
Developing an Ontological Sandbox:
Investigating Multi-Level Modelling’s Possible

Metaphysical Structures

Chris Partridge
BORO Solutions Ltd, Henley on Thames
University of Westminster, London, UK

partridgec@borogroup.co.uk

Sergio de Cesare
University of Westminster

London, UK
s.decesare@westminster.ac.uk

Andrew Mitchell
BORO Solutions Ltd

Henley on Thames, Oxfordshire, UK
mitchella@borogroup.co.uk

Mesbah Khan
Tullow Oil plc.

London, UK
mesbah.khan@tullowoil.com

Frederik Gailly
Faculty of Economics and Business

Administration
Ghent University
Ghent, Belgium

frederik.gailly@UGent.be

Abstract— One of the central concerns of the multi-level
modelling (MLM) community is the hierarchy of classifications
that appear in conceptual models; what these are, how they are
linked and how they should be organised into levels and
modelled. Though there has been significant work done in this
area, we believe that it could be enhanced by introducing a
systematic way to investigate the ontological nature and
requirements that underlie the frameworks and tools proposed
by the community to support MLM (such as Orthogonal
Classification Architecture and Melanee). In this paper, we
introduce a key component for the investigation and
understanding of the ontological requirements, an ontological
sandbox. This is a conceptual framework for investigating and
comparing multiple variations of possible ontologies – without
having to commit to any of them – isolated from a full
commitment to any foundational ontology. We discuss the
sandbox framework as well as walking through an example of
how it can be used to investigate a simple ontology. The example,
despite its simplicity, illustrates how the constructional approach
can help to expose and explain the metaphysical structures used
in ontologies, and so reveal the underlying nature of MLM
levelling.

Keywords— ontological sandbox; constructional ontology;
ontological space; ontogenesis; multi-level modelling;
generalisation; classification

I. INTRODUCTION

One of the central concerns of the multi-level modelling
(MLM) community is the hierarchy of classifications that
appear in conceptual models; what these are, how they are
linked and how they should be organised into levels and

modelled [1]. It has been recognized that these levels are
sometimes ontological [2] and, where they are, that this
introduces constraints, such as anti-cyclicity. There have also
been attempts to characterise classification and how it differs
from generalisation [3-5] that include consideration of their
different ontological natures. Though there has been significant
work done in this area, we believe that it could be enhanced by
introducing a systematic way to investigate the ontological
nature and requirements that underlie the levels and so inform
the frameworks and tools proposed by the community to
support MLM (such as Orthogonal Classification Architecture
and Melanee).

In the long term, we aim to provide support for the
investigation and understanding of the ontological
requirements and so guide the design of ontologies including
those used in MLM frameworks and tools. In this paper, we
introduce a key component of this, an ontological sandbox.
This is a conceptual framework for investigating and
comparing multiple variations of possible ontologies – without
having to commit to any of them – isolated from a full
commitment to any foundational ontology. The sandbox helps
to expose and explain the metaphysical structures of the
candidate ontologies, the differences between them as well as
suggesting potential alternatives. This makes it useful for
assessing different architectural choices.

Here we aim to provide a sketch of the sandbox based upon
a constructional approach outlined in [6, 7]. We discuss the
sandbox framework as well as walking through an example of
how it can be used to investigate a simple ontology. The
example, despite its simplicity, illustrates how the

constructional approach can help to expose and explain the
metaphysical structures found in ontologies, and so reveal the
underlying nature of MLM levelling. It illustrates how
metaphysical choices [8] guide the construction of the ontology
and how understanding the way metaphysical structures can
vary helps to guide the investigation of possible ontologies.

We look at how to use these metaphysical structures to
derive, and so help to explain the kinds of levelled structures
frequently found in conceptual modelling; including taxonomic
structures such as the Linnaean hierarchy and component
breakdowns common in engineering. This reveals a common
underlying foundation for the levelled structures that suggests
there may be a wider application for MLM techniques.

We look at the MLM structures themselves. We use the
example as a foundation for characterising the family of formal
structures associated with MLM classification and
generalisation. We show how understanding the way they are
derived from fundamental structures helps to explain what they
are and how different derivations give rise to the variety of
members of the family.

II. THE SANDBOX’S UNDERLYING FRAMEWORK

The sandbox adopts the algebraic constructional
ontological framework outlined by Fine in [6] and further
developed, with a focus on wholes and parts, in [7]. Fine sees
the advantage of his framework is that it naturally reveals the
underlying metaphysical structure of reality. As an example, he
comments on levels: “there is an intuitive distinction between
wholes which are like sets in being hierarchically organised
and those which are like sums in being ‘flat’, or without an
internal division into levels. The distinction, under the
operational approach, can be seen to turn on whether repeated
applications of the operation are capable of yielding something
new” [7]. (One can see the same flat/hierarchy distinction
made in the literature between generalisation and classification
– a topic we return to below). In the same paper, he talks about
its power and beauty; its ability to provide a single and elegant
account of a variety of structures. One cannot see this in the
logical characterisation to these hierarchies, such as [9]. This
makes it a better tool for the task of investigating the
metaphysical structure of possible ontologies as well as the
ontological content of MLM’s levels.

