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ABSTRACT
This paper summarizes Technicolor’s computational models to pre-
dict memorability of videos within the MediaEval 2018 Predicting
Media Memorability Task. Our systems are based on deep learning
features and architectures, and exploit the use of both semantic and
multimodal features. Based on the obtained results, we discuss our
findings and some scientific perspectives for the task.

1 INTRODUCTION
Understanding and predicting memorability of media such as im-
ages and videos has recently gained a significant attention from the
research community. To facilitate the expansion of this research
field, the Predicting Media Memorability Task is proposed at Media-
Eval 2018, which releases a large dataset of 10,000 videos, manually
annotated with scores of memorability. A complete description of
the task can be found in [4].

In order to automatically predict "short-term" and "long-term"
memorability (as referred in the two proposed subtasks), we in-
vestigated different approaches, summarized in figure 1. Our first
two approaches were intended to serve as a baseline for systems
of video memorability prediction. We therefore re-used available
high performance models for image memorability (IM) prediction
and applied them directly to video memorability (VM) prediction
(Section 2). Our second set of approaches (Section 3) investigated
different features, including multi-modal ones. In a last approach
(Section 4), instead of using an existing model as fixed feature ex-
tractor, we fine-tuned an entire state-of-the-art ResNet model to
adapt it to the task of memorability prediction.

All the above models are frame-based. As input, we extracted
seven frames (one per second) from each video, each frame being
assigned the ground-truth score of its corresponding video. We
then assess the VM score of a given video by simply averaging
the seven predicted frame-based scores. When possible, we trained
the models on short-term or long-term memorability ground-truth
scores to build specific runs for the two subtasks. We also split the
development set into 80% for training and 20% for validation. This
random split was done at the video level, to enforce that frames
from a single video were kept together in one part.

2 PRE-TRAINED IMAGE MEMORABILITY
BASED APPROACHES

To construct a performance baseline of VM prediction, we tested
two high-performance models available in the literature for IM
prediction. Both were trained on the LaMem dataset [10], the largest
dataset for IM to date (ca. 60,000 images from diverse sources).
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MemNet-based system. The first network for large-scale IM pre-
diction was presented in [10]. Based on the assumption that memo-
rability depends on both scenes and objects, authors fine-tuned the
training using a convolutional neural network (CNN) pre-trained
both on the ImageNet and Places databases. They showed that fine-
tuned deep features outperform other features by a large margin.
We used this model as is to generate memorability scores for our
video frames. We further averaged them to obtain the VM scores
proposed in Run#1, identical for the two subtasks.

CNN and Image captioning based system. A more recent model
that, to our knowledge, obtained the best performance up-to-now
for IM prediction, was presented in [11]. It exploits both CNN-
based and semantic Image captioning (IC)-based image features.
The authors used the pre-trained VGG16 network for their CNN
feature (extracted from the last layer), and a pre-trained IC model as
an extractor for a more semantic image feature. The IC model builds
an encoder consisting of a CNN and a long short-term memory
recurrent network (LSTM) that enables to learn a joint image-text
embedding by projecting the CNN image feature and the word2vec
representation of the image caption on a 2D embedding space.
Finally, the authors merged the two features using a Multilayer
Perceptron (MLP). We also re-used this model as is as a second
baseline which produces scores at frame level. Again, Run#2 is set
to be identical for both subtasks.
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Figure 1: Summary of our approaches for VM prediction.

3 DEEP SEMANTICS EMBEDDING-BASED
MULTIMODAL APPROACHES

We tested different features for VM prediction, including video-
dedicated and frame-based features. Video-dedicated features in-
cluded: C3D [13], HMP [1]. Frame-based features were extracted
on three key-frames for each video and included: Color histograms,
InceptionV3 features [12], LBP [8] and a set of Aesthetic visual fea-
tures [7]. Please refer to [4] for more details on these features, as
provided by the task’s organizers.
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Motivated by the finding that IC features perform well on both
IM [11] and VM [5] prediction, we used the model proposed in
[6] to extract some additional IC features from the frames. We
also took advantage of this model to extract an additional text
embedding feature from the titles provided with each video. As
such a feature corresponds to a mapping of natural language words,
i.e., a video description in our case, we expected an improvement
of our system’s capacity to capture semantics. We generated a new
multimodal feature (image-text) by simply concatenating the two
previous IC-based image and text features.

We then trained simple MLP (with one hidden layer of 100 neu-
rons) on top of each single feature, and a concatenation of the 3 best
non IC-based features. Again, these are frame-based models. Each
time, two versions of the networks were trained on the short-term
and long-term scores respectively. Table 1 shows the performance
of each individual system on the validation data. From these results
we decided to keep only the system with IC-image based features as
input for Run#3 and the multimodal IC-(image+text) based features
as input for Run#4, as the best performing features.

