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Abstract

The k-Center problem on a graph is to find a set K of k vertices mini-
mizing the radius defined as the maximum distance between any vertex
and K. We propose a probabilistic combinatorial optimization model
for this problem, with uncertainty on vertices. This model is inspired
by a wildfire management problem. The graph represents the adja-
cency of zones of a landscape, where each vertex represents a zone. We
consider a finite set of fire scenarios with related probabilities. Given a
k-center, its radius may change in some scenarios since some evacuation
paths become impracticable. The objective is to find a robust k-center
that minimizes the expected value of the radius over all scenarios. We
study this new problem with scenarios limited to a single burning ver-
tex. First results deal with explicit solutions on paths and cycles, and
hardness on planar graphs.

1 Introduction

Forest fires are becoming an increasing concern for the population across the globe, and with projected climate
change, this upward trend seems set to continue. Operations Research methods are one of the tools used by
wildfire managers to guide decision making [1, 2]. Evacuation planning and facility location under uncertainty
are some of the considered problems. In this paper, we address the problem of locating a number k of emergency
gathering points in a forest, in anticipation of fires. The general objective is to minimize the risk of having
people trapped by the flames, i.e., maximize their chance to reach a safe gathering point or shelter before the fire
arrives. Rescue operations are deployed to evacuate people from the shelters but these shelters are also equipped
to protect people against flames if rescue cannot be completed on-time.

In our model, the landscape is represented by an adjacency graph G = (V,E). Each node corresponds to an
area and two nodes are connected by an edge if the related areas are adjacent. A fire may ignite on a node and
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then can spread on all neighboring nodes at a fixed maximum distance called the range of impact. The impacted
zone is then the set of vertices where the fire spreads. In a real case scenario, the fire can spread over very large
areas and the impacted zone grows dynamically. However, it might be relevant to focus on a relatively short
period after ignition or after the alert, seen as the time required for all people present in the area to reach an
assembly point. This motivates us to consider small ranges of impact depending on the efficiency of the early
warning system. We then assume that people are safe after reaching the assembly point; this hypothesis is
relevant depending on the exact nature and design of the assembly points.

Our problem is a particular case of location-allocation problems. A solution describes not only the location of
emergency assembly points, defined as a subset K ⊆ V, |K| = k and known as a k-center (location problem), but it
also includes a strategy people should follow in case of fire to reach one assembly point (evacuation process). The
location can be addressed during the preparedness phase and may involve sophisticated solutions. The allocation
however is mainly addressed during the response phase, which usually requires efficient and simple processes.
Indeed, even though evacuation scenarios can be prepared in advance, they should remain straightforward in
order to be followed by untrained people, without supervision and under high stress conditions. Here, we will
consider that somebody is assigned to the closest assembly point with the constraint he/she will never go through
the fire; this constraint will be precise later. For a real case implementation, this could be supported by simple
early warning system deployed on site and indicating the direction and distance of the closest accessible shelter(s).
The objective is then to minimize the maximum distance from each vertex v to K, called the radius of the k-
center K. It corresponds to the worst case situation for someone present in the risk zone when a fire starts.
However high uncertainty lies on where a fire ignites and thus on the accessibility of some vertices or on the
practicability of some paths during the event. We model it as different possible scenarios, where a scenario is
given by an ignition vertex and a range of impact. Then, the objective becomes the expected value of the radius
in the new instance. We will restrict ourselves to a simple fire outbreak scenarios. This hypothesis is supported
by our choice to focus on a relative short period after ignition. To simplify the problem in this first study we will
consider a fixed range of impact. This corresponds to the situation where the considered region is homogeneous
in terms of topography, wind and fuel load conditions.

The framework of Probabilistic combinatorial optimization [3–5], also known as a priori optimization, is par-
ticularly suitable to model such situations, where one has to deal with destructions or obstructions on a usual
set-up that make an original global strategy potentially unfeasible. In this approach, a problem is decomposed
in two phases. The whole instance is considered during the first phase (seen as the preparedness phase), while
in a second time (response phase) only a part of the infrastructure remains available after an uncertain event
has occurred. A modification strategy is identified beforehand to ”automatically” transform a solution on the
whole instance (called an a priori solution) to a feasible solution on a partial available instance (an a posteriori
solution). To represent uncertainty, probabilities are assigned to the different possible partial instances. More
precisely it is usually based on a probability distribution on the different components of the initial instance
representing how likely they could be affected. The objective is then to compute an a priori solution on the
whole instance optimizing the expected value of the effective solution induced on the partial instance using the
modification scheme. Given our allocation strategy that assigns a person at risk to the closest safety point, the
modification scheme describes the new set of emergency points after the event and the new possible routes so as
to recompute the new allocation and the corresponding objective value. In this paper, since we assume the emer-
gency gathering points or shelters are safe and since it is not possible to define new locations during the response
phase, we consider that the k-center is not modified. Indeed, any original k-center always remains feasible in the
new graph. The modification scheme only corresponds to the new possible routes; roughly speaking these routes
are paths that do not cross the impacted zone. Specific rules are considered for people in this impacted zone as
detailed in the next section.

In the usual non-probabilistic case, also called deterministic case, our problem is known as the Minimum k-
Center problem and to our knowledge this is the first time the Probabilistic k-center is defined and discussed [6].
However, restricted versions of routing and networking-design probabilistic minimization problems (in complete
graphs) have been studied (see, e.g., [7–11] ). In [12–15], the analysis of the probabilistic minimum traveling
salesman problem, originally presented in [3, 4], has been revisited in order to propose new efficient resolution.
Several other combinatorial problems have been also handled in the probabilistic combinatorial optimization
approach, with or without recourse, including minimum vertex cover and maximum independent set [16, 17],
longest path [18], Steiner tree problems [19, 20], minimum spanning tree [9, 21], minimum dominating set [22]
and some other general combinatorial graph problems [23].