Here we outline, with some minor clarifications, the
relevant portion of Fine’s framework. This is not intended to be
a detailed exposition; this can be found in Fine’s papers. We
broadly follow Fine’s notation, with some amendments to
make this short exposition clearer. We divide the outline into
two sections; the first dealing with the general ontological
framework and the second with the general composition
framework.

A. Finean General Ontological Framework
Fine’s general framework has two theories; a core theory

about ontologies and an extended theory for ontological spaces
containing ontologies.

Fine’s core theory deals with constructional ontologies.
(From now on we will feel free to drop the qualification
‘constructional’ from ontology – as all ontologies discussed

here will be constructional in the Finean sense). In these
ontologies, objects are accepted into the ontology on the
grounds that they are constructed from elements already in the
ontology; where a constructor is applied to the constructees to
produce constructs. An ontology can also contain given or
basic elements that are just accepted.

Hence an ontology can be divided into three domains (see

Table I).

The basis and constructed domains combine to form a
domain whose members are called elements. All three domains
combine to form the ontology’s universe, whose members are
called items.

The core theory uses ontological principles to show that
one can generate all the constructed elements (the constructed
domain) from the basis and the constructor domains. As Fine
notes, this means we do not need to use the constructed
domain, E, to characterise an ontology, we can just use the
couple < B, C>; E can then be generated from B and C.
Though the order of analysis may well be the opposite; where
one starts with the elements and works out what the
constructors are and so the bases.

This generation of E relies upon an exhaustive application
of the constructors; where anything that can be generated is
generated. In our approach, we find it useful to ‘construct’ this
process. We call this the ontology’s ONTOGENESIS and
characterise the ontology as the couple < B, C > plus
ONTOGENESIS; so, in a sense, ONTOGENESIS stands in for
E.

Fine’s extended theory is about how ontologies fit into an
ontological space; where this is a nonempty collection of
ontologies that conforms to certain principles. It shows how,
given ontologies in a space, similar ontologies with
permutations of basis and constructor domains also exist in the
space. We extend this to permutations of the individual
constructors in the domain.

This provides a framework for an incremental sandbox
approach to explaining and understanding an ontology. If one
wishes to understand an ontology (the target), these principles
allow one to initially pick out from the ontological space
ontologies that contain just the basis domain or just a single
constructor from the target ontology and examine these. One
can then pick and examine richer combinations, seeing how
these lead to richer structures, until one arrives at the target
ontology.

TABLE I. ONTOLOGY DOMAINS (SEE [6])

Acronym Domain Names for Members
B basis domain bases, givens, basic elements or

given elements
C constructor

domain
constructors

E constructed
domain

constructs or constructed
elements

B. Finean General Composition Framework
Using this general ontological framework, in [7] Fine

sketches a general unified framework for composition; the
ways in which one object can be a part of another.

It is distinctive in several ways (all of which suit our
current purpose). It takes a very liberal notion of part that
encompasses both traditional mereological relations as well as
others, such as set-membership, that are not usually thought of
as whole-part relations; in other words, for Fine set-
membership in another kind of whole-part. (The term
mereological whole-part will be reserved for the traditional
mereological relations). The formulation of the framework
takes the operation of composition (and decomposition) as
primitive rather than the more familiar relation of whole-part.
These primitive operations are then treated as constructors
within the general ontological framework; where each
fundamental constructor generates a different kind of whole-
part. As noted in Bennett [10], one key choice is the direction
of generation for these composition constructors; whether parts
generate wholes or the other way around. Standard mereology
and cumulative set theory generate wholes from parts. Bennett
offers Schaffer [11] as an example of choosing the other
direction.

Fine formulates his framework in terms of compositional
principles; which act like axioms. His first broad division is
formal and material. Formal principles can be further divided
into those that deal with conditions of application and those
that provide identity conditions. Material principles provide,
for example, conditions for the presence of a whole or part in
space and time or at a world.

Fine develops a simple way of characterising the formal
identity principles for summative identity (identity for the
mereological sum operation) based upon a notion of regular
identity conditions (the reader can find the details in [7]). The
result is the four CLAP principles in Table II, so-called
because of their initials.

