphasizes analyzing snippets of video for short actions,
rather than creating a longer term memory of an evolving
activity. Our methodology is meant to be used for tasks like
identifying a test vehicle stopping for pedestrians crossing
in front of it, and we would not expect it to work well in
deducing whether a series of actions in a video corresponds
to someone doing some shopping before picking up a child.
The latter involves a series of actions and an abstract sense
of intent, which is a different type of video machine learning
task. The methodology proposed here could be a component
of a larger machine learning technology that comprehends
the latter activity, but it could not achieve that goal alone.

3.3 Choice of stream types

Any appropriate deep nets can be used, and different types
of problems will do better with different deep net models.
For example, adding an Image Net stream could help if con-
cepts having more to do with images than video action are
important, e.g. if someone is interested in finding all exam-
ples of crossing a street at a stop sign versus a stop light. The

differences between a stop sign and a stop light are image
differences, not action differences. In our user studies so far,
we have found that users often want to include such “image”
features in their search. Another example where a different
neural net could be useful is the case of studying facial ex-
pressions and head motions. Neural nets trained on facial
expressions rather than the actions in the UCF-101 dataset
will probably do better, e.g., for videos capturing people’s
faces while driving cars.

3.4 Choice of deep network embeddings

Depending on the concept of interest, embeddings from dif-
ferent layers other than the final hidden layer in a deep net
may be more useful to integrate into an ensemble model. For
example, if one is looking for more basic motions, like veer-
ing left vs. right, lower layers may better distinguish such
actions. In contrast, our currently UCF-101 trained TSN
networks may not have that differentiation of left vs. right
motion present by the time higher layers are reached, since
these networks were trained to predict the correct action re-
gardless of left vs. right motion.

In future work, we plan to investigate including more lay-
ers and let the human-algorithm collaboration discern how
much to weigh lower vs higher layers in the ensemble.

4 Searching for similar clips

As described above, the search algorithm uses an ensem-
ble of deep neural net embeddings. Similarities of clips are
quantified by computing dot products of embedded feature
vectors for the example clips and possible matches. The in-
dividual dot products are then combined into an ensemble
score.

4.1 Choice of similarity measure for a single
embedding

To compute the similarity of an embedded feature for a ref-

erence clip and the same embedded feature for a second clip

1, We use

()T ref
fDNN '"JDNN ()

2

Al

where f are the feature vectors, T denotes transpose, and
DNN represents the deep neural net type (e.g., RGB or
warped optical flow). Similarity corresponds to how close
the result is to one. In experiments so far, we find this sim-
ilarity measure works well in an ensemble model, whereas
the results for single neural nets alone seem to suffer signif-
icantly higher variance.

Note that Eqn 1 differs from a cosine similarity. (The de-
nominator is the square of the L2 norm of the embedded fea-
ture for the reference frame, not the product of the norms for
both features.) We use this “dot product” similarity because
it emphasizes what is similar along the hyper-dimensional
direction of the reference embedding, not what is different
in orthogonal hyper-dimensional directions. Note that two
embedded feature vectors can be far apart in their hyper-
dimensional space (e.g., according to a Euclidean or other
distance metric) and still have a good similarity score.

Figure 1:
narios: Vehicle at intersection with pedestrians cross-
ing. From the Downtown Brooklyn Drive video
https://www.youtube.com/watch?reload=9&v=cjs3RxuKob6c
at time 3:53.

Experimental Evaluations of driving sce-

4.2 Ensemble of similarities

Since the signature of a video clip is the set of features
computed using multiple types of deep neural nets (DNN)
trained on multiple splits of data, we need to specify how
we are ensembling all of the similarity metrics.

Ensemble over data splits For each type of DNN and
each candidate clip i, we compute the similarity

3 ()T ref

@ 1 DNN,; " JDNN,j
YPDNN = 3 Z Tif 2 ’ 2
J=1 ‘ DNN j||,

where f 83\, ., 18 the feature for split j of the given DNN

type, computed for clip i, and fge]{, ,; 18 the corresponding

feature for the reference clip. When clip ¢ is also the ref-
()

erence frame, ¢y = 1, and more generally, whenever
the projection of) ;on Hya. ; equals the squared L*

norm of fg% «.;» the summand equals one, even if f (ngv N

and fge](, «,; are not equal. This is the desired behavior we
discussed in section 3.1.

Ensemble over DNN streams The next step is to deter-
mine an overall similarity score. To do so, we use a Eu-
clidean space in which each DNN corresponds to a dimen-
sion along which <p(DZ)N 1s measured. In this space, a value
of gp(l;)N n = 1 for each DNN dimension is the best pos-
sible similarity. We do not necessarily want to weigh each
DNN dimension the same, but instead want to learn optimal
weights. Thus, we compute the overall similarity of clip ¢ to

the reference as

. 2
‘ D]ZV:N szNN (1 - 9053)NN>
0 =

3)
> wQDNN
DNN

where wp v are the weights for each type of DNN.

