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Abstract— One of the central concerns of the multi-level 
modelling (MLM) community is the hierarchy of classifications 
that appear in conceptual models; what these are, how they are 
linked and how they should be organised into levels and 
modelled. Though there has been significant work done in this 
area, we believe that it could be enhanced by introducing a 
systematic way to investigate the ontological nature and 
requirements that underlie the frameworks and tools proposed 
by the community to support MLM (such as Orthogonal 
Classification Architecture and Melanee). In this paper, we 
introduce a key component for the investigation and 
understanding of the ontological requirements, an ontological 
sandbox. This is a conceptual framework for investigating and 
comparing multiple variations of possible ontologies – without 
having to commit to any of them – isolated from a full 
commitment to any foundational ontology. We discuss the 
sandbox framework as well as walking through an example of 
how it can be used to investigate a simple ontology. The example, 
despite its simplicity, illustrates how the constructional approach 
can help to expose and explain the metaphysical structures used 
in ontologies, and so reveal the underlying nature of MLM 
levelling. 

Keywords— ontological sandbox; constructional ontology; 
ontological space; ontogenesis; multi-level modelling; 
generalisation; classification  

I. INTRODUCTION

One of the central concerns of the multi-level modelling 
(MLM) community is the hierarchy of classifications that 
appear in conceptual models; what these are, how they are 
linked and how they should be organised into levels and 

modelled [1]. It has been recognized that these levels are 
sometimes ontological [2] and, where they are, that this 
introduces constraints, such as anti-cyclicity. There have also 
been attempts to characterise classification and how it differs 
from generalisation [3-5] that include consideration of their 
different ontological natures. Though there has been significant 
work done in this area, we believe that it could be enhanced by 
introducing a systematic way to investigate the ontological 
nature and requirements that underlie the levels and so inform 
the frameworks and tools proposed by the community to 
support MLM (such as Orthogonal Classification Architecture 
and Melanee). 

In the long term, we aim to provide support for the 
investigation and understanding of the ontological 
requirements and so guide the design of ontologies including 
those used in MLM frameworks and tools. In this paper, we 
introduce a key component of this, an ontological sandbox. 
This is a conceptual framework for investigating and 
comparing multiple variations of possible ontologies – without 
having to commit to any of them – isolated from a full 
commitment to any foundational ontology. The sandbox helps 
to expose and explain the metaphysical structures of the 
candidate ontologies, the differences between them as well as 
suggesting potential alternatives. This makes it useful for 
assessing different architectural choices. 

Here we aim to provide a sketch of the sandbox based upon 
a constructional approach outlined in [6, 7]. We discuss the 
sandbox framework as well as walking through an example of 
how it can be used to investigate a simple ontology. The 
example, despite its simplicity, illustrates how the 



constructional approach can help to expose and explain the 
metaphysical structures found in ontologies, and so reveal the 
underlying nature of MLM levelling. It illustrates how 
metaphysical choices [8] guide the construction of the ontology 
and how understanding the way metaphysical structures can 
vary helps to guide the investigation of possible ontologies. 

We look at how to use these metaphysical structures to 
derive, and so help to explain the kinds of levelled structures 
frequently found in conceptual modelling; including taxonomic 
structures such as the Linnaean hierarchy and component 
breakdowns common in engineering. This reveals a common 
underlying foundation for the levelled structures that suggests 
there may be a wider application for MLM techniques. 

We look at the MLM structures themselves. We use the 
example as a foundation for characterising the family of formal 
structures associated with MLM classification and 
generalisation. We show how understanding the way they are 
derived from fundamental structures helps to explain what they 
are and how different derivations give rise to the variety of 
members of the family. 

II. THE SANDBOX’S UNDERLYING FRAMEWORK

The sandbox adopts the algebraic constructional 
ontological framework outlined by Fine in [6] and further 
developed, with a focus on wholes and parts, in [7]. Fine sees 
the advantage of his framework is that it naturally reveals the 
underlying metaphysical structure of reality. As an example, he 
comments on levels: “there is an intuitive distinction between 
wholes which are like sets in being hierarchically organised 
and those which are like sums in being ‘flat’, or without an 
internal division into levels. The distinction, under the 
operational approach, can be seen to turn on whether repeated 
applications of the operation are capable of yielding something 
new” [7]. (One can see the same flat/hierarchy distinction 
made in the literature between generalisation and classification 
– a topic we return to below). In the same paper, he talks about
its power and beauty; its ability to provide a single and elegant
account of a variety of structures. One cannot see this in the
logical characterisation to these hierarchies, such as [9]. This
makes it a better tool for the task of investigating the
metaphysical structure of possible ontologies as well as the
ontological content of MLM’s levels.

