
Modeling co-simulation: a first experiment

Renan Leroux1,2 Ileana Ober1 Marc Pantel1 Jean-Michel Bruel1

1IRIT / University of Toulouse
[firstName.lastName]@irit.fr

2Institute of Research and Technology (IRT) Saint Exupery, Seconded from Altran
Renan.Leroux@irt-saintexupery.com

Abstract—Model-Based Systems Engineering plays a key role
in managing the complexity in the development of modern
cyber-physical systems. Model simulation allows conducting
early validation and verification activities. In the context of
Extended Enterprises, systems are built out of components
developed in different companies as black boxes to protect
the company Intellectual Property. Simulation activities then
rely on co-simulation that combines the black box simulation
of each component to assess the quality of the whole system.
Such activities are difficult to harness as the simulation results
depend on black box co-simulation frameworks that coordi-
nate the simulations of each component. Our work targets
the modeling of these simulations including the co-simulation
framework in order to: a) make explicit all the simulation
choices and have a better understanding of the simulation
results and b) benefit from model-driven engineering facil-
ities including automatic code generation. This contribution
describes an early experiment based on the classical bouncing
ball game example.

1. Introduction

Nowadays the development of an important number of
real-life applications is done by organizations structured as
EE (Extended Enterprise). In an EE, a contracting authority
and several subcontractors cooperate in complex work-flows
for the development of complex systems such as cars, air-
planes, power plants, etc. A key issue is the protection of
the IP (Intellectual Property) of the various partners. SE
(System Engineering) [1] is an interdisciplinary approach
used to harness the development of such systems early in the
V cycle, aiming at correct by construction processes. MDE
(Model Driven Engineering) [2] relies on formal models
to abstract the complexity of such systems using domain
specific languages. On a wider scope, MBSE (Model-Based
Systems Engineering) can be seen as the collection of related
processes, methods, and tools used to support the discipline
of systems engineering with an intensive use of models.

In the context of EE, MBSE allows the use of various
kinds of models as core artifacts during the product devel-
opment. The exchanges between the various collaborators
are based on models, whose nature and content have to

be defined beforehand and properly included in a holistic
systems engineering methodology while protecting the IP
of all the partners. Thus, full models will never be available
to all partners but only the minimal amount of data required
to conduct an efficient development.

Simulation is often used to help the system architect
assessing the adequacy of his/her architecture. In an EE,
partners only develop parts of the whole system and must
thus provide a simulator for each part. Then, all these
simulation components are integrated in a co-simulation in
order to assess the whole system. Such frameworks rely
on co-simulation framework that integrate the components
in a black box manner to protect the partners IP. The
FMI (Functional Mockup Interface) [3] 2.0 co-simulation
standard and the associated tools are currently the most ad-
vanced technologies for building such co-simulators taking
into account the constraints of EE including IP protection
during the integration of FMU (Functional Mockup Unit)
simulation components. The framework provides a so called
master algorithm that coordinates the various simulation
components.

We target the development of complex cyber physical
systems for the transportation domain. We rely on het-
erogeneous simulations (cross-domains, involving different
kinds of models, possibly mixing continuous and discrete
execution models, . . . ) to verify that the various functions
in an architecture are activated according to the expected
scenarios. Each function simulator is given as a black box
FMU to protect the provider IP. A master algorithm is then
used to coordinate the execution of these function simulators
during each simulation step relying on the very restricted
data provided to describe the FMU. Most FMI frameworks
provide a generic black box master algorithm that drives
the simulation according to the architecture of the simulator
and the properties of each component. But, the various
frameworks make different undocumented choices that may
lead to quite different simulation results. Indeed, the precise
management of time and function simulators execution order
plays a key role in the quality of the simulation of such
systems. For example, in hybrid systems that involve dis-
crete behaviors, if the state of an FMU changes between two
simulation steps, it may be important to compute the precise
date when the state changed and to restart the simulation at



this exact date (rollback).
Our work targets a system modeling and simulation

methodology that takes into account concerns related to the
EE, in particular the IP protection, and ensures precise and
deterministic simulation results. This paper contributes ques-
tions and some model based preliminary answers derived
from a simple bouncing ball example implemented with the
JavaFMI framework[4]:

• When are rollback required in simulation?
• Should the rollback be managed inside or outside

the FMU?
• In which order should the function simulators be

executed in case of algebraic loops (data dependence
loops)?