5 Refining search

To decide which clips to present to the user for review, sim-
ilarities #° are computed for the latest best guess of the val-
ues of wpn N (WreB and Wyarped optical flow 1N the examples
presented here). A small number of clips with similarities
better than the current estimate of the threshold are selected,
as well as a small number of clips with similarities close
to but below the threshold. The user then gives feedback,
and the algorithm computes new estimates of wpyy and
the threshold for #%. In our experiments we tended to see
better outcomes when both matches and “near misses” were
presented for review. This is perhaps similar to people estab-
lishing common understandings by agreeing both on posi-
tive and negative examples of concepts.

6 Refining machine representation: Target
bootstrapping

In this section, we discuss refining the machine representa-
tion of the target concept given expert feedback. The goal is
to replace f15i w; With a new bootstrapped set f7,y y ; that
is most consistent with all user validated matches, capturing
what is similar with all of them and ignoring what is differ-
ent. Referring back to equation 3, in mathematical terms we
want to find f2 5 ~; such that 0" ~ 1 for all user-validated

matching clips. Any set of f7,y ; for which

)T 2
FoNws - oy = [Fhwwslly S
for all clips ¢ in the set of user validated matches, all splits j
and all DNN types corresponds to a bootstrapped reference
that has 6* = 1. Any such f% ~,; corresponds to a hyper-
plane perpendicular to it that contains all the endpoints of

f gg\] w,; for all user-validated matches i.

There are an infinite number of such hyper-planes, since
the dimensions of the fpn,; are much higher (1024 in this
work) than the number of matches a user will have vali-
dated. As a starting point for the bootstrapping, we compute
the largest (in the L2 norm sense) bootstrapped f% ; that
satisfies equation 4 because it is the least restrictive in terms
of reducing the impact of any one hyper-dimension on the
similarity metric #°. In this way, we do not force more re-
strictions on the user’s intent than is necessary for inferring
a unifying machine representation. To reduce variance, we
use bagging, choosing samples with replacement for each
bag and averaging over three bags. Information about non-
matches can also be incorporated. The mathematical details
for the base version of target bootstrapping are provided in
the appendix.

7 Software implementation

We have built Agile Video Query software implement-
ing agile discovery for video datasets and made it
available open source at https://github.com/PARC-projects/
video-query-home, free for non-commercial use. The soft-
ware components are (1) a Django API, (2) an Angular
browser client, (3) back end python algorithms, and (4) a
Postgres database. We are continuing to develop the soft-
ware and welcome others to participate.

(a) Target Clip = 0:01:41

(%] Match:
2Q- R
(%]
0 S
= 3
[= ®
o 8 b %
@ 3
Q K
—S 4
"
= 9 =
(o} X
= e
= %
2 A%
T 2 %]
© = 4
2 e
g e
O o
T T T T T
1.00 0.98 0.96 0.94 0.92 0.90

Similarity Score (6)

Cumulative Matches or Misses

(b) Target Clip = 0:00:40

o
<t Matches
* Misses
o |
™
o | o &’f
N X,
£

o | &}”{K ;
o o

1.00 0.98 0.96 0.94 0.92 0.90

Similarity Score (6)

Figure 2: Cumulative Matches or Misses for Pedestrian Crossing Scenario. The vertical lines are learned thresholds separating
predicted matches and misses. As 6 decreases, the distribution of matches falls off while the one for misses grows.

8 Experimental evaluation

Using video from moving vehicles, we have begun perform-
ing user studies of the Agile Video Query software. Sce-
narios studied so far include: (1) vehicles interacting with
pedestrians at intersections, (2) vehicles driving underneath
an overpass, and (3) vehicles taking a noticeable left turn.
See Figure 1 for a snapshot of the first scenario. (Copyright
permission to show snapshots from the video for the second
and third scenarios is pending.)

Not surprisingly, different users interact differently with
the software. For some users, the software motivates focus-
ing tightly on a particular concept, thereby helping to study
a well-defined hypothesis in a disciplined manner. We have
also observed cases where the software motivates a user to
expand the scope of interest and perform curiosity-driven
data exploration, in contrast with the former user type.

Figure 2 shows results for queries of vehicles interact-
ing with pedestrians crossing a street, for two users of the
first type discussed above. For Figure 2a, the user accepted
any clip where the vehicle interacted with or was stopped
for a pedestrian as a valid match. As illustrated, 80% of the
matches are correctly located above the learned threshold 6,
and 22.5% of the clips above the threshold are false posi-
tives (i.e., red x). For Figure 2b, the user only validated clips
in which both the vehicle and the pedestrian were moving,
rejecting clips in which the vehicle remained stopped. Al-
though 79% of the matches are correctly located above the
learned threshold, the false positive fraction is worse at 38%.

9 Technology road map

By analyzing for diverging sample distributions in the em-
bedded feature space, future enhancements will help the
human-machine collaboration discern when the user’s inter-
est is broadening or conflicted, and act by handling multiple
concepts separately. We expect these enhancements to take
the form of further development of target bootstrapping. Our

road map also includes adding a larger set of deep neural
net types, starting with an image-centric deep net to address
non-action image recognition needs that have come up re-
peatedly in our user studies.