Here we outline, with some minor clarifications, the 
relevant portion of Fine’s framework. This is not intended to be 
a detailed exposition; this can be found in Fine’s papers. We 
broadly follow Fine’s notation, with some amendments to 
make this short exposition clearer. We divide the outline into 
two sections; the first dealing with the general ontological 
framework and the second with the general composition 
framework. 

A. Finean General Ontological Framework
Fine’s general framework has two theories; a core theory

about ontologies and an extended theory for ontological spaces 
containing ontologies. 

Fine’s core theory deals with constructional ontologies. 
(From now on we will feel free to drop the qualification 
‘constructional’ from ontology – as all ontologies discussed 

here will be constructional in the Finean sense). In these 
ontologies, objects are accepted into the ontology on the 
grounds that they are constructed from elements already in the 
ontology; where a constructor is applied to the constructees to 
produce constructs. An ontology can also contain given or 
basic elements that are just accepted. 

Hence an ontology can be divided into three domains (see 

Table I). 

The basis and constructed domains combine to form a 
domain whose members are called elements. All three domains 
combine to form the ontology’s universe, whose members are 
called items. 

The core theory uses ontological principles to show that 
one can generate all the constructed elements (the constructed 
domain) from the basis and the constructor domains. As Fine 
notes, this means we do not need to use the constructed 
domain, E, to characterise an ontology, we can just use the 
couple < B, C>; E can then be generated from B and C. 
Though the order of analysis may well be the opposite; where 
one starts with the elements and works out what the 
constructors are and so the bases. 

This generation of E relies upon an exhaustive application 
of the constructors; where anything that can be generated is 
generated. In our approach, we find it useful to ‘construct’ this 
process. We call this the ontology’s ONTOGENESIS and 
characterise the ontology as the couple < B, C > plus 
ONTOGENESIS; so, in a sense, ONTOGENESIS stands in for 
E. 

Fine’s extended theory is about how ontologies fit into an 
ontological space; where this is a nonempty collection of 
ontologies that conforms to certain principles. It shows how, 
given ontologies in a space, similar ontologies with 
permutations of basis and constructor domains also exist in the 
space. We extend this to permutations of the individual 
constructors in the domain.  

This provides a framework for an incremental sandbox 
approach to explaining and understanding an ontology. If one 
wishes to understand an ontology (the target), these principles 
allow one to initially pick out from the ontological space 
ontologies that contain just the basis domain or just a single 
constructor from the target ontology and examine these. One 
can then pick and examine richer combinations, seeing how 
these lead to richer structures, until one arrives at the target 
ontology. 

TABLE I. ONTOLOGY DOMAINS (SEE [6]) 

Acronym Domain Names for Members 
B basis domain bases, givens, basic elements or 

given elements 
C constructor 

domain 
constructors 

E constructed 
domain 

constructs or constructed 
elements 



B. Finean General Composition Framework 
Using this general ontological framework, in [7] Fine 

sketches a general unified framework for composition; the 
ways in which one object can be a part of another.  

It is distinctive in several ways (all of which suit our 
current purpose). It takes a very liberal notion of part that 
encompasses both traditional mereological relations as well as 
others, such as set-membership, that are not usually thought of 
as whole-part relations; in other words, for Fine set-
membership in another kind of whole-part. (The term 
mereological whole-part will be reserved for the traditional 
mereological relations). The formulation of the framework 
takes the operation of composition (and decomposition) as 
primitive rather than the more familiar relation of whole-part. 
These primitive operations are then treated as constructors 
within the general ontological framework; where each 
fundamental constructor generates a different kind of whole-
part. As noted in Bennett [10], one key choice is the direction 
of generation for these composition constructors; whether parts 
generate wholes or the other way around. Standard mereology 
and cumulative set theory generate wholes from parts. Bennett 
offers Schaffer [11] as an example of choosing the other 
direction.  

Fine formulates his framework in terms of compositional 
principles; which act like axioms. His first broad division is 
formal and material. Formal principles can be further divided 
into those that deal with conditions of application and those 
that provide identity conditions. Material principles provide, 
for example, conditions for the presence of a whole or part in 
space and time or at a world.  

