
Assumption-Based Approaches
to Reasoning with Priorities ?

Jesse Heyninck, Pere Pardo, and Christian Straßer

{jesse.heyninck, pere.pardoventura, christian.strasser}@rub.de
Institute of Philosophy II, Ruhr Universität Bochum

Abstract. This paper maps out the relation between different approaches
for handling preferences in argumentation with strict rules and defea-
sible assumptions by offering translations between them. The systems
we compare are: non-prioritized defeats, preference-based defeats, and
preference-based defeats extended with reverse defeat. We prove that
these translations preserve the consequences of the respective systems
under different semantics.

1 Introduction

The aim of this paper is to map out the relation between different approaches
for handling preferences in assumption-based argumentation (in short, ABA) [2].
The orthodox approach in ABA, that we call direct, defines defeats (among sets
of assumptions) as attacks from assumptions that are at least as preferred as the
assumption under attack. The fact that ABA admits asymmetric contrariness
relations, though, makes preference-handling more difficult: this asymmetry is
preserved on the level of attacks and then defeats, possibly leading to inconsis-
tencies. In order to re-establish consistency, the framework ABA+ was recently
proposed in [5] to handle preferences in ABA. ABA+ adds reverse defeats as
passive counterparts to direct defeats: if an assumption is attacked from less
preferred