In this paper we apply the probabilistic combinatorial optimization setting for the k-center problem and we



use the following notations. Let G = (V,E) be an undirected and connected graph with V = {0, . . . , n}. For
v ∈ V , N(v) is the set of its neighbors. A path of length m is a sequence v0, . . . , vm of pairwise distinct vertices
where ∀i ∈ {0, . . . ,m − 1}, vivi+1 ∈ E. For x, y ∈ V , we denote by δ(x, y) the distance between x and y (that
is the length of the shortest path between them). Similarly for a set K ⊆ V , δ(x,K) = min

y∈K
δ(x, y). Given a

k-center K ⊆ V, |K| = k, its radius in G is denoted by rK = max
v∈V

δ(v,K). Finally, given a real-valued function

f with domain A, we denote arg min
x∈A

f(x) the set {x ∈ A : f(x) = min
y∈A

f(y)} of the minimum(s) of f in A.

The paper is organized as follows. In Section 2, we introduce and define the problem, namely Probabilistic
k-Center. In Section 3, we give and prove an explicit optimal solution on path and cycle instances. Section 4
deals with hardness of approximation on planar graphs of degrees 2 or 3. Finally, we conclude in Section 5.

2 Definition of the problem

Probabilistic k-Center is characterized by a couple (S,M), where S is the set of scenarios in each instance,
and M is a modification strategy. In this paper we study scenarios where the fire is limited to a simple node.
Then S = {si : i ∈ V } with si the scenario where vertex i burns. With the considered modification strategy
M0, the location of the centers are conserved and the vertices are affected to the nearest center in the available
instance. This strategy involves the following: when a fire ignites, all the people in the forest try to escape to
the closest shelter to get evacuated by the rescue. If there is a shelter in the ignition area, we assume that people
in this area find refuge in that shelter. Otherwise the people in the ignition zone always flee in the opposite
direction of the fire. Once at sufficient distance, they can choose their path rationally in order to get to the
closest shelter.

An instance of our problem is then a couple (G,P) with G a graph and P a probability system associated
with the vertices. It gives, for each vertex, the probability of fire on it. By default, we will consider a uniform
distribution under the assumption that we have one fire outbreak at a time on a simple node. So, each scenario
has probability p = 1

|V | . So in this work, Probabilistic k-Center will refer to this set-up. For scenario sj
and for any x, y ∈ V , we denote by δj(x, y) the distance between x and y in G \ {j}. Note that δj(x, x) = 0 and
δj(x, y) = +∞ if there is no path between x and y. Then, for scenario sj and K ⊂ V , the induced evacuation
distance of a node x is given by:

Dj(x,K) =

{
δj(x,K) if (x 6= j) or if (x = j and j ∈ K)

max
x∈N(j)

{1 + min
y∈K

δj(x, y)} if x = j and j 6∈ K (1)

Then, the disrupted radius of K for scenario sj induced by M0 is:

rKj = max
x∈V

Dj(x,K) (2)

We illustrate these definitions for k = 3 on a path of nine vertices and the 3-center K = {0, 5, 8}, whose nodes
are drawn as pentagons. Figure 1, gives, for each node x, the value of δ(x,K). So, the radius of this solution is 2.
In Figure 2, we illustrate a fire occurring on node 1. We give under each node x ∈ V the value of D1(x,K), and

0 1 2 2 1 0 1 1 0

0 1 2 3 4 5 6 7 8

Figure 1: The distance of each node to the 3-centers {0,5,8} in the deterministic case.

underline it when it has changed. For example, node 2 is affected since the original evacuation path to shelter 0
is no more operational. Note that, in the worst case, people on node 1 escape to node 2 and then to shelter 5.
The disrupted radius rK1 of scenario 1 is 4.

0 4 3 2 1 0 1 1 0

0 1 2 3 4 5 6 7 8

Figure 2: Evacuation distances in the scenario s1.



Figure 3 illustrates a fire on node 5, with a shelter. It affects nodes 3,4 and 6.
We denote by E the objective function of the Probabilistic k-Center problem. It is the expectation value

of the disrupted radius of K :

E(K) =
∑
j∈V

prKj = p ·
∑
j∈V

rKj (3)

A solution K is said feasible if its objective value is finite. We denote by K(G) the set of feasible solutions.

Remark 1. Denote by Ψ(G) the set of connected components of a graph G. Then K is a feasible solution if
∀j ∈ V,∀W ∈ Ψ(V \ {j}), K ∩W 6= ∅.

An optimal solution for our version of the Probabilistic k-Center problem is then a k-center K∗ verifying
K∗ ∈ arg minK∈K{E(K)}.

We introduce the following decomposition of the objective function:

E(K) = Es(K) + Es̄(K) s.t. : Es(K) = p
∑
j∈K

rKj , Es̄(K) = p
∑

j∈G\K
rKj (4)

In other words, Es(K) is the contribution of scenarios for which fires occur in K (called the skeleton), and
Es̄(K) is the contribution of scenarios for which fires occur on the other vertices (called the body). We can treat
these components as two different problems. In particular, Es̄(K) corresponds to a version of our problem where
the nodes of K are fortified [24], which means they are immune to fire. Note that, if a solution is optimal for
both components, then it is optimal for the whole problem.

Moreover, we propose another evaluation function, denoted Ê, corresponding to the expected evacuation
distance in the local area of the ignition node j defined as the close neighborhood (N(j)∪ {j}) of j. The locally
induced radius is then denoted r̂Kj = max

x∈N(j)∪{j}
Dj(x,K) :

Ê(K) = p ·
∑
j∈V

r̂Kj (5)

Obviously, for a feasible K and ∀j ∈ V , we have:

Ê(K) ≤ E(K) (6)

We similarly decompose Ê(K) in Ês(K) and Ês̄(K).