Fine develops a simple way of characterising the formal 
identity principles for summative identity (identity for the 
mereological sum operation) based upon a notion of regular 
identity conditions (the reader can find the details in [7]). The 
result is the four CLAP principles in Table II, so-called 
because of their initials. 

A constructor’s formal identity can be characterised by 
whether these principles or the counter-principles hold for it – 
one can summarise this into a CLAP profile, with a mnemonic 
where the appropriate letter is struck through when the counter-
principle holds. Its application is also characterised by its 
direction of generation. Table III gives examples of 
constructors for each CLAP profile and direction.  

The composition constructors construct elements – the 
constructed elements. They also map out the composition 

structure; how wholes are related to parts and by which kind of 
whole-part. However, not every application of a constructor 
constructs new elements; some of these non-generational 
constructions map new composition structures (others neither 
construct new elements or new mappings). Sum provides us 
with a good example of this. If we start with a molecule abc of 
three atoms as the only given, then a single sum-decomposition 
into all its parts will construct new elements; a, b, c as well as 
the molecules ab, ac, and bc. It also give us the composition 
mapping for abc; the relations between abc and all its parts. If 
we apply sum-decomposition to ab we get a and b – but these 
are not new, they are in a sense re-constructed as they were 
newly constructed in the first decomposition. However, it gives 
us a new composition mapping for ab, something that was not 
given in the first decomposition. It also shows, in some sense, 
ab is prior to a and b. To capture these characteristics, we call 
the initial types of construction generative. The second 
decomposition does some work, as it shows that ab is 
composed of a and b, so we call this type of construction 
compositional. Earlier we introduced the process 
ONTOGENESIS, which exhausts the ontology’s generative 
power. However, as the example shows, this may not exhaust 
the compositional power. To do this we extend 
ONTOGENESIS to cover all the possible compositional 
relations, and call this ONTOGENESIS+. This is needed to 
extract the full power of the constructors. 

Generative Hierarchies. The generative power of 
constructors provides a way of organising elements into levels 
within hierarchies. Every constructed element is constructed by 
a sequence of generative constructions. This provides a simple 
way to organise them into a hierarchy: each level is 
characterised by the number of times the constructor has been 
applied. The additional compositional constructions are not 
considered here. 

One can also see this as a form of ONTOGENESIS, where 
one is given a START collection and a constructor, and 
elements are constructed by repeatedly applying the 
constructor. One needs to be clear what the constructor is being 
repeatedly applied to. For this it is useful to introduce the 
notion of stage and to help define it the notion of generation. A 
generation is all the (new) elements generated at a level–this 
excludes cases where the element is re-constructed. And a 
stage is all the elements in a level’s generation and all the prior 
levels’ generations. Then a stage level hierarchy is generated 
by repeatedly applying the constructor to stages. 

TABLE II.  CLAP (FORMAL IDENTITY) PRINCIPLES (SEE [7])  

C Collapse ∑(x) = x If Collapse holds then any whole composed of a single part is identical to it.  
L Levelling ∑(… ,∑(x, y, z,...),… ,∑(u, v, w,...),...) = ∑(… , x, y, z,… 

,… , u, v, w,… , ...) 
If Levelling holds then when the parts of whole have parts, these parts’ parts 
are also parts of the whole. 

A Absorption ∑( … , x, x, … , … , y, y, … , … ,) = ∑( … , x, … , y, ...) If Absorption holds then the repetition of parts is irrelevant to the identity of 
the whole. 

P Permutation ∑(x, y, z, ...) = ∑(y, z, x, ...) (and similarly for all other 
permutations) 

If Permutation hold then the order of the parts is irrelevant to the identity of 
the whole. 

 



We can make the process a little more formal; we need to 
account for the cases where the START collection has multiple 
elements and there are multiple ways to choose the collections 
to which the constructor is applied. For this we define an 
operation POWER that takes a collection and selects all the 
possible sub-collections from this (in our example, we do not 
need to take account of sensitivity to duplications and 
permutations). In the case of sets, there is a connection with the 
set-theoretic powerset axiom. Then, given a constructor, one 
can create a stage level hierarchy in steps (using constructor 
and start variables) – where any element that can possibly be 
generated from the constructor will be generated at some level 
- as follows:  

Generation 0:     start 
Generation 1:     constructor (POWER (Stage 0)) 
…  
Generation N+1: constructor (POWER (Stage N)) 

where N is unbounded and the constructor variable ranges over 
all the constructors (this is needed where there is more than one 
constructor). For this example, we do not need to consider 
actual infinite or transfinite recursion. Note that this hierarchy 
is mixed in the sense that its component parts can be from 
multiple levels. 