• How can a simulation model ease the management
of these issues?

• Can the master algorithm be generated easily from
such simulation model?

The remaining of this paper is as follows. In section 2,
we provide a short description of the use case. In section 3,
we explore some existing practices and state of the art for
building simulators. In section 4, we explain the need for
distinguishing the system model and the simulation model
to provide a clear separation of concern. We conclude in
section 5 and provide future work directions.

2. A simple example: the bouncing ball

We rely on a very simple example to illustrate the need
for a simulation model and its relation with the system
model. This example should comprise several parts that
could be provided by several stakeholders and requires the
use of co-simulation frameworks. We consider a simple
bouncing ball where one part is the free fall of the ball
and the other part is the collision with the ground. When
the ball is left free above the surface, it accelerates due
to gravitational forces. When the ball eventually comes in
contact with the surface, it bounces off the surface, at a
velocity that is a fraction of the velocity prior to contact. The
up and down movement will continue several times until the
ball reaches eventually a resting position. This use case is
a classic example of hybrid dynamic systems, that involves
both continuous dynamics (the up and down movement of
the ball), as well as discrete transitions where the system
dynamics can change and the state values can change in
a discrete manner (during the bouncing). A bouncing ball
is one of the simplest models that can exhibit the Zeno
phenomenon – an infinite number of events occurring in a
finite time interval – if it is not well handled. Thus, it is
inherently difficult to simulate on a computer, yet obviously
present in real life.

For the sake of simplicity, we provide a single model
for the bouncing ball. The velocity is the core parameter
of the simulation of the physical behaviour. We adapted the
example to our needs and consider that:

• the velocity parameter is protected by intellectual
property – Thus, it cannot be exchanged between
the two simulation components ;

• the bouncing ball model is split into two functions
– (i) Each function is dedicated to a subcontractor,
(ii) this separation should highlight the difficulties
of the coordination for the co-simulation.

3. Current practices and related works

The FMI is an industry standard for co-simulation that
provides a tool-independent approach for model exchange
and cross-company collaboration [5]. FMI-CO (Functional
Mockup Interface for Co-simulation) is designed for the
coupling of simulation components for subsystem models,
which have been exported from their modeling toolsets
together with their solvers as executable software [3] as
illustrated by the following figure.

Figure 1. A schematic view of an FMU [3].

A master algorithm is then used to coordinate all the
FMUs. Generic master algorithms are usually provided in
closed source by tool vendors providing the know-how of
the company participating in the popularity of the simulation
software. Very little information and control about what is
going on inside is given to the user. The same simulation
driven by different master algorithms may produce different
simulation results. It is thus sometime difficult for a systems
engineer to understand the results of a co-simulation with
respect to the simulation of the same system executed in a
single tool. These differences can come from the values of
parameters used to perform the co-simulation, the absence or
not of a rollback mechanism, how the algorithm handles the
hybrid continuous/discrete time model, or how the algorithm
works with algebraic loops in model. These key-points are
not always enough documented.

In order to overcome these issues, we propose to model
explicitly the expected behaviour of the master algorithm
for each system model simulation.

MDE provides several open frameworks for heteroge-
neous co-simulation like Ptolemy II [6], ModHel’X [7]
or GEMOC [8] that experimented the connection with
FMI/FMU. The first one allows to program in Java various
models of computation (called actors) and their combination



Figure 2. System side, Functional view with data flow and State Machine

(called directors). The second provides a more component-
aware framework still relying mainly on programming lan-
guages. The last one targets the definition of xDSML (eXe-
cutable Domain Specific Modeling Language). Our proposal
could be implemented using these frameworks especially
the BCOoL (Behavioral Coordination Operator Language)
proposal from GEMOC [9]. This will be the purpose of
future work.