3 An explicit solution on Paths and Cycles

Denote Pn+1 a path on n + 1 vertices, Cn a cycle on n vertices, and H a graph that is either a path or cycle
with n edges. Given the feasibility condition seen in Remark 1, for K = (v1, . . . , vk) ∈ K(Pn+1), we necessarily
have v1 = 0 and vk = n. Thus, K induces k− 1 segments µi of length λi, i = 1, . . . , k− 1. On a cycle Cn and for
K ∈ K(Cn), K would induces k segments. In the following we deal with path and cycles simultaneously, unless
specified otherwise. We define κ = k if H is a cycle, and κ = k − 1 if H is a path. We denote EH(K) the value
of the solution K in H. Denoting λ = (λ1, . . . , λκ), we can consider equivalently EH(K), EHs (K) and EHs̄ (K) as
functions of λ(K). We say that λ = (λ1, . . . , λκ) is not decreasing if λ1 ≤ . . . ≤ λκ. We define λ≤ = (λi1 , . . . , λiκ),
where i : {1, . . . , κ} → {1, . . . , κ} is a permutation such that λi1 ≤ . . . ≤ λiκ , a non decreasing solution induced by
λ. The possible λs corresponding to a feasible k-center are all vectors, (λ1, . . . , λκ) ∈ Nκ such that

∑κ
i=1 λi = n.

We denote by Λ(H) their set. The aim of this section is to give an explicit optimal solution for Probabilistic k-
Center on paths and cycles. In both cases, the balanced solution (see Definition 1), optimal in the deterministic
case, reveals also to be optimal in the probabilistic case. However, the proof is non-trivial. For paths, we will
show, in a first step, that this solution minimizes the contribution of the skeleton and in a second step, that it
minimizes also the contribution of the body. We then derive the case on cycle by a reduction to the case on
paths.

3.1 Expression of the disrupted radius and balanced solution

The results in this subsection hold for both cycles and paths with n edges. We define µ0 = µκ+1 = ∅ in the case
of paths. We recall that the objective function of the Probabilistic k-Center problem requires the disrupted



radius of K induced for each scenario (see Equations (2), (3)). For scenario sj , let µi be a segment such that
j ∈ µi, i ∈ {1, . . . , κ}. We have:

rKj = max{max
x∈µi
{Dj(x,K)}, max

x∈H\µi
{Dj(x,K)}}

Observe that, ∀x ∈ H \ µi, the evacuation path is not modified. On µq 6∈ µi, the evacuation path of any

node is shorter than the evacuation path of the middle node(s) of µq. Then, ∀x ∈ µq, Dj(x,K) ≤ bλq2 c and

max
x∈H\µi

{Dj(x,K)} = max
q∈{1,...,κ}:µq 6∈µi

{bλq2 c}. Now we look at max
x∈µi
{Dj(x,K)}. The evacuation paths on segment

µi is always shorter than one of the evacuation paths from j or - if j ∈ K - from one of his neighbor. We
distinguish then two cases:

If j ∈ K, max
x∈µi∪µi+1

{Dj(x,K)} = max{Dj(j−1,K), Dj(j+1,K), } since Dj(j,K) = 0. Based on Equation (1)

we obtain:
rKj = max{λi − 1, λi+1 − 1, max

q=1,...,κ;j 6∈µq
bλq2 c} (7)

For example, in Figure 3, rK5 = max{λ1 − 1, λ2 − 1, bλ3

2 c} = max{4, 2, 5} = 5.

0 1 2 3 4 55 6 7 8 . . . 18

0 1 2 3 4 0 2 1 0 0

µ1 µ2 µ3

Figure 3: Evacuation distances to the 4-center {0, 5, 8, 18} in the scenario s5.

If j 6∈ K, max
x∈µi
{Dj(x,K)} = Dj(j,K). Using Equation (1) we then have Dj(j,K) = max{j − vi, vi+1 − j},

and therefore:
rKj = max{j − vi, vi+1 − j, max

q=1,...,κ;j 6∈µq
bλq2 c} (8)

Definition 1. A solution is called balanced if ∀i, j ∈ {1, . . . , κ}, |λi−λj | ≤ 1, and it will be called non-decreasing
if ∀i, j ∈ {1, . . . , κ}, i < j, λi ≤ λj. We denote KB ∈ K(H) the solution such that KB is a non-decreasing balanced
k-center.

We denote by λB the related vector of distances. Thus, we have λBi ∈ {
⌊
n
κ

⌋
,
⌈
n
κ

⌉
} and λB1 ≤ . . . ≤ λBκ for

i = 1, . . . , κ. In what follows, we show that the Probabilistic k-Center problem has an optimal balanced
solution on paths and cycles. For k ≥ n

2 , we have the following result (the proof is given in Appendix):

Proposition 1. For k ≥ n
2 , KB is an optimum solution for Probabilistic k-Center on paths and cycles.

So, in what follows, we assume k < n
2 . In this case, we show in Appendix the Lemma 1 :

Lemma 1. EHs (λB) = ÊHs (λB) , EHs̄ (λB) = ÊHs̄ (λB) and EH(λB) = ÊH(λB).

In subsection 3.2, we show that KB minimizes E
Pn+1
s (K). In order to prove that KB minimizes also E

Pn+1

s̄ (K),
in subsection 3.3, we establish a more general result, by showing that KB minimizes EHs̄ (K). So, we can obtain
Theorem 1 for paths and in subsection 3.4, we consider cycles.