We are also working toward a generative algorithm that
will use bootstrapped targets to produce video clips that hu-
mans can easily and intuitively interpret and evaluate. The
goal of this capability is to provide a human-interpretable
view of the machine representations. For our intended pur-
poses, the generated video should highlight the actions of
interest while also obscuring or subduing irrelevant features.
Our current approach is to leverage both LIME (Ribeiro,
Singh, and Guestrin 2016) and neural style transfer tech-
niques (Gatys, Ecker, and Bethge 2016).

LIME computes which pixels are important for any one
prediction made by a DNN image classifier, presenting a
modified image with those pixels replaced with a highlight
color. With a modified version of LIME, we expect to be able
to show if the machine representation is locking into some-
thing unexpected, such as irrelevant trees in the background.
If a user sees this happening, then the user can provide fur-
ther examples without those features in the next round of
feedback to the algorithm. Further along the roadmap, we
will research adding an explicit ability for users to directly
remove irrelevant things revealed by visualizations of the
machine representation.

Highlighting important pixels is only a partial solution,
however, because it will not reveal what relations among
pixels are important versus unimportant. Consider, for ex-
ample, video clips of pedestrians walking in front of a car
at an intersection. Highlighting the pedestrians reveals some
information, but it does not tell the user whether the machine
representation prioritizes, say, the pattern on a pedestrian’s
shirt or the reflective stripes on the safety vest of a jogger.
We are investigating using neural style imaging as a way to
alter a clip in order to subdues patterns and details that are

unimportant for the similarity score. Our hypothesis is this
approach can provide a richer human-interpretable version
of the machine representation; for example, the modified
clip may hypothetically show dull, monotone clothing for
queries that are not focused on clothing, or conversely, show
the details of a jogger’s safety vest if the user is intending
the query to focus on joggers with such vests.

10 Acknowledgement

We thank the U.S. Department of Transportation Federal
Highway Administration and Dr. Ana Maria Eigen for sup-
port and funding under EAR grant ID DTFH6115H00006.

References

Ducoffe, M., and Precioso, F. 2018. Adversarial active
learning for deep networks: a margin based approach. CoRR
abs/1802.09841.

Gal, Y.; Islam, R.; and Ghahramani, Z. 2017. Deep bayesian
active learning with image data. CoRR abs/1703.02910.

Gatys, L. A.; Ecker, A. S.; and Bethge, M. 2016. Image style
transfer using convolutional neural networks. In The IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR).
Goodfellow, I.; Bengio, Y.; Courville, A.; and Bengio, Y. 2016.
Deep learning, volume 1. MIT press Cambridge.

Ribeiro, M. T.; Singh, S.; and Guestrin, C. 2016. ”why should I
trust you?”’: Explaining the predictions of any classifier. In Pro-
ceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, San Francisco, CA,
USA, August 13-17, 2016, 1135-1144.

Soomro, K.; Zamir, A. R.; and Shah, M. 2012. Ucfl101: A
dataset of 101 human actions classes from videos in the wild.
arXiv preprint arXiv:1212.0402.

Wang, L.; Xiong, Y.; Wang, Z.; Qiao, Y.; Lin, D.; Tang, X.; and
Val Gool, L. 2016. Temporal segment networks: Towards good
practices for deep action recognition. In ECCV.

11 Appendix: Target Bootstrapping
In target boostrapping, we want to choose the least restric-
tive bootstrapped f,gjé ; that satisfies equation 4, in order

to not force more restrictions on the user’s intent than is jus-
tified. Accordingly, we choose the target bootstrapping to be

max %f”T - f (5)

such that f(i)T'fb: Hfsz ©)

for all clips 7 that the user has validated to be a match. When
using bagging, the set of all clips is replaced by a set ran-
domly chosen from the entire set with replacement.

As written, this maximization problem is in a form that is
difficult to handle. To put it in a nicer form, we introduce the
scaled target

fb

t=—t)
178115
In terms of this scaled target, equations 5 and 6 become,
for each choice of DNN and j

1
min itT ot (8)

such that fO7.¢=1)

This is a straightforward quadratic minimization problem
with linear equality constraints.

Using the method of Lagrange multipliers, the Lagrangian
for equations 8 and 9 is

1
intT-t—k)\T(F-t—l) (10)
where) is a vector of Lagrange multipliers, and
— FO"
— fOT
F =) (11)
— fO" 5

1, is a vertical vector of m ones, and J is the number of
user-validated matches corresponding to the f(*) in equation
9.

Setting % = 0 to find the minimum yields

t+FT . Xx=0 (12)
Since F' -t = 1; (equation 9 and % = 0), it follows that
1;,+FFT. x=0, (13)

implying
A=—(FFT)"'.1, (14)

Substituting back into equation 12, we derive the solution
for t:

t=F" . (FFT) " .1, (15)

Since ¢, the scaled form of f given by equation 7, is the
quantity needed for the bootstrapped version of equation 1,
there is no need to convert ¢ back to f°.