A constructor’s formal identity can be characterised by
whether these principles or the counter-principles hold for it –
one can summarise this into a CLAP profile, with a mnemonic
where the appropriate letter is struck through when the counter-
principle holds. Its application is also characterised by its
direction of generation. Table III gives examples of
constructors for each CLAP profile and direction.

The composition constructors construct elements – the
constructed elements. They also map out the composition

structure; how wholes are related to parts and by which kind of
whole-part. However, not every application of a constructor
constructs new elements; some of these non-generational
constructions map new composition structures (others neither
construct new elements or new mappings). Sum provides us
with a good example of this. If we start with a molecule abc of
three atoms as the only given, then a single sum-decomposition
into all its parts will construct new elements; a, b, c as well as
the molecules ab, ac, and bc. It also give us the composition
mapping for abc; the relations between abc and all its parts. If
we apply sum-decomposition to ab we get a and b – but these
are not new, they are in a sense re-constructed as they were
newly constructed in the first decomposition. However, it gives
us a new composition mapping for ab, something that was not
given in the first decomposition. It also shows, in some sense,
ab is prior to a and b. To capture these characteristics, we call
the initial types of construction generative. The second
decomposition does some work, as it shows that ab is
composed of a and b, so we call this type of construction
compositional. Earlier we introduced the process
ONTOGENESIS, which exhausts the ontology’s generative
power. However, as the example shows, this may not exhaust
the compositional power. To do this we extend
ONTOGENESIS to cover all the possible compositional
relations, and call this ONTOGENESIS+. This is needed to
extract the full power of the constructors.

Generative Hierarchies. The generative power of
constructors provides a way of organising elements into levels
within hierarchies. Every constructed element is constructed by
a sequence of generative constructions. This provides a simple
way to organise them into a hierarchy: each level is
characterised by the number of times the constructor has been
applied. The additional compositional constructions are not
considered here.

One can also see this as a form of ONTOGENESIS, where
one is given a START collection and a constructor, and
elements are constructed by repeatedly applying the
constructor. One needs to be clear what the constructor is being
repeatedly applied to. For this it is useful to introduce the
notion of stage and to help define it the notion of generation. A
generation is all the (new) elements generated at a level–this
excludes cases where the element is re-constructed. And a
stage is all the elements in a level’s generation and all the prior
levels’ generations. Then a stage level hierarchy is generated
by repeatedly applying the constructor to stages.

TABLE II. CLAP (FORMAL IDENTITY) PRINCIPLES (SEE [7])

C Collapse ∑(x) = x If Collapse holds then any whole composed of a single part is identical to it.
L Levelling ∑(… ,∑(x, y, z,...),… ,∑(u, v, w,...),...) = ∑(… , x, y, z,…

,… , u, v, w,… , ...)
If Levelling holds then when the parts of whole have parts, these parts’ parts
are also parts of the whole.

A Absorption ∑(… , x, x, … , … , y, y, … , … ,) = ∑(… , x, … , y, ...) If Absorption holds then the repetition of parts is irrelevant to the identity of
the whole.

P Permutation ∑(x, y, z, ...) = ∑(y, z, x, ...) (and similarly for all other
permutations)

If Permutation hold then the order of the parts is irrelevant to the identity of
the whole.

We can make the process a little more formal; we need to
account for the cases where the START collection has multiple
elements and there are multiple ways to choose the collections
to which the constructor is applied. For this we define an
operation POWER that takes a collection and selects all the
possible sub-collections from this (in our example, we do not
need to take account of sensitivity to duplications and
permutations). In the case of sets, there is a connection with the
set-theoretic powerset axiom. Then, given a constructor, one
can create a stage level hierarchy in steps (using constructor
and start variables) – where any element that can possibly be
generated from the constructor will be generated at some level
- as follows:

Generation 0: start
Generation 1: constructor (POWER (Stage 0))
…
Generation N+1: constructor (POWER (Stage N))

where N is unbounded and the constructor variable ranges over
all the constructors (this is needed where there is more than one
constructor). For this example, we do not need to consider
actual infinite or transfinite recursion. Note that this hierarchy
is mixed in the sense that its component parts can be from
multiple levels.

There is a variant hierarchy based upon generations rather
than stages - a generation level hierarchy. This is of interest
because the multi-level hierarchies considered in some multi-
level modelling seem to be of this type – see, for example, the
‘level respecting’ principle in [12] and the discussion of strict
metamodelling in [13]. We look at this in Section 4.

A generation level hierarchy is one where the next level is
generated by applying the constructor to the previous level’s
generation. Each step of the generation level hierarchy only
considers the preceding level’s generation and so ignores any
earlier levels. This means it does not use the full generative
power of the constructor. We can formalise this by replacing
stage with generation in the earlier process as follows:

Generation N+1: constructor (POWER (Generation N))

Note that this hierarchy is pure (that is, unmixed) in the
sense that its component parts at each level are from a single
level.