3.2 The skeleton part on paths

In this subsection, we focus on the skeleton part on paths. We first show that some balanced solution minimizes

Ê
Pn+1
s (K) and then, that it minimizes as well E

Pn+1
s (K). Based on Equations (5), (4) and (7) we have:

Ê
Pn+1
s (λ) = p ·

(
λ1 +

κ∑
i=2

max(λi−1, λi) + λκ

)
− p(κ+ 1) (9)

Lemma 2. Ê
Pn+1
s (λ) ≥ ÊPn+1

s (λ≤)



Proof. Consider λ = (λ1, . . . λκ) with λi ≥ 0, i = 1, . . . , κ. If λ1 = max{λi, i = 1, . . . κ}, we define r = 0, else
let r be the maximum index in {1, . . . , κ} such that λ1 ≤ . . . ≤ λr and ∀j ≥ r, λj ≥ λr. If r = κ, we have
λ = λ≤ and nothing needs to be shown. Else, r < κ − 1 (the value r = κ − 1 is not possible), we consider
s ∈ arg min{λj , j = r + 1, . . . , κ}: by definition, we have λr+1 ≥ λr if r > 0, s > r + 1 and λr ≤ λs < λr+1. We
then consider λ′ the vector obtained from λ by moving the sth coordinate at the position r + 1:∣∣∣∣ λ′i = λi, i = 1, . . . , r λ′r+1 = λs,

λ′i = λi−1, i = r + 2, . . . , s λ′i = λi, i > s

We claim that Ê
Pn+1
s (λ′) ≤ Ê

Pn+1
s (λ). Indeed, suppose first s < κ and consider the expression of Ê

Pn+1
s (λ′)

and Ê
Pn+1
s (λ), as sums of κ + 1 terms (see Equation (9)). The three terms max(λr, λr+1),max(λs−1, λs)

and max(λs, λs+1) in the expression of Ê
Pn+1
s (λ) are replaced in the expression of Ê

Pn+1
s (λ′) by

max(λr, λs),max(λs, λr+1) and max(λs−1, λs+1) and all the other terms are identical in both expressions. We
conclude:
Ê
Pn+1
s (λ)− ÊPn+1

s (λ′) = p (max(λr, λr+1) + max(λs−1, λs) + max(λs, λs+1)
− [max(λr, λs) + max(λs, λr+1) + max(λs−1, λs+1)])

= p (λr+1 + λs−1 + λs+1 − λs − λr+1 −max(λs−1, λs+1)))
= p (λs−1 + λs+1 − λs −max(λs−1, λs+1)) ≥ 0

where the last inequality holds since λs ≤ min(λs−1, λs+1). Suppose now s = κ, then a similar approach without
the terms involving s+ 1 leads to:

Ê
Pn+1
s (λ)− ÊPn+1

s (λ′) = p (max(λr, λr+1) + max(λκ−1, λκ)− [max(λr, λκ) + max(λκ, λr+1)])
= p (λr+1 + λκ−1 − λκ − λr+1) ≥ 0 (since λκ−1 ≥ λκ)

Note that these arguments hold also if r = 0. The proposition is deduced by induction, repeatedly replacing the
current vector λ by λ′.

We are now ready to show the main result of this part:

Proposition 2. λB ∈ arg min{EPn+1
s (λ), λ ∈ Λ(Pn+1)}.

Proof. First we claim that λB ∈ arg min{ÊPn+1
s (λ), λ ∈ Λ(Pn+1)}. Indeed in order to minimize Ê

Pn+1
s (λ) for

λ ∈ Λ(Pn+1), Lemma 2 ensures we can restrict ourselves to non decreasing solutions. But for any non decreasing

λ in Λ(Pn+1), we have Ê
Pn+1
s (λ) = p(n+λκ)−p(κ+1) (Equation (9)) and consequently a non decreasing solution

minimizing Ê
Pn+1
s (λ) is obtained by solving:

min λκ
λ1 ≤ . . . ≤ λκ
κ∑
i=1

λi = n, λ ∈ Nκ

This admits λB as unique solution. Therefore, by Lemma 1 and Equation (6), we have: E
Pn+1
s (λB) =

Ê
Pn+1
s (λB) = min

λ∈Λ(Pn+1)
Ê
Pn+1
s (λ) ≤ min

λ∈Λ(Pn+1)
E
Pn+1
s (λ) and consequently λB ∈ arg min{EPn+1

s (λ), λ ∈

Λ(Pn+1)}.

3.3 The body part

Here, we focus on ignition outside the skeleton, the ”body” part, on paths and cycles and show that there
is a balanced solution minimizing EHs̄ (K). Our proof for the body part immediately applies for both cases,
which is worth to be noted since, as already mentioned, the problem restricted to the body has its own interest
in applications. First, we highlight some properties of a balanced solution. For the following let us denote
K = (v1, . . . , vk).

Lemma 3. Given an initial solution λ ∈ Λ(H), with λa + λb = m,λa ≥ λb and |λa − λb| ≥ 2 for some 1 ≤ b ≤
a ≤ κ, we define a solution λ′ such that λ′a + λ′b = m, |λ′a − λ′b| ≤ 1, λ′a ≥ λ′b and λ′i = λi,∀i = 1, . . . , κ, i 6= a, b.

Then we have ÊHs̄ (λ′) ≤ ÊHs̄ (λ).

Proof. Let us denote α(λa) =
∑

j∈µa\K
max{j − va, va+1 − j} the contribution of µa to the value of Ês̄(λ).