There is a variant hierarchy based upon generations rather 
than stages - a generation level hierarchy. This is of interest 
because the multi-level hierarchies considered in some multi-
level modelling seem to be of this type – see, for example, the 
‘level respecting’ principle in [12] and the discussion of strict 
metamodelling in [13]. We look at this in Section 4.  

A generation level hierarchy is one where the next level is 
generated by applying the constructor to the previous level’s 
generation. Each step of the generation level hierarchy only 
considers the preceding level’s generation and so ignores any 
earlier levels. This means it does not use the full generative 
power of the constructor. We can formalise this by replacing 
stage with generation in the earlier process as follows: 

Generation N+1: constructor (POWER (Generation N)) 

Note that this hierarchy is pure (that is, unmixed) in the 
sense that its component parts at each level are from a single 
level. 

C. Framework Clarifications 
There are a few points that we clarify as scene-setting for 

the sandbox example; kinds and unique decomposition. 

Constructed elements are linked to the constructor that 
constructs them; this can form the basis for kinds. SET-

BUILDER is a good example. An element is of the kind set if 
and only if it is constructed by SET-BUILDER. One can also 
base kinds of whole-parts upon the constructor from which 
they emerge – so set membership is the kind of whole-part that 
emerges from SET-BUILDER; relating the (whole–set) 
constructs with the (parts–members) constructees. Kinds are 
useful in defining the application scope of the constructor 
operations; for example, SUM-BUILDER does not apply to 
elements of the kind set – nor does it construct elements of this 
kind. 

In the case of sets, strings and sequences, there is a unique 
collection of parts that compose the wholes – the principles 
merely regulate the permutations and duplicates of the parts 
and the levelling of the constructors. In standard mereology, 
which is based upon the mereological whole-part relation, 
sums work in a different way. There are multiple ways in 
which a whole can be a sum of its parts. Our framework starts 
with composition (and de-composition) rather than whole-part 
and this provides us with a way to ensure a unique 
decomposition. One can decompose a sum uniquely into a 
collection of parts. A good illustration of how this would work 
is a universe of mereological atoms. All the wholes that are 
sums of mereological atoms would be the sum of a unique 
collection of these atoms. If one did not want to assume 
mereological atoms, one can take the decomposition to be all 
the parts. We adopt this latter approach for the example. 

III. ANALYSING A SIMPLE SANDBOX EXAMPLE 
We now describe a simple example ontology, called 

(unsurprisingly) SIMPLE. The SIMPLE ontology is intended 
to illustrate how our approach is useful in explaining the 
formal requirements for metaphysical structures in models. 
Given this goal, we aim to make the example as simple as 
possible while still being able to illustrate how the structural 
whole-part patterns emerge, with a focus on the hierarchies and 
levels (such as generation and stage level hierarchies) within 
the patterns. 

A. Building Up the SIMPLE Ontology 
As noted earlier, in the Finean ontology framework, we can 

characterise an ontology in terms of its basis and constructor 
domains, which we now do. Our full example ontology, called 
SIMPLE, has a non-empty basis domain and a constructor 
domain containing two constructors (SET-BUILDER and 
SUM-DECOMPOSER).  

Under our approach, based upon the Finean Extended 
Theory, we construct an ontological space with ontologies that 
take us in small incremental steps from the NULL ontology to 
the final SIMPLE ontology. This is essentially all the 

TABLE III.   SOME POSSIBLE FORMS OF COMPOSITION (SEE [7])  

Profile Whole Example Parts-to-Wholes 
Constructor 

Example Wholes-to-Parts 
Constructor 

CLAP Sums SUM-BUILDER SUM-DECOMPOSER 
CLAP Sets SET-BUILDER SET-DECOMPOSER 
CLAP Strings STRING-BUILDER STRING-DECOMPOSER 
CLAP Sequences SEQUENCE-BUILDER SEQUENCE-DECOMPOSER 

 



permutations of basis domain and individual constructors (as 
Table IV shows). Some of the permutations are not 
illuminating, so are not visited in the analysis – these are 
marked in Table IV. 

One could regard the other ontologies as partial versions of 
the SIMPLE ontology, or subontologies of it. We start the 
analysis with the Simple Basis Only (Sub-)Ontology. 