C. Framework Clarifications
There are a few points that we clarify as scene-setting for

the sandbox example; kinds and unique decomposition.

Constructed elements are linked to the constructor that
constructs them; this can form the basis for kinds. SET-

BUILDER is a good example. An element is of the kind set if
and only if it is constructed by SET-BUILDER. One can also
base kinds of whole-parts upon the constructor from which
they emerge – so set membership is the kind of whole-part that
emerges from SET-BUILDER; relating the (whole–set)
constructs with the (parts–members) constructees. Kinds are
useful in defining the application scope of the constructor
operations; for example, SUM-BUILDER does not apply to
elements of the kind set – nor does it construct elements of this
kind.

In the case of sets, strings and sequences, there is a unique
collection of parts that compose the wholes – the principles
merely regulate the permutations and duplicates of the parts
and the levelling of the constructors. In standard mereology,
which is based upon the mereological whole-part relation,
sums work in a different way. There are multiple ways in
which a whole can be a sum of its parts. Our framework starts
with composition (and de-composition) rather than whole-part
and this provides us with a way to ensure a unique
decomposition. One can decompose a sum uniquely into a
collection of parts. A good illustration of how this would work
is a universe of mereological atoms. All the wholes that are
sums of mereological atoms would be the sum of a unique
collection of these atoms. If one did not want to assume
mereological atoms, one can take the decomposition to be all
the parts. We adopt this latter approach for the example.

III. ANALYSING A SIMPLE SANDBOX EXAMPLE
We now describe a simple example ontology, called

(unsurprisingly) SIMPLE. The SIMPLE ontology is intended
to illustrate how our approach is useful in explaining the
formal requirements for metaphysical structures in models.
Given this goal, we aim to make the example as simple as
possible while still being able to illustrate how the structural
whole-part patterns emerge, with a focus on the hierarchies and
levels (such as generation and stage level hierarchies) within
the patterns.

A. Building Up the SIMPLE Ontology
As noted earlier, in the Finean ontology framework, we can

characterise an ontology in terms of its basis and constructor
domains, which we now do. Our full example ontology, called
SIMPLE, has a non-empty basis domain and a constructor
domain containing two constructors (SET-BUILDER and
SUM-DECOMPOSER).

Under our approach, based upon the Finean Extended
Theory, we construct an ontological space with ontologies that
take us in small incremental steps from the NULL ontology to
the final SIMPLE ontology. This is essentially all the

TABLE III. SOME POSSIBLE FORMS OF COMPOSITION (SEE [7])

Profile Whole Example Parts-to-Wholes
Constructor

Example Wholes-to-Parts
Constructor

CLAP Sums SUM-BUILDER SUM-DECOMPOSER
CLAP Sets SET-BUILDER SET-DECOMPOSER
CLAP Strings STRING-BUILDER STRING-DECOMPOSER
CLAP Sequences SEQUENCE-BUILDER SEQUENCE-DECOMPOSER

permutations of basis domain and individual constructors (as
Table IV shows). Some of the permutations are not
illuminating, so are not visited in the analysis – these are
marked in Table IV.

One could regard the other ontologies as partial versions of
the SIMPLE ontology, or subontologies of it. We start the
analysis with the Simple Basis Only (Sub-)Ontology.

Simple Basis Only (SB) Ontology. From a metaphysical
viewpoint, the choice of bases typically involves important
architectural commitments [8]. There are a variety of options.
One could start with a basis domain of mereological atoms [14]
and build up the ontology from them. Or one could adopt
priority monism [11], then the given will be everything (which
may be a single actual or an infinity of possible worlds) and the
ontology is built by decomposing this. Choosing one of these
would then dictate the direction of the intended SUM
constructor; whether to start with mereological parts and
construct wholes – or vice versa, start with a mereological
whole and construct the parts.

To keep things simple, we follow the priority monism route
and have a basis domain consisting of a single object – a
pluriverse of possible worlds [15], which we will abbreviate as
PV. Again, to keep things simple, we adopt super-
substantivalism [16], which [17] calls monistic
substantivalism; this considers matter to be identical to the
spacetime region is occupies.

We can now define the ontology as SB = < (PV), () >. As
there are no constructors in this ontology then
ONTOGENESIS is the NULL process – and PV is the only
element (and item) in the ontology. From a hierarchy
perspective, this is a limit case. There is a single object which
can be regarded (pathologically) as a stage level hierarchy.