The Distributed Architecture for Controlled CO-
SIMulation, DACCOSIM, [10] is an FMI-compatible Master
Algorithm generator. DACCOSIM targets FMI-based simu-
lation and the cooperation of multiple FMI simulation units.
To support variable step size, the necessary error control and
rollbacks are achieved through a hierarchical and distributed
control architecture. At each step, simulation data commu-
nications also occur, but directly between FMU pairs in a
fully decentralized fashion. With respect to this approach,
we feel the need for a few improvements: (i) integrate the
co-simulation in a wider model-based systems engineering
approach; (ii) make explicit the parameters of the simulation
and (iii) isolate the rollback and have it controlled by the
master algorithm.

4. Modeling co-simulation

In this section we present a modeling of the bouncing
ball example that distinguishes between the system model
and the simulation model in a manner that complies to the
FMI/FMU standard directives, while allowing for a clean
separation of concerns between the system related issues
and the co-simulation concerns.

We start with the design of the system model that
contains the description of the bouncing ball behaviour. This
model is split into two functions : the ”Flying Ball” and the
”Ground Detection”. Further on, we overview the simulation
model, that embeds components that give a fine description
of the various phases of the bouncing ball behaviour, and
rises the need for a master algorithm that coordinates the
simulation and ensures the coherent information exchanges
between the various components, even in the presence of IP
protection.

4.1. System model

From the point of view of the systems engineer, the
bouncing ball movement is composed of two simple func-
tions: (i) the Flying Ball (up or down) and (ii) the Ground
Detect.

The coordination between both is such that : (i) The
Flying Ball function sends the ball position to the Ground
Detect function. (ii) The Ground Detect function receives
the ball position and detects if it touches the ground. In
response, the Ground Detect function returns a rebound
flag at true if there is still enough energy or false otherwise.
In that last case, the ball enters the ”StayOnGround” state,
as illustrated in the following figure Fig. 2.

At the system level, the actual behaviour corresponding
to states such as Free Fly or Rebound is not important.
We are only focusing in this paper on the overall (system)
view of this behaviour.

4.2. Simulation model

In this section, we start with the system model described
previously and we aim at building the operational simulation
model. The purpose is to make explicit all the elements
needed to conduct a co-simulation that are usually hidden
in the co-simulation frameworks. The simulation model pro-
vided in Fig. 3 is constructed based on the functions issued
from the system model. All these functions are directly
written with the help of the JavaFMI framework [4]. We
would therefore need to express the Flying Ball and Ground
Detect functions. However, as the simulation has to handle
the heterogeneous nature of the movement corresponding to
these two functions, we need to combine the two behaviour
models. In order to do so, we define a Master Algorithm,
whose role is to drive the switch between the two movement
modes corresponding to each of these functions.

Moreover, the hybrid nature of the overall system (con-
tinuous during the Free Fly phase and discrete at Re-
bound) requires a dedicated mechanism to manage the time
according to the expected simulation data precision. This
mechanism should allow the Master Algorithm to properly
adjust the size of the simulation step, based on the charac-
teristics of the movement while avoiding the Zeno effect. In



Figure 3. Model Simulation side, Functional view with data flow

this context, the rollback mechanism is typically used. We
briefly overview in the following the characteristics of these
components.

Figure 4. Bouncing Ball, Model Simulation side, State Machine Ball

4.2.1. Flying Ball. The behaviour of the flying ball consists
in a uniformly accelerated motion in a uniform gravitational
field. The up and down movement takes place on the vertical
and is described by simple physical laws. The ball can either
be in Free Fly, Rebound or StayOnGround mode. At
rebound, a horizontal symmetry is applied to the ball speed
vector and the ball energy decreases, thus decreasing the
velocity, to eventually reach a situation where the ball stays
on the ground.