Simple Basis Only (SB) Ontology. From a metaphysical 
viewpoint, the choice of bases typically involves important 
architectural commitments [8]. There are a variety of options. 
One could start with a basis domain of mereological atoms [14] 
and build up the ontology from them. Or one could adopt 
priority monism [11], then the given will be everything (which 
may be a single actual or an infinity of possible worlds) and the 
ontology is built by decomposing this. Choosing one of these 
would then dictate the direction of the intended SUM 
constructor; whether to start with mereological parts and 
construct wholes – or vice versa, start with a mereological 
whole and construct the parts. 

To keep things simple, we follow the priority monism route 
and have a basis domain consisting of a single object – a 
pluriverse of possible worlds [15], which we will abbreviate as 
PV. Again, to keep things simple, we adopt super-
substantivalism [16], which [17] calls monistic 
substantivalism; this considers matter to be identical to the 
spacetime region is occupies.  

We can now define the ontology as SB = < (PV), () >. As 
there are no constructors in this ontology then 
ONTOGENESIS is the NULL process – and PV is the only 
element (and item) in the ontology. From a hierarchy 
perspective, this is a limit case. There is a single object which 
can be regarded (pathologically) as a stage level hierarchy. 

SET-BUILDER Only (SET) Ontology. This ontology has 
an empty basis domain and a single constructor SET-
BUILDER, mentioned earlier, so SET = < (), (SET-BUILDER) 
>. This constructor is introduced in [6] and described in detail 
in [7]. We mentioned SET-BUILDER earlier in Table IV, 
noting it is formally a SET constructor where the direction of 
generation is part to whole and its form of identity is CLAP; it 
works as follows:  

• It has the associated kind, sets. An element is a set if 
and only if it is constructed by SET-BUILDER. 

• It is presented with a collection (possibly empty) of 
elements (parts) and it constructs a set (the whole). 

• If presented with a collection of zero elements it 
generates the empty set, {}.  

• Its CLAP profile means that if presented with a non-
zero collection of elements it generates the set of those 
elements, ignoring duplicates and order. 

This provides us with sufficient resources to develop a 
good example of generation and stage level hierarchies. Using 
the process schema defined earlier, we can create SET’s 
generation level hierarchy in steps as follows:  

Generation 0: 
Generation 1: 

() 
SET-BUILDER (POWER 
(Generation 0)) 

…  
Generation N+1: SET-BUILDER (POWER 

(Generation N)) 

TABLE IV.  SIMPLE’S ANALYSIS ONTOLOGICAL SPACE  

O
ntology 

A
cronym

 

B
asis D

om
ain 

SE
T

-
B

U
IL

D
E

R
 

SU
M

-
D

E
C

O
M

PO
SE

R
 

Includes 

A
nalysed 

NULL NULL NO NO NO None NO 
Simple Basis only SB YES NO NO NULL YES 
SET-BUILDER only SET NO YES NO NULL YES 
SUM-DECOMPOSER only SUM NO NO YES NULL NO 
SET-BUILDER and SUM-
DECOMPOSER 

SET+SUM NO YES YES SET, SUM NO 

Simple Basis plus SET-BUILDER SB+SET YES YES NO SB, SET NO 
Simple Basis plus SUM-
DECOMPOSER  

SB+SUM YES NO YES SB, SUM YES 

SIMPLE SIMPLE YES YES YES SB+SET, 
SB+SUM, 
SET+SUM 

YES 

 



The first four levels’ generations and stages are shown in 
Table V. 

This provides us with an example of the point made earlier, 
that the generation level hierarchy is not necessarily the whole 
constructed domain as, at each level, the constructor is only 
applied to the previous generation. For example, at stage 2, the 
universe contains both generation 1 and 2 elements, but SET-
BUILDER is only applied to the generation 2 elements.  

Of course, we could take a related constructor 
GENERATION-SET-BUILDER whose application is 
restricted to generation collections of elements, then the 
hierarchy would cover the domain. However, we would then 
have to metaphysically justify the choice of this constructor. 

We can reinforce this incompleteness point by generating 
the corresponding stage level hierarchy by replacing generation 
with stage as noted earlier, giving:  

Generation N+1: SET-BUILDER (POWER (Stage N)) 

The first three levels are shown in Table VI. The full 
process exhausts the generative power of the basis domain and 
constructors and so; ONTOGENESIS (SET): SET-BUILDER 
Stage Level Hierarchy. 

Every application of the SET-BUILDER is generative, so 
there is no difference between ONTOGENESIS (SET) and 
ONTOGENESIS+ (SET).  