SET-BUILDER Only (SET) Ontology. This ontology has
an empty basis domain and a single constructor SET-
BUILDER, mentioned earlier, so SET = < (), (SET-BUILDER)
>. This constructor is introduced in [6] and described in detail
in [7]. We mentioned SET-BUILDER earlier in Table IV,
noting it is formally a SET constructor where the direction of
generation is part to whole and its form of identity is CLAP; it
works as follows:

• It has the associated kind, sets. An element is a set if
and only if it is constructed by SET-BUILDER.

• It is presented with a collection (possibly empty) of
elements (parts) and it constructs a set (the whole).

• If presented with a collection of zero elements it
generates the empty set, {}.

• Its CLAP profile means that if presented with a non-
zero collection of elements it generates the set of those
elements, ignoring duplicates and order.

This provides us with sufficient resources to develop a
good example of generation and stage level hierarchies. Using
the process schema defined earlier, we can create SET’s
generation level hierarchy in steps as follows:

Generation 0:
Generation 1:

()
SET-BUILDER (POWER
(Generation 0))

…
Generation N+1: SET-BUILDER (POWER

(Generation N))

TABLE IV. SIMPLE’S ANALYSIS ONTOLOGICAL SPACE

O
ntology

A
cronym

B
asis D

om
ain

SE
T

-
B

U
IL

D
E

R

SU
M

-
D

E
C

O
M

PO
SE

R

Includes

A
nalysed

NULL NULL NO NO NO None NO
Simple Basis only SB YES NO NO NULL YES
SET-BUILDER only SET NO YES NO NULL YES
SUM-DECOMPOSER only SUM NO NO YES NULL NO
SET-BUILDER and SUM-
DECOMPOSER

SET+SUM NO YES YES SET, SUM NO

Simple Basis plus SET-BUILDER SB+SET YES YES NO SB, SET NO
Simple Basis plus SUM-
DECOMPOSER

SB+SUM YES NO YES SB, SUM YES

SIMPLE SIMPLE YES YES YES SB+SET,
SB+SUM,
SET+SUM

YES

The first four levels’ generations and stages are shown in
Table V.

This provides us with an example of the point made earlier,
that the generation level hierarchy is not necessarily the whole
constructed domain as, at each level, the constructor is only
applied to the previous generation. For example, at stage 2, the
universe contains both generation 1 and 2 elements, but SET-
BUILDER is only applied to the generation 2 elements.

Of course, we could take a related constructor
GENERATION-SET-BUILDER whose application is
restricted to generation collections of elements, then the
hierarchy would cover the domain. However, we would then
have to metaphysically justify the choice of this constructor.

We can reinforce this incompleteness point by generating
the corresponding stage level hierarchy by replacing generation
with stage as noted earlier, giving:

Generation N+1: SET-BUILDER (POWER (Stage N))

The first three levels are shown in Table VI. The full
process exhausts the generative power of the basis domain and
constructors and so; ONTOGENESIS (SET): SET-BUILDER
Stage Level Hierarchy.

Every application of the SET-BUILDER is generative, so
there is no difference between ONTOGENESIS (SET) and
ONTOGENESIS+ (SET).

Simple Basis plus SUM-DECOMPOSER (SB+SUM)
Ontology. This ontology is an extension of the Simple Basis
Only Ontology with the SUM-DECOMPOSER constructor, so;
SB+SUM = < (PV), (SUM-DECOMPOSER) >. We see from
Table IV, that SUM-DECOMPOSER is a SUM constructor
where the direction of generation is whole to part and its form
of identity is CLAP. It works as follows:

• It has the associated kind, material elements. PV is a
material element, all the elements constructed by SUM-
DECOMPOSER are also material elements and these are
the only material elements.

• It is presented with a single material element (the whole)
and it constructs a collection of material elements (parts).

• Its CLAP profile means that it generates a collection of
elements with no duplicates or order.

The choice of this constructor naturally complements the
choice of PV as a basis. Given the super-substantival choice for
PV, SUM-DECOMPOSER takes a material element and
uniquely decomposes it into all its material, spatiotemporal
parts. One can see the constructor as establishing the parts of
which the whole is composed.

This ontology has a simple two level hierarchy, with PV as
generation 0 and all its parts as generation 1. And only one
application of the constructor gives all the constructed
elements; the parts of the whole PV. So: ONTOGENESIS
(SB+SUM): SUM-DECOMPOSER (PV). ONTOGENESIS+
(SB+SUM) needs to consider these parts as wholes and
establish their parts, and this is achieved by applying sum-
decomposer to each of them. We specify this process using an
iterative FOR EACH component process – as follows:

Generation 0: (PV)
Generation 1: SUM-DECOMPOSER (PV)
Generation 2: FOR EACH X in Generation 1 (SUM-

DECOMPOSER (X))

The two generations exhaust the compositional power of
the constructor.