Then ÊHs̄ (λ) = p
∑

i=1,...,κ

α(λi). Denote also A a logical proposition, and by 1A the boolean function such that



1A = 1 if A is true, and 1A = 0 if A is false. For j ∈ λ1, we have α(λa) =
∑

j∈µ1\K
max{j − va, va+1 − j} =

∑
j∈µa\K

max{j, λa− j} = 2 ·
λa−1∑
j=dλa2 e

(j)−1(λa even)(
λa
2 ) = bλa2 c(λa+dλa2 e−1)−1(λa even)(

λa
2 ). The previous result

applies also to α(λb). As λb = m− λa, we can express α(λa) + α(λb) as a function of λa:

α(λa) + α(λb) = bλa2 c(λa + dλa2 e − 1)− 1(λa even)(
λa
2 )

+bm−λa2 c(m− λa + dm−λa2 e − 1)− 1((m−λa) even)(
m−λa

2 )

If we study the different combinations of parities of λa and m, we get:

3
2λ

2
a − 3n

2 λa + 3
4m

2 −m ≤ α(λa) + α(λb) ≤ 3
2λ

2
a − 3m

2 λa + 3
4m

2 −m+ 1
2

Defining the function f(λa) = 3
2λ

2
a − 3m

2 λa, we have:

α(λa) + α(λb)−
1

2
≤ f(λa) +

3

4
m2 −m ≤ α(λa) + α(λb) (10)

and the same holds for (λ′a, λ
′
b).

3
4m

2−m is fixed and f(λa) increases for λa >
m
2 . Since λ′a ≤ λa, f(λ′a) ≤ f(λa).

Since α(λa) +α(λb) and α(λ′a) +α(λ′b) are integers and λ′a ≤ λa, we deduce from Equation (10) α(λ′a) +α(λ′b) ≤
α(λa) + α(λb). As α(λi) = α(λ′i), i = 1, . . . , k − 1, i 6= a, b, we conclude Ês̄(λ

′) ≤ Ês̄(λ).

Lemma 4. ÊHs̄ (λ) ≥ ÊHs̄ (λB)

Proof. Note first that ∀λ ∈ Λ(H), ÊHs̄ (λ) = ÊHs̄ (λ≤), and assume λ is a non decreasing solution. We look at the
pair of intervals (λ1, λκ) with the largest length difference. If |λ1 − λκ| ≤ 1, then λ is a balanced solution and
the lemma is verified. Otherwise, we create a new solution λ′ by replacing the extreme intervals by a new pair

of intervals of size λ′1 = bn−
∑κ−1
i=2 λi
2 c and λ′κ = dn−

∑κ−1
i=2 λi
2 e. As λ1 + λκ = λ′1 + λ′κ, by Lemma 3, we deduce

ÊHs̄ (λ) ≥ ÊHs̄ (λ′). We denote λ′′ = λ′≤ the non decreasing solution induced by λ′. Then, ÊHs̄ (λ′) = ÊHs̄ (λ′′).
Consequently, note that ∀j = 1, . . . , κ, λ1 ≤ λ′′j ≤ λκ We can make two observations: first λ′′1 ≥ λ1 and λ′′κ ≤ λκ,
thus λ′′κ − λ′′1 ≤ λκ − λ1. It means that the maximum length difference between intervals in the newly created
solution doesn’t increase compared to the original solution. The second observation is that λ′1 > λ1 and λ′κ < λκ.
This ensures that after at least n

2 iterations, the maximum length difference strictly decreases. Therefore we can
iterate this process with the new extreme intervals (λ′′1 and λ′′κ) until we get a solution whose extreme intervals
lengths differ by at most 1, in which case all intervals differ by at most 1. This is then a balanced solution,
hereby the proof is completed.

Proposition 3. λB ∈ arg min{EHs̄ (λ), λ ∈ Λ(H)}.

Proof. Using Lemmas 1 and 4, Equation (6) and ∀λ ∈ Λ(H), we get:

EHs̄ (λ) ≥ ÊHs̄ (λ) ≥ ÊHs̄ (λB) = EHs̄ (λB).

We then conclude:

Theorem 1. KB ∈ arg min{EPn+1(K),K ∈ K(Pn+1)}

Proof. As λB ∈ arg min{EPn+1
s (λ), λ ∈ Λ(Pn+1)} (Proposition 2 ), and λB ∈ arg min{EPn+1

s̄ (λ), λ ∈ Λ(Pn+1)}
(Proposition 3 ), then λB ∈ arg min{EPn+1(λ), λ ∈ Λ(Pn+1)} (see Equation (4)). As λB corresponds to a unique
solution KB in the case of paths, the proof is complete.

3.4 The case of cycles

Proposition 4. KB ∈ arg min{ECn(K),K ∈ K(Cn)}

Proof. (Sketch) Given an instance Cn of our problem with k centers, we match an instance Pn+1 of Proba-
bilistic k-Center with k + 1 centers with the extremity nodes (1, n + 1) part of any feasible solution KP of
Pn+1. Thus, to any solution KP ∈ K(Pn+1) we can match a solution KC ∈ K(Cn) of size k. Since it is the
lengths of the segments induced by KC that distinguish a solution from another on Cn, KC matches KP if they
both induce a series of k segments of same lengths. We assume then, without loss of generality for Cn, that



λ1 is the length of the shortest segment. The values of the solutions KC and KP verify the following relations:

ECn(KC) = n+1
n

(
EPn+1(KP )−min{rKP1 , rKPn+1}

)
and ÊCn(KC) = n+1

n

(
ÊPn+1(KP )− (λ1 − 1)

)
. By Theo-

rem 1, we know that a balanced solution KB
P minimizes ÊPn+1(KP ). In addition KB

P maximizes the value of the

segment of minimum length, λB1 . Then KB
C , the solution on Cn matching KB

P , minimizes ÊCn(K),∀K ∈ K(Cn).