4.2.2. Ground Detection. Given that we simulate the
bouncing ball – which is a continuous process – in a discrete
manner, it may lead to situations where the ball appears to
be under the ground if the ball crossed the ground between
two simulation instants. The ground detection behaviour
identifies whether the ball touches the ground or not, based
on the ball position. For the simulation, we consider that
the ball touches the ground if its position is lower than
a predefined parameter, that defines a rebound zone, as
opposed to the free fly zone located above it as shown in
the following figure. During the simulation, the activation
of the ground detection is discretized. If the rebound zone
is very large with respect to the simulation step, then the
ball would prematurely rebound, and the ball would never
actually touch – or get really close to – the ground. On the

other side, if the rebound zone is narrow with respect to
the simulation step, it may happen quickly that the ground
detection is activated while the theoretical ball position is
under the ground. In reality, a good compromise between the
two values is needed, and anyway the size of the simulation
step is rarely only depending on this part of the system. As
a consequence, we need a mechanism capable of handling
the “under the ground” situation of the ball. One way to do
it, is through a rollback process.

Figure 5. Bouncing Ball, Ground Detection zones

4.2.3. Rollback. Once an “under the ground” ball position
is identified, the rollback mechanism is activated and it
consists in going back to the previous simulation step and
running again the simulation with a smaller simulation step.

This is a general strategy that can be applied in any
simulation in which the simulation step size may vary:
perform a simulation step and check whether the system
state is coherent or not. If not go back to the previous step
and re-run the simulation with a smaller step until the system
state is coherent.

In our case, with a new step, one of the followings may
happen as shown in the previous figure:

• the ball is underground – we have to go back again
and consider an even smaller simulation step;

• the ball is in the rebound zone – the master algorithm
will have to take care of the rebound;

• the ball is in the free fly zone.

In order to avoid the Zeno effect, we need to intro-
duce constraints on the physical model. More precisely, the
derivative of the position (i.e., the speed) must be bounded
which is the case with finite energy systems. In our case,
energy is not bounded as we consider uniform gravity which



Figure 6. Overview of the Master Algorithm

is a coarse approximation at the level of the ground of the
real gravity behavior. But, as the ball will reach the ground,
the maximum speed is the one at ground level and thus the
derivative is bounded. For a given precision, we can compute
iteratively the simulation step value in a finite number of
iteration and thus avoid the Zeno effect.

4.2.4. Master Algorithm. The master algorithm orches-
trates the calls towards the components handling the fly-
ing ball, the ground detection, and the rollback. These
components are implemented as FMUs whose execution is
managed by this algorithm. The data flows describing the
exchanges taking place at this level are described by the
activity diagram in Fig. 6.

Beyond the obvious goal of having a master algorithm
that works correctly we aim at (i) keeping this master
algorithm as simple as possible and investigate whether
it is possible to automatically generate it (completely or
partially), and (ii) considering IP protection concerns. At
this level, the IP protection is ensured by the fact that a FMU
is an executable code. Although it is in principle possible
to reverse engineering this executable code. This is both ex-
pensive and hard to exploit, given the important size of such
applications. Moreover it would lead to structure flattening
that would make it practically impossible to exploit.

The master algorithm is specific to each system, in par-
ticular ours is specific to the example of the bouncing ball.
Nevertheless, the need to orchestrate rollbacks is present in
most of the systems and through it the example helped us
to gain experience on this aspect.

5. Future work and conclusion

In this work-in-progress paper we have illustrated,
through a simple case study, some of the difficulties that
arise when building co-simulations as required in the devel-
opment of a complex system. Even when a dedicated frame-
work such as FMI/FMU is available a number of questions
remain: (i) how to model the simulation components; (ii)
how to define the master algorithm; (iii) how to take into
account the rollback function.

This proposal illustrates that it is possible to include the
co-simulation in a holistic, model-based, systems engineer-
ing approach. In particular, it is possible to go from the
system model to the co-simulation model by adding two
main functions: Master algorithm – for orchestrating the
individual simulations; and the Rollback – for adjusting the
simulation step size of the various isolated simulations.