The SIMPLE Ontology. This ontology is Simple Basis
plus SET-BUILDER and SUM-DECOMPOSER, so SIMPLE
= < (PV), (SET-BUILDER, SUM-DECOMPOSER) >. It is a
combination of all of the earlier ontologies, where the basis
domain and constructors were defined and much of the analysis
done.

This is the first ontology with multiple constructors. For the
single constructor situations, we had two simple levelling
schemes based upon the number of applications of the
constructor; we combine these for multiple constructors to give
us ONTOGENESIS, as follows:

Generation 0: (PV)
Generation 1: SUM-DECOMPOSER (PV) + SET-

BUILDER (POWER (PV))
Generation 2: SET-BUILDER (POWER (Stage 1))
…
Generation N+1: SET-BUILDER (POWER (Stage N))

And we build ONTOGENESIS+ (the full composition
map) in the same way as in SB+SUM adding this to generation
2:

TABLE V. SET-BUILDER GENERATION LEVEL HIERARCHY

Level 0 1 2 3 4
Generation {} {{}} {{{}}} {{{{}}}}
Stage {} + {{}} + {} + {{{}}} + {{}} + {} + {{{{}}}} + {{{}}} + {{}} + {} +

TABLE VI. SET-BUILDER STAGE LEVEL HIERARCHY

Level 0 1 2 3
Generation {} {{}} {{{}}}, {{}, {{}}}
Stage {} + {{}} + {} + {{{}}}, {{}, {{}}} + {{}} + {} +

Generation 2+: FOR EACH X in Generation 1 (SUM-
DECOMPOSER (X))

The ONTOGENESIS hierarchies do not have the same
symmetry as the cumulative set hierarchy. For example, the
standard cumulative set hierarchy all the singleton sets are at
the same level (see SET above). However, as shown in Table
VII (where p1, p2, … are the parts of PV), the combination of
the two constructors produce, at level 1, not only all the parts
of PV but also the empty set and singleton PV – and produces
at level 2 singletons of the empty set and the parts of PV as
well as singleton-singleton PV.

This suggests another way to construct hierarchies; by
calculating the levels using a single constructor. In this case, by
only considering the generative applications of SET-
BUILDER– ignoring SUM-DECOMPOSER. This recaptures
the symmetrical hierarchy.

IV. DERIVING STRUCTURES FROM SIMPLE
The example shows how fundamental multi-level

hierarchies emerge from the pattern of construction. However,
this is not the only way that these hierarchies, multi-level or
otherwise, can emerge. The fundamental structures can be used
to derive other types of compositions and their associated
hierarchies.

A. Deriving SIMPLE’s Subset Constructor
One of these derived types of composition is subset or set-

inclusion. For our purposes, it makes sense to do this using a
derived constructor SUBSET-DECOMPOSER (set) that works
as follows:

• Its direction of generation is whole to parts.

• Its form of identity (like SUM-DECOMPOSER) is CLAP,
which means that it generates a collection of elements with
no duplicates or order.

• It is presented with a single set element (the whole) and it
constructs a collection of set elements (the subset parts) –
hence it can only be applied to elements of kind set and it
constructs elements of the same kind.

Applying this constructor to a set will produce a collection
of all its subsets. This can be regarded as the initial stage in the
set-theoretic power set axiom. To formalise this, we specify the
inverse of SET-BUILDER; SET-DECOMPOSER (set) which
takes a set and produces a collection of its members. Using this
we can specify; SUBSET-DECOMPOSER (set) = SET-
BUILDER (POWER (SET-DECOMPOSER (set))). This,
when given a set takes its members and constructs sets from
them, constructing all its subsets. As with SUM-
DECOMPOSER, one then needs to apply the same operation
to each of the parts to establish the full subset composition
mapping, as shown below.

Generation 0: (set)
Generation 1: SUBSET-DECOMPOSER (set)
Generation 2: FOR EACH X in Generation 1 (SUBSET-

DECOMPOSER (X))

One can begin to see the structural similarities between
SUBSET-DECOMPOSER and ordinary SUM-
DECOMPOSER noted in [18]. For example, like the SUM-
DECOMPOSER constructor, the SUBSET-DECOMPOSER
constructor is not levelled (in CLAP terms) and so has a flat
structure. However, one can also see, as [7] notes, that in this
space the first is fundamental and the other is derived.

B. Deriving SIMPLE Taxonomies and Component
Breakdowns
One can derive a new hierarchy by subsumption from a

whole-part hierarchy – and this can be levelled in ways that the
original hierarchy is not. Taxonomies, including ones such as
the Linnaean classification, and component breakdowns, in so
far as they are ontological, are good examples. The procedure
is simple. One chooses a subset of the elements and then a
subset of their whole-part compositions so that the result
conforms to the desired whole-part structure; if one wants a
levelled structure, then one ensures the structure conforms to
the right CLAP principles – typically that it does not adhere to
levelling.