Simple Basis plus SUM-DECOMPOSER (SB+SUM) 
Ontology. This ontology is an extension of the Simple Basis 
Only Ontology with the SUM-DECOMPOSER constructor, so; 
SB+SUM = < (PV), (SUM-DECOMPOSER) >. We see from 
Table IV, that SUM-DECOMPOSER is a SUM constructor 
where the direction of generation is whole to part and its form 
of identity is CLAP. It works as follows: 

• It has the associated kind, material elements. PV is a 
material element, all the elements constructed by SUM-
DECOMPOSER are also material elements and these are 
the only material elements. 

• It is presented with a single material element (the whole) 
and it constructs a collection of material elements (parts). 

• Its CLAP profile means that it generates a collection of 
elements with no duplicates or order. 

The choice of this constructor naturally complements the 
choice of PV as a basis. Given the super-substantival choice for 
PV, SUM-DECOMPOSER takes a material element and 
uniquely decomposes it into all its material, spatiotemporal 
parts. One can see the constructor as establishing the parts of 
which the whole is composed. 

This ontology has a simple two level hierarchy, with PV as 
generation 0 and all its parts as generation 1. And only one 
application of the constructor gives all the constructed 
elements; the parts of the whole PV. So: ONTOGENESIS 
(SB+SUM): SUM-DECOMPOSER (PV). ONTOGENESIS+ 
(SB+SUM) needs to consider these parts as wholes and 
establish their parts, and this is achieved by applying sum-
decomposer to each of them. We specify this process using an 
iterative FOR EACH component process – as follows:  

Generation 0: (PV) 
Generation 1: SUM-DECOMPOSER (PV) 
Generation 2: FOR EACH X in Generation 1 (SUM-

DECOMPOSER (X)) 

The two generations exhaust the compositional power of 
the constructor. 

The SIMPLE Ontology. This ontology is Simple Basis 
plus SET-BUILDER and SUM-DECOMPOSER, so SIMPLE 
= < (PV), (SET-BUILDER, SUM-DECOMPOSER) >. It is a 
combination of all of the earlier ontologies, where the basis 
domain and constructors were defined and much of the analysis 
done. 

This is the first ontology with multiple constructors. For the 
single constructor situations, we had two simple levelling 
schemes based upon the number of applications of the 
constructor; we combine these for multiple constructors to give 
us ONTOGENESIS, as follows: 

Generation 0: (PV) 
Generation 1: SUM-DECOMPOSER (PV) + SET-

BUILDER (POWER (PV)) 
Generation 2: SET-BUILDER (POWER (Stage 1)) 
…  
Generation N+1: SET-BUILDER (POWER (Stage N)) 

And we build ONTOGENESIS+ (the full composition 
map) in the same way as in SB+SUM adding this to generation 
2: 

TABLE V.  SET-BUILDER GENERATION LEVEL HIERARCHY 

Level 0 1 2 3 4 
Generation  {} {{}} {{{}}} {{{{}}}} 
Stage  {} +  {{}} + {} + {{{}}} + {{}} + {} + {{{{}}}} + {{{}}} + {{}} + {} + 

 
TABLE VI.  SET-BUILDER STAGE LEVEL HIERARCHY 

Level 0 1 2 3 
Generation  {} {{}} {{{}}}, {{}, {{}}} 
Stage  {} + {{}} + {} + {{{}}}, {{}, {{}}} + {{}} + {} + 

 



Generation 2+: FOR EACH X in Generation 1 (SUM-
DECOMPOSER (X))  

The ONTOGENESIS hierarchies do not have the same 
symmetry as the cumulative set hierarchy. For example, the 
standard cumulative set hierarchy all the singleton sets are at 
the same level (see SET above). However, as shown in Table 
VII (where p1, p2, … are the parts of PV), the combination of 
the two constructors produce, at level 1, not only all the parts 
of PV but also the empty set and singleton PV – and produces 
at level 2 singletons of the empty set and the parts of PV as 
well as singleton-singleton PV.  

This suggests another way to construct hierarchies; by 
calculating the levels using a single constructor. In this case, by 
only considering the generative applications of SET-
BUILDER– ignoring SUM-DECOMPOSER. This recaptures 
the symmetrical hierarchy. 

IV. DERIVING STRUCTURES FROM SIMPLE 
The example shows how fundamental multi-level 

hierarchies emerge from the pattern of construction. However, 
this is not the only way that these hierarchies, multi-level or 
otherwise, can emerge. The fundamental structures can be used 
to derive other types of compositions and their associated 
hierarchies. 