In addition, we have explored the possibility to export
the rollback function outside the concerned model (i.e., the
Flying ball function). We have also created a specific and
efficient code for the Master algorithm function. Finally,
we had the ability to choose the execution order of the
different functions.

Based on these results, there are several paths where
this work will be taken over. One direction would be to go
further with the integration of the requirements specific to
the EE and eventually allow for the existence of two (or
more) master algorithms that cooperate. In order to do so,
beyond the necessity to enable communication mechanisms
between the master algorithms, there needs to be a way to
coordinate the rollbacks performed in various parts. Coor-
dinating several rollbacks could induce major performance
increases at simulation time, as it could avoid performing
useless rollbacks.



Some of the co-simulations are done in the context of the
development of applications that are subject to certification.
Currently the certification process related to aeronautics
systems does not look into the preliminary results obtained
through simulation. One of the reason for this is that there
is no formal link between the simulated model and the
generated code. One of our future work directions is to
establish traceability links between the system model, the
co-simulation model and the execution code. This would
be a first step towards including the simulation into the
certification process.

Acknowledgements

The authors would like to thank the MOISE project
members for its support as well as the French Commissariat
Général à l’Investissements (CGI) and the Agence Nationale
de la Recherche (ANR) for their financial support in the
frame of the Programme d’Investissement d’Avenir (PIA).

References

[1] I. 24765:2010, “Systems and Software Engineering – Vocabulary.”

[2] D. C. Schmidt, “Guest Editor’s Introduction: Model-Driven Engineer-
ing,” Computer, vol. 39, no. 2, pp. 25–31, Feb 2006.

[3] M. Association, “Functional Mock-up Interface for Model Exchange
and Co-Simulation,” 2014, available at http://fmi-standard.org.

[4] T. S. U. of Las Palmas. SPAIN, “Java Functional Mock-up Interface
for Co-Simulation,” available at https://bitbucket.org/siani/javafmi/
wiki/Home.

[5] C. Bertsch, E. Ahle, and U. Schulmeister, “The Functional Mockup
Interface - seen from an industrial perspective,” 2014, in: Proceedings
of the 10th International Modelica Conference 2014, Lund, Sweden.

[6] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig,
S. Neuendorffer, S. R. Sachs, and Y. Xiong, “Taming heterogeneity -
the Ptolemy approach,” Proceedings of the IEEE, vol. 91, no. 1, pp.
127–144, 2003.

[7] C. Hardebolle and F. Boulanger, “Modhel’x: A component-oriented
approach to multi-formalism modeling,” in Models in Software Engi-
neering, Workshops and Symposia at MoDELS 2007, Nashville, TN,
USA, September 30 - October 5, 2007, Reports and Revised Selected
Papers, 2007, pp. 247–258.

[8] B. Combemale, C. Brun, J. Champeau, X. Crégut, J. Deantoni, and
J. L. Noir, “A Tool-Supported Approach for Concurrent Execution
of Heterogeneous Models,” in 8th European Congress on Embedded
Real Time Software and Systems (ERTS 2016), Toulouse, France,
2016. [Online]. Available: https://hal.inria.fr/hal-01258358

[9] M. E. V. Larsen, J. DeAntoni, B. Combemale, and F. Mallet, “A be-
havioral coordination operator language (bcool),” in 18th ACM/IEEE
International Conference on Model Driven Engineering Languages
and Systems, MoDELS 2015, Ottawa, ON, Canada, September 30 -
October 2, 2015, 2015, pp. 186–195.

[10] V. Galtier, S. Vialle, C. Dad, J. Tavella, J. Lam-Yee-Mui, and
G. Plessis, “FMI-based distributed multi-simulation with DAC-
COSIM,” in Proceedings of the Symposium on Theory of Modeling
& Simulation: DEVS Integrative M&S Symposium, part of the 2015
Spring Simulation Multiconference, SpringSim ’15, Alexandria, VA,
USA, April 12-15, 2015, 2015, pp. 39–46.