Consider (one version of) the Linnaean classification
hierarchy that has ‘Natural Things’ at the top and is divided
and sub-divided through the levels until reaching ‘Felis leo’
and ‘Felis tigris’ as the bottom. Within the SIMPLE example,
‘Natural Things’ is a set of (spatiotemporally extended)
material elements and the other classifications are subsets of it
[5]. This collection of classifications are the elements used in
the hierarchy. These can be derived using SUBSET-
DECOMPOSER and a filter, FILTER-LC, that given a
collection selects those elements that are Linnaean
classifications; LINNAEAN-C: FILTER-LC (SUBSET-
DECOMPOSER (Natural Things)).

Traditionally, the classification structure is levelled by
taking a transitive reduction of the underlying whole-part
hierarchy. We can derive the LINNAEAN-SUBSET-
DECOMPOSER constructor for this by taking a constrained
version of SUBSET-DECOMPOSER that can only be applied
to Linnaean classifications and when applied only reruns the
next level – other levels are filtered out. This gives us a natural
generation level hierarchy LC, which is defined as having
‘Natural Things’ as its base and LINNAEAN-SUBSET-
DECOMPOSER as its sole constructor – and;

TABLE VII. EXAMPLE MULTIPLE CONSTRUCTOR HIERARCHY

Level 0 1 2
Generation PV {}, {PV}, p1, p2, … {{}}, {{PV}}, {p1}, {p2}, …

Generation 0: (Natural Things)
Generation 1: LINNAEAN-SUBSET-DECOMPOSER

(Natural Things)
Generation 2: FOR EACH X in Generation 1

(LINNAEAN-SUBSET-DECOMPOSER
(X))

…
Generation N+1: FOR EACH X in Generation N

(LINNAEAN-SUBSET-DECOMPOSER
(X)),

Of course, the classification structure is richer; which
means more constructors are needed. For example, the levels
(e.g. Kingdoms) are explicit as ranks (this is described in [5]),
so a RANKER constructor is required. However, this skeleton
outline should be sufficient to indicate how this could be done.

The same derivation process can be used on other kinds of
whole-parts. Component breakdown structures (such as car X
breaks down into body and engine components and engine into
so on) would be based upon mereological whole-part and
SUM-DECOMPOSER [19].

This ability to derive levelled hierarchies from the
fundamental structures not only helps to explain (ontologically)
what these hierarchies are but also suggests there may be new
areas for MLM tools to be deployed.

C. Deriving MLM Generalisation and Classification
Hierarchies
Analyses of classification and generalisation have noted the

similarities with, respectively, set-membership and subset [3].
A common point made is that generalisation (like subset) is
transitive and does not have levels whereas classification (like
set-membership) is anti-transitive and has levels [12]. As noted
earlier, the sandbox analysis both captures these formal
structures and exposes the close relationship between the two
(when seen as compositions based upon constructors); that
SUBSET-DECOMPOSER is derived from the fundamental
SET-BUILDER.

However, classification is not plain set-membership nor
generalisation plain subset – and the differences can guide us
on how to build the appropriate derived constructors. One key
difference is that the conceptual models typically restrict their
relations to a sub-domain of interest. As with the taxonomies
above, this can be captured by a filter on the constructor –
where the filter clearly delineates the scope of the domain.

In UML and MLM there are many varieties of
generalisation. In some MLM contexts, the generalisation
hierarchy is, like in taxonomies above, restricted to a transitive
reduction. This is also common in conceptual modelling
contexts, where typically only the transitive reduction is
modelled, and the transitive closure is rarely if ever mandatory.
In some contexts, the hierarchy is restricted to a tree-structure,
whereas in others it is more usual to allow lattice (multiple
inheritance) hierarchies. Submitting these different structures
to a sandbox analysis would capture their different
commitments in derived constructors (typically using filters)

with their appropriate CLAP profile – as well as their common
underpinnings.

Similarly, there are varieties of classification. As noted
earlier, [12] introduces the property of ‘level respecting’ in a
way that leads to a similar structure to generation hierarchies.
The appropriate constructor for this shape of structure,
GENERATION-SET-BUILDER, is similar to SET-BUILDER,
but with a filter on what it applies to. This analysis of the
structures in terms of how they are derived from more
fundamental constructors helps to both formalise their
differences as well highlighting them.

It also gives rise to natural enquires as the motivations for
the choices; for example, are they adopted for
metaphysical/ontological or pragmatic reasons, and if so, what
are these reasons? So, for example, it makes clear that adopting
a GENERATED-SET-BUILDER (as strict metamodelling
does) filters out mixed sets. One can ask what the motivation
for this is and whether the cost of excluding them is
worthwhile.