As ECn(KB
C ) = ÊCn(KB

C ), Lemma 1 and Equation (6) induce ECn(KB) = ÊCn(KB) ≤ ÊCn(K) ≤ ECn(K) for
all K ∈ K(Cn). It concludes the proof.

4 Complexity result

The case of planar graphs and in particular with low degree, is very natural for our application. It motivates us
investigating the complexity status of our problem in restricted classed of planar graphs to better discriminate
polynomial cases and hard cases.

Minimum Dominating Set is shown NP-hard on planar graphs of maximum degree 3 in [25]. More precisely
the authors refer to a private communication by David S. Johnson and give the reduction but not the complete
proof. The following lemma allows to prove it and will be required later.

The reduction is from Minimum Vertex Cover in planar graphs of maximum degree 3 [?]. This does not
imply immediately the hardness of our problem. Indeed, we defined the Probabilistic k-Center as the case
with fixed uniform probabilities 1

|V | , while k-Center can only be seen as the specific case where the probabilities

are all zeros. In this section, we will show an inapproximability result for Probabilistic k-Center on planar
graphs of maximum degree 3 .

Given a planar graph G = (V,E), one builds a graph G′ = (V ′, E′) by replacing each edge uv by a C4

auvbuvcuvduv, linking auv and cuv to u and v, respectively.

Lemma 5. For any t ≤ |V |, G has a vertex cover of size t if and only if G′ has a dominating set of size t+ |E|,
i.e., a (t+ |E|)-center of radius at most 1. Moreover, for each edge uv ∈ E this (t+ |E|)-center has exactly one
vertex in {auv, cuv} and none in {buv, duv}. The transformation is polynomial.

Proof. Consider U ⊂ V a vertex cover of G of size t. We define the set UE as follows. For every edge uv ∈ E,
if v /∈ U , we add cuv to UE . If both u and v are in U , then we add either auv or cuv to UE . Then, U ∪ UE is a
dominating set of size t+ |E| in G′.

Assume conversely that G′ has a dominating set K ′ ⊂ V ′ of cardinality t + |E|. For every edge uv ∈ E,
we necessarily have K ′ ∩ {auv, buv, cuv, duv} 6= ∅ to cover vertices buv and duv. In the meanwhile, it is never
interesting to take buv or duv, since it would always be possible to modify a solution using buv and/or duv into a
solution using none them and of the same size. Thus we can always transform K ′ into a dominating set satisfying
∀uv ∈ E, |K ′ ∩ {auv, cuv}| = 1,K ′ ∩ {buv, duv} = ∅. It remains to prove that K ′ ∩ V is a vertex cover of G.
Consider an edge uv ∈ E and the unique vertex x ∈ K ′ ∩ {auv, cuv}. Since K ′ is a dominating set, if x = auv,
then v ∈ K ′ ∩ V and if x = cuv, then u ∈ K ′ ∩ V . This completes the proof.

Consider a planar graph G and assume it does not have pending vertices (vertices of degree 1), then using
the previous construction, G′ has no pending vertex. Assume G has a minimal vertex cover of size t, we define
kt = t + |E| and consider a dominating set K ′ of size kt in G′, with exactly one vertex in {auv, cuv} and none
in {buv, duv} for any edge uv ∈ E. Seeing K ′ as a kt-center, we now evaluate the related probabilistic radius for
any scenario in the graph G′.

Lemma 6. Using the above notations we have:

rK
′

u =

{
1 ⇔ u ∈ V and not protected
2 else

Proof. Since G′ is triangle-free with no pending vertex, and K ′ is a dominating set, then we have: ∀u ∈ V ′, rK′u ≤
2. Consider first u ∈ V and denote by v1, . . . , vd all neighbors of u in G. Suppose u is not protected (u /∈ K ′). By
definition of K ′, {v1, . . . , vd} ⊂ K ′ and thus {auv1 , . . . , auvd} ⊂ K ′, so whatever the escaping direction, people
located on u will reach a center at distance 1. Since K ′ is a dominating set in G′, it remains a dominating set
in G′ \ {u}, which proves rK

′

u = 1.
Suppose now u ∈ V ∩ K ′. Since the considered vertex cover is minimal, there is j ∈ {1, . . . , d} such that

vj /∈ K ′ and thus K ′ ∩ {auvj , buvj , cuvj , duvj} = {cuvj}. Then, the evacuation distances of auvj is 2, and thus

rK
′

u = 2.



Suppose now u ∈ {bvw, dvw} for vw ∈ E. Then u /∈ K ′ and only one neighbor of u is in K ′, inducing an
evacuation distance of 2 for u.

Suppose finally u ∈ {avw, cvw} for vw ∈ E. If u /∈ K ′ exactly one of its three neighbors is in K ′ and its
evacuation distance is also 2. If finally u ∈ K ′, the evacuation distance of bvw and dvw becomes 2. So, in all
cases but the first one rK

′

u = 2 and the proof is complete.

Our proof will require another transformation and the property mentioned in the next lemma. Consider a
planar graph, G = (V,E) of degree at most 3. For a given q ∈ N, q ≥ 2, we transform G into G̃q = (Ṽq, Ẽq) as
follows. We choose randomly an orientation of edges in E and we replace every edge uv ∈ E oriented from u to
v by the path P̃ quv = {u, x1

uv, x
2
uv, . . . , x

2q
uv, v}. Note that |Ṽq| = |V |+ 2q|E| and Ẽq = (2q + 1)|E|.

Lemma 7. For any t ≤ |V |, G = (V,E) has a minimum vertex cover of size t if and only if G̃q = (Ṽq, Ẽq) has
a minimum vertex cover of size t+ q|E|.