A. Deriving SIMPLE’s Subset Constructor 
One of these derived types of composition is subset or set-

inclusion. For our purposes, it makes sense to do this using a 
derived constructor SUBSET-DECOMPOSER (set) that works 
as follows:  

• Its direction of generation is whole to parts. 

• Its form of identity (like SUM-DECOMPOSER) is CLAP, 
which means that it generates a collection of elements with 
no duplicates or order. 

• It is presented with a single set element (the whole) and it 
constructs a collection of set elements (the subset parts) – 
hence it can only be applied to elements of kind set and it 
constructs elements of the same kind. 

Applying this constructor to a set will produce a collection 
of all its subsets. This can be regarded as the initial stage in the 
set-theoretic power set axiom. To formalise this, we specify the 
inverse of SET-BUILDER; SET-DECOMPOSER (set) which 
takes a set and produces a collection of its members. Using this 
we can specify; SUBSET-DECOMPOSER (set) = SET-
BUILDER (POWER (SET-DECOMPOSER (set))). This, 
when given a set takes its members and constructs sets from 
them, constructing all its subsets. As with SUM-
DECOMPOSER, one then needs to apply the same operation 
to each of the parts to establish the full subset composition 
mapping, as shown below. 

 

 

Generation 0: (set) 
Generation 1: SUBSET-DECOMPOSER (set) 
Generation 2: FOR EACH X in Generation 1 (SUBSET-

DECOMPOSER (X)) 

One can begin to see the structural similarities between 
SUBSET-DECOMPOSER and ordinary SUM-
DECOMPOSER noted in [18]. For example, like the SUM-
DECOMPOSER constructor, the SUBSET-DECOMPOSER 
constructor is not levelled (in CLAP terms) and so has a flat 
structure. However, one can also see, as [7] notes, that in this 
space the first is fundamental and the other is derived.  

B. Deriving SIMPLE Taxonomies and Component 
Breakdowns 
One can derive a new hierarchy by subsumption from a 

whole-part hierarchy – and this can be levelled in ways that the 
original hierarchy is not. Taxonomies, including ones such as 
the Linnaean classification, and component breakdowns, in so 
far as they are ontological, are good examples. The procedure 
is simple. One chooses a subset of the elements and then a 
subset of their whole-part compositions so that the result 
conforms to the desired whole-part structure; if one wants a 
levelled structure, then one ensures the structure conforms to 
the right CLAP principles – typically that it does not adhere to 
levelling.  

Consider (one version of) the Linnaean classification 
hierarchy that has ‘Natural Things’ at the top and is divided 
and sub-divided through the levels until reaching ‘Felis leo’ 
and ‘Felis tigris’ as the bottom. Within the SIMPLE example, 
‘Natural Things’ is a set of (spatiotemporally extended) 
material elements and the other classifications are subsets of it 
[5]. This collection of classifications are the elements used in 
the hierarchy. These can be derived using SUBSET-
DECOMPOSER and a filter, FILTER-LC, that given a 
collection selects those elements that are Linnaean 
classifications; LINNAEAN-C: FILTER-LC (SUBSET-
DECOMPOSER (Natural Things)). 

Traditionally, the classification structure is levelled by 
taking a transitive reduction of the underlying whole-part 
hierarchy. We can derive the LINNAEAN-SUBSET-
DECOMPOSER constructor for this by taking a constrained 
version of SUBSET-DECOMPOSER that can only be applied 
to Linnaean classifications and when applied only reruns the 
next level – other levels are filtered out. This gives us a natural 
generation level hierarchy LC, which is defined as having 
‘Natural Things’ as its base and LINNAEAN-SUBSET-
DECOMPOSER as its sole constructor – and; 

 

TABLE VII.  EXAMPLE MULTIPLE CONSTRUCTOR HIERARCHY 

Level 0 1 2 
Generation PV {}, {PV}, p1, p2, … {{}}, {{PV}}, {p1}, {p2}, … 

 



 

 

Generation 0: (Natural Things) 
Generation 1: LINNAEAN-SUBSET-DECOMPOSER 

(Natural Things) 
Generation 2: FOR EACH X in Generation 1 

(LINNAEAN-SUBSET-DECOMPOSER 
(X)) 

…  
Generation N+1: FOR EACH X in Generation N 

(LINNAEAN-SUBSET-DECOMPOSER 
(X)), 

Of course, the classification structure is richer; which 
means more constructors are needed. For example, the levels 
(e.g. Kingdoms) are explicit as ranks (this is described in [5]), 
so a RANKER constructor is required. However, this skeleton 
outline should be sufficient to indicate how this could be done. 