V. CONCLUSIONS
We have provided an outline of the underlying framework

upon which the ontological sandbox is built and indicated
where further details can be found [6, 7]. We have used the
example SIMPLE ontology to show how one can use this
sandbox to build up an understanding of the target ontology in
steps through ontological space. We have shown how the
constructional approach exposes the underlying compositional
metaphysical structures of ontologies; for example, how, in the
SIMPLE ontology at least, the set-inclusion hierarchy is
derived from the fundamental set-membership hierarchy’s
constructor. We have shown how understanding the CLAP
principles of composition can expose the architectural choices
made and suggest alternatives. We have shown how familiar
hierarchical structures, such as taxonomies and component
breakdowns, can be derived from more fundamental structures.
We have shown how the same techniques can be applied to
MLM classification and generalisation structures. We have
provided a clear picture of the trade-off between order and
expressiveness that drives the choice of strict metamodelling
(effectively a generation level hierarchy) – as well as an
alternative – stage level hierarchy. Hopefully, this is sufficient
to provide a good idea of the potential for this sandbox to help
us understand and improve the ontological underpinnings of
conceptual models.

This paper provides an outline of the ontology sandbox. A
lot more work needs to be done showing how it can be used.
One area where we think it will be fruitful to develop the
approach is investigating the range of possible ontological
commitments of existing MLM frameworks and tools. This
could not only suggest possible ontologies (and so semantics)
for the frameworks but also identify possible ontologically
driven improvements.

REFERENCES

[1] C. Atkinson, R. Gerbig, and T. Kühne, “Comparing
multi-level modeling approaches.,” in MULTI@
MoDELS, 2014, pp. 53–61.

[2] C. Atkinson and T. Kühne, “Model-driven
development: a metamodeling foundation,” Software,
IEEE, vol. 20, no. 5, pp. 36–41, 2003.

[3] U. Frank, “Thoughts on classification/instantiation and
generalisation/specialisation,” 2012.

[4] T. Kühne, “Contrasting classification with
generalisation,” in Proceedings of the Sixth Asia-Pacific
Conference on Conceptual Modeling-Volume 96, 2009,
pp. 71–78.

[5] C. Partridge, S. de Cesare, A. Mitchell, and J. Odell,
“Formalization of the classification pattern: survey of
classification modeling in information systems
engineering,” Software & Systems Modeling, pp. 1–37,
2016.

[6] K. Fine, “The study of ontology,” Noûs, vol. 25, no. 3,
pp. 263–294, 1991.

[7] K. Fine, “Towards a theory of part,” The Journal of
Philosophy, vol. 107, no. 11, pp. 559–589, 2010.
[8] C. Partridge, “Note: A couple of meta-
ontological choices for ontological architectures,”
LADSEB CNR, Padova, Italy, 2002.

[9] V. A. Carvalho, J. P. A. Almeida, C. M. Fonseca, and
G. Guizzardi, “Extending the foundations of ontology-
based conceptual modeling with a multi-level theory,”

in International Conference on Conceptual Modeling,
2015, pp. 119–133.

[10] K. Bennett, “Construction area (no hard hat required),”
Philosophical Studies, vol. 154, no. 1, pp. 79–104,
2011.

[11] J. Schaffer, “Monism: The priority of the whole,”
Philosophical Review, vol. 119, no. 1, pp. 31–76, 2010.

[12] T. Kühne, “Matters of (meta-) modeling,” Software and
Systems Modeling, vol. 5, no. 4, pp. 369–385, 2006.

[13] C. Atkinson and T. Kühne, “Rearchitecting the UML
infrastructure,” ACM Transactions on Modeling and
Computer Simulation (TOMACS), vol. 12, no. 4, pp.
290–321, 2002.

[14] N. Goodman, “On relations that generate,”
Philosophical Studies, vol. 9, no. 5–6, pp. 65–66, 1958.

[15] D. Lewis, On the plurality of worlds. Oxford:
Blackwell, 1986.

[16] L. Sklar, Space, time, and spacetime, vol. 164. Univ of
California Press, 1977.

[17] J. Schaffer, “On What Grounds What,” in
Metametaphysics: new essays on the foundations of
ontology, David Manley; David J. Chalmers; Ryan
Wasserman, Ed. Oxford University Press, 2009, pp.
347–383.

[18] D. Lewis, Parts of classes. B. Blackwell, 1991.
[19] E. M. Sanfilippo, C. Masolo, S. Borgo, and D. Porello,

“Features and Components in Product Models.,” in
FOIS, 2016, pp. 227–240.