Features short-term long-term
C3D .28 .126
HMP .275 .114

ColorHist .134 .05
InceptionV3 .16 .058

LBP .267 .128
Aesthetics .283 .127

C3D+LBP+Aesthetics .347 .128
IC-image (Run#3) .492 .22

IC-(image+text) (Run#4) .436 .222
Table 1: Results in terms of Spearman’s correlation obtained
by a simple MLP for different video-dedicated and frame-
based features, on the validation dataset.

4 FINE-TUNED RESNET101
As in [3, 10], where fine-tuned DNN outperformed classical ap-
proaches, we tried a transfer learning approach by fine-tuning a
state-of-the-art ResNet model to the problem of IM prediction.

For this, we classically replaced the last fully connected layer of
ResNet to a new one dedicated to our regression task of memorabil-
ity prediction. This last layer was first trained alone for a few epochs
(5), before re-training the complete network for more epochs. The
following parameters were used: optimizer, Adam; batch size, 32.
We used the Mean Square Error as loss function to stick to our
regression task. Some data augmentation was conducted: random
center cropping of 224x224 after resizing of the original images
and horizontal flip, followed by a mean normalization computed on
ImageNet. We trained on an augmented dataset composed of the
80% of the development set and LaMem (because of the latter, we
processed to a normalization of the scores from the two datasets).

We fine-tuned two variants of ResNet: ResNet18 and ResNet101.
We kept ResNet101 to generate scores for Run#5, as it gave the
best performance on the validation set. We did not trained separate
models for the short-term and long-term subtasks, due to time
constraints. Note that, as LaMem images are provided with short-
term memorability scores only, we would still have biased the
network for long-term memorability prediction in doing so, but at

least we could have improved the performance by using the long-
term memorability scores of our dataset. So, Run#5 is identical for
both subtasks.

5 RESULTS AND DISCUSSION
Results are summarized in Table 2. The results of the first two
runs for the short-term subtask show that it is possible to achieve
quite good results in VM prediction using models designed for IM
prediction This means that the memorability of a video is correlated
to some extent with the memorability of its constituent frames. We
may also note the poor performance of all models for the long-
term subtask, compared to the short-term subtask. For runs #1, #2
and #5, this may be explained by the fact that the training was
done with the use of LaMem for which only short-term scores are
available. This may also come from the significantly lower number
of annotations for the long-term scores in the task’s dataset [4]. It
may also highlight that there is a significant difference between
short-term and long-term memorability and that it might be more
difficult to predict the latter. However, these results also prove that
long-term memorability is correlated – though not perfectly – with
short-term memorability. In accordance with the literature, the
model of [11] performed a little better than the model of [10] for
memorability prediction.

Runs

short-term mem. long-term mem.
Spearman Pearson Spearman Pearson
val. test val. test val. test val. test

1-MemNet .397 .385 .414 .406 .195 .168 .188 .184
2-CNN&IC .401 .398 .405 .402 .201 .182 .199 .191

3-IC .492 .442 .501 .493 .22 .201 .233 .216
4-Multi .452 .418 .48 .451 .212 .208 .23 .228
5-ResNet .498 .46 .512 .491 .198 .219 .217 .217

Table 2: Official results on the test set, and results on the
validation set. (Official metric: Spearman’s corr.)

Runs #3 and #4 perform better than runs #1 and #2. As in [11]
and [5], IC features performed well for memorability prediction
tasks, especially when fine-tuned on the new dataset (Run#3 can be
seen as a fine-tuned version of Run#2). Indeed, IC features convey
high semantics: high-level visual attributes and scene semantics
(actions, movements, appearance of objects, emotions, etc.) have
been founded to be linked to memorability [9, 10]. It also shows
that training of long-term scores helps improving the performance
for long-termmemorability. The multimodal approach gave slightly
worse results than IC features alone. However, due to time con-
straints, we did not proceed to any optimizing of the set of parame-
ters, to deal with the possible redundancy between IC image and
text embedding features.

The most accurate memorability prediction were obtained by the
fine-tuned ResNet101, which confirms that transfer learning from
an image classification problem to yet another task such as memo-
rability prediction works well. This validates also the quality of the
dataset at least for the short-term annotations. As perspectives, it
will be interesting to test systems incorporating temporal evolution
of the videos such as motion information or latest architectures
such as TCN [2] to see how it improves the performances.
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