The same derivation process can be used on other kinds of 
whole-parts. Component breakdown structures (such as car X 
breaks down into body and engine components and engine into 
so on) would be based upon mereological whole-part and 
SUM-DECOMPOSER [19]. 

This ability to derive levelled hierarchies from the 
fundamental structures not only helps to explain (ontologically) 
what these hierarchies are but also suggests there may be new 
areas for MLM tools to be deployed. 

C. Deriving MLM Generalisation and Classification 
Hierarchies 
Analyses of classification and generalisation have noted the 

similarities with, respectively, set-membership and subset [3]. 
A common point made is that generalisation (like subset) is 
transitive and does not have levels whereas classification (like 
set-membership) is anti-transitive and has levels [12]. As noted 
earlier, the sandbox analysis both captures these formal 
structures and exposes the close relationship between the two 
(when seen as compositions based upon constructors); that 
SUBSET-DECOMPOSER is derived from the fundamental 
SET-BUILDER.  

However, classification is not plain set-membership nor 
generalisation plain subset – and the differences can guide us 
on how to build the appropriate derived constructors. One key 
difference is that the conceptual models typically restrict their 
relations to a sub-domain of interest. As with the taxonomies 
above, this can be captured by a filter on the constructor – 
where the filter clearly delineates the scope of the domain.  

In UML and MLM there are many varieties of 
generalisation. In some MLM contexts, the generalisation 
hierarchy is, like in taxonomies above, restricted to a transitive 
reduction. This is also common in conceptual modelling 
contexts, where typically only the transitive reduction is 
modelled, and the transitive closure is rarely if ever mandatory. 
In some contexts, the hierarchy is restricted to a tree-structure, 
whereas in others it is more usual to allow lattice (multiple 
inheritance) hierarchies. Submitting these different structures 
to a sandbox analysis would capture their different 
commitments in derived constructors (typically using filters) 

with their appropriate CLAP profile – as well as their common 
underpinnings. 

Similarly, there are varieties of classification. As noted 
earlier, [12] introduces the property of ‘level respecting’ in a 
way that leads to a similar structure to generation hierarchies. 
The appropriate constructor for this shape of structure, 
GENERATION-SET-BUILDER, is similar to SET-BUILDER, 
but with a filter on what it applies to. This analysis of the 
structures in terms of how they are derived from more 
fundamental constructors helps to both formalise their 
differences as well highlighting them.  

It also gives rise to natural enquires as the motivations for 
the choices; for example, are they adopted for 
metaphysical/ontological or pragmatic reasons, and if so, what 
are these reasons? So, for example, it makes clear that adopting 
a GENERATED-SET-BUILDER (as strict metamodelling 
does) filters out mixed sets. One can ask what the motivation 
for this is and whether the cost of excluding them is 
worthwhile. 

V. CONCLUSIONS 
We have provided an outline of the underlying framework 

upon which the ontological sandbox is built and indicated 
where further details can be found [6, 7]. We have used the 
example SIMPLE ontology to show how one can use this 
sandbox to build up an understanding of the target ontology in 
steps through ontological space. We have shown how the 
constructional approach exposes the underlying compositional 
metaphysical structures of ontologies; for example, how, in the 
SIMPLE ontology at least, the set-inclusion hierarchy is 
derived from the fundamental set-membership hierarchy’s 
constructor. We have shown how understanding the CLAP 
principles of composition can expose the architectural choices 
made and suggest alternatives. We have shown how familiar 
hierarchical structures, such as taxonomies and component 
breakdowns, can be derived from more fundamental structures. 
We have shown how the same techniques can be applied to 
MLM classification and generalisation structures. We have 
provided a clear picture of the trade-off between order and 
expressiveness that drives the choice of strict metamodelling 
(effectively a generation level hierarchy) – as well as an 
alternative – stage level hierarchy. Hopefully, this is sufficient 
to provide a good idea of the potential for this sandbox to help 
us understand and improve the ontological underpinnings of 
conceptual models. 

This paper provides an outline of the ontology sandbox. A 
lot more work needs to be done showing how it can be used. 
One area where we think it will be fruitful to develop the 
approach is investigating the range of possible ontological 
commitments of existing MLM frameworks and tools. This 
could not only suggest possible ontologies (and so semantics) 
for the frameworks but also identify possible ontologically 
driven improvements.  
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