Proof. Assume first U ⊂ V is a minimum vertex cover of size t in G: ∀uv ∈ E, {u, v} ∩ U 6= ∅. Then we build

Ũq ⊂ Ṽq in G̃q as follows. We initialize Ũq with all vertices of U . Then, for every edge uv ∈ E, if u ∈ U , we

add vertices x2i
uv, 1 ≤ i ≤ q to Ũ . If u /∈ U (then v ∈ U), we add vertices x2i+1

uv , 0 ≤ i ≤ q − 1. In both cases we

have added exactly q vertices and all edges of P̃ quv are covered. Thus, |Ũq| = t + q|E|. Ũq is minimum because
we need the t vertices of the set U to cover at least |E| edges ux1

uv, and we need at least q|E| different vertices
to cover {x1

uv, x
2
uv, . . . , x

2q
uv : ∀uv ∈ E}.

Assume now that G̃q has a minimum vertex cover Ũq of size t + q|E|. For every uv ∈ E, P̃ quv is covered

by at least q + 1 vertices. If u, v 6∈ Ũq, we can transform Ũq into Ũ ′q such that u or v is in Ũ ′q. Then

|(Ṽq \ V )∩ Ũ ′q| = q|E| and thus |V ∩ Ũ ′q| = t. It remains to prove that U = V ∩ Ũ ′q is a minimum vertex cover.

U is a vertex cover because if u ∈ Ũ ′q, then P̃ quv is covered in G̃q, thus uv is covered in G. If U is not minimum,
then suppose U∗ is a minimum vertex cover of size t∗ < t. Then by the transformation given in paragraph 1
we can get a vertex cover for G̃q of size t∗ + q|E| < |Ũq| which contradicts our initial hypothesis. Thus U is
minimum.

The last Lemma we will need for our hardness proof is certainly a known remark but we show it since we did
not find any reference for it.

Lemma 8. Minimum Vertex Cover is NP-hard in planar graphs with vertices of degree 2 or 3.

Proof. The decision version of Minimum Vertex Cover is known to be NP-complete on planar graphs of
maximum degree 3 [25]. Consider a planar graph G of maximum degree 3 and with a pending vertex v. Consider
the graph G′ obtained from G by adding a triangle and linking one of its vertices with v (v is then of degree 2 in
G′). G′ is planar with maximum degree 3 and one pending vertex less than G. Moreover, G has a vertex cover
of size t if and only if G′ has a minimum vertex cover of size t+ 2, which concludes the proof.

We now are ready to prove the main result of this section. Recall that we consider in this paper Probabilistic
k-Center under a uniform probability distribution. Note that if k was a fixed constant, the number of k-centers
would be polynomial and the problem itself could be polynomially solved on any graph. So, we assume that k
is part of the instance.

Theorem 2. There is no polynomial time approximation for Probabilistic k-Center guaranteeing a ratio
less than 20

19 for planar graphs of degrees 2 or 3, unless P=NP.

Proof. The proof is by contradiction. Let ρ satisfy 1 < ρ < 20
19 . Consider ε > 0 such that ρ < 20+2ε

19+2ε <
20
19 . Take

q ∈ N, such that 5
q ≤ ε and q ≥ 2.

We suppose we have a polynomial approximation algorithm A for Probabilistic k-Center, admitting as
argument a planar graph H of degrees 2 or 3 and the number k of centers, and guaranteeing the approximation
ratio ρ. We then will show how to use this algorithm to solve the Minimum Vertex Cover problem on planar
graphs with vertex degrees 2 or 3. Lemma 8 will give the contradiction, unless P=NP.

Consider a planar graph G = (V,E) with vertex degrees in {2, 3}, instance of Minimum Vertex Cover.

Consider the graph G̃q = (Ṽq, Ẽq) and then G̃′q = (Ṽ ′q , Ẽ
′
q). We have in particular:



|Ṽq| = |V |+ 2q|E|
|Ẽq| = (2q + 1)|E|
|Ṽ ′q | = |Ṽq|+ 4|Ẽq|

= |V |+ (10q + 4)|E|

(11)

Denoting by τ(H) and η(H)| the minimum size of a vertex cover and a dominating set in a graph H, respectively,
we deduce from Lemmas 5 and 7:

τ(G̃q) = τ(G) + q|E|
η(G̃′q) = τ(G̃q) + |Ẽq|

= τ(G) + (3q + 1)|E|
(12)

We apply the hypothetical approximation algorithm A on G̃′q for different values of k, starting with k = 1 and
augmenting it.

Suppose first we use k < η(G̃′q) centers and the algorithm computes a center K̃ ′′. Then, the non-probabilistic

radius is at least 2 since K̃ ′′ cannot be a dominating set in G̃′q and consequently:

∀u ∈ Ṽ ′q , rK̃
′′

u ≥ 2 =⇒ E(K̃ ′′) ≥ 2 (13)

Suppose now we use k = η(G̃′q) = τ(G̃q) + |Ẽq| centers. Using Lemma 5 on graph G̃q, there is a k-center K̃ ′

of graph G̃′q satisfying the conditions of Lemma 6 and then, this Lemma ensures:

|Ṽ ′q |E(K̃ ′) = 2|Ṽ ′q | − (|Ṽq| − τ(G̃q))

We deduce, using Relations 11 and 12:

|Ṽ ′q |E(K̃ ′) = |V |+ (19q + 8)|E|+ τ(G)
< 2|V |+ (19q + 8)|E|

where the last inequality holds because τ(G) < |V |. So, we have:

E(K̃ ′) <
2|V |+ (19q + 8)|E|
|V |+ (10q + 4)|E|

= 2− q|E|
|V |+ (10q + 4)|E|

Since G has vertices of degree at least 2, we have V ≤ |E|, thus:

E(K̃ ′) < 2− q|E|
(10q + 5)|E|

= 2− q

10q + 5
≤ 19 + 2ε

10 + ε

where the last inequality holds since 5
q ≤ ε. As a consequence, since an optimal probabilistic solution K̃ ′∗

will satisfy E(K̃ ′∗) ≤ E(K̃ ′), the approximation algorithm A will determine an approximated center K ′ in G̃q
′

of value:

E(K̃ ′) ≤ ρ× 19+2ε
10+ε

< 20+2ε
19+2ε ×

19+2ε
10+ε = 2

(14)

Note that, given a center K̃ ′, computing its probabilistic radius can be done in polynomial time since, for any

vertex v ∈ Ṽ ′q , computing rK̃
′

v can be performed using any minimum path algorithm. So, we apply successively the

approximation algorithm A on the graph G̃′q for increasing values of k, starting with k = 1, until the computed

center K̃ ′ satisfies E(K̃ ′) < 2. Equations 12, 13 and14 ensure that, the algorithm stops after k = η(G̃′q) =

τ(G̃q) + |Ẽq| iterations and then, τ(G) = |K̃ ′| − (3q+ 1)|E|. Since constructing G̃′q and evaluating E(K̃ ′) can be
done in polynomial time, and since algorithm A will be run less than |V | times, the whole process is polynomial.
This is a contradiction if P6=NP, and the proof is complete.



5 Conclusion

To our knowledge, this paper introduces the first probabilistic version of Minimum k-Center. As illustrated
in this work, defining the problem already leads to interesting discussions. So far, we have considered only
single node disruption scenarios under a uniform distribution of probabilities and for a modification strategy
that preserves the location of the centers but affects only the allocation. Even though relatively restrictive, this
version is natural for our application and is already non-obvious. Then, we propose an explicit solution on paths
and cycles. The main idea is to express the objective function as the sum of two parts (contribution of the
skeleton and the body) and then prove independently that the solution minimizes simultaneously both terms.
This approach might be used in a more general setting. Finally we prove that this restrictive version is already
NP-hard to approximate it within a factor 20

19 on planar graphs of bounded degree 3.
This motivates investigating the complexity status of this version on more restrictive classes of graphs, in

particular on subgrids (subgraphs of grids), that correspond to some real case applications. Minimum k-Center
is polynomial on trees [25]; it motivates studying the complexity of Probabilistic k-Center on trees, which,
to our knowledge, remains open. The next question will be to design approximation algorithms for the hard
cases and a third objective will be to consider larger ranges of impact and any probabilities. Indeed, our analysis
on paths and cycles cannot be immediately extended to non uniform probability systems.
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[12] P. Balaprakash, M. Birattari, T. Stützle, and M. Dorigo, “Estimation-based metaheuristics for the prob-
abilistic traveling salesman problem,” Computers & Operations Research, vol. 37, no. 11, pp. 1939–1951,
2010.

[13] L. Bianchi, J. Knowles, and N. Bowler, “Local search for the probabilistic traveling salesman problem:
Correction to the 2-p-opt and 1-shift algorithms,” European Journal of Operational Research, vol. 162,
no. 1, pp. 206–219, 2005.
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Appendix

1. Proof of Proposition 1

Proposition 1 For k ≥ n
2 , KB is an optimum solution for Probabilistic k-Center on paths and cycles.

Proof. In H, at least one vertex out of two consecutive vertices is in KB . Therefore λBi ≤ 2,∀i ∈ 1, . . . , κ,

and by Equations (7) and (8) we can state that rK
B

j = 1,∀j ∈ V . Then EH(KB) = pn (Equation (3)).

Suppose K a non balanced but optimum solution on H. As K is non balanced, ∃i ∈ 1, . . . , κ : λi ≥ 3. Then
for j ∈ µi, rKj ≥ 2 (see Equations (7) and (8)). And for j ∈ H \ {µi}, rKj ≥ bλi2 c ≥ 1. Then

∑
j∈V

rKj > n and

EH(K) > pn, which is contradictory with the hypothesis. Thus a non balanced solution can’t be optimum
on H for k ≥ n

2 and the lemma is proven.

2. Proof of Lemma 1

Lemma 1 EHs (λB) = ÊHs (λB) , EHs̄ (λB) = ÊHs̄ (λB) and EH(λB) = ÊH(λB).

Proof. In H we have: λBq ∈ {
⌊
n
κ

⌋
,
⌈
n
κ

⌉
}, q ∈ {1, . . . , κ}. As k < n

2 , then max
q∈{1,...,κ}

bλ
B
q

2 c =
⌊

1
2

⌈
n
κ

⌉⌋
≤⌊

n
κ

⌋
− 1 ≤ λBq − 1,∀q = 1, . . . , κ. The same holds for a balanced solution λB in with λBq ∈ {

⌊
n
k

⌋
,
⌈
n
k

⌉
}.

Then given Equation (7), we obtain rK
B

j = r̂K
B

j : ∀j ∈ K, thus EHs (λB) = ÊHs (λB). We also observe that

∀i = 1, . . . , κ, ∀j ∈ µBi \K, δj(j,K
B) ≥ max{j−vi, vi+1−j} ≥

⌈
λBi
2

⌉
≥
⌈

1
2

⌊
n
κ

⌋⌉
≥
⌊

1
2

⌈
n
κ

⌉⌋
= max
q∈{1,...,κ}

bλ
B
q

2 c.

Then given Equation(8), we obtain rK
B

j = r̂K
B

j : ∀j ∈ H \ K, thus EHs̄ (λB) = ÊHs̄ (λB). Obviously then

EHs (λB) + EHs̄ (λB) = ÊHs (λB) + ÊHs̄ (λB), therefore EH(λB) = ÊH(λB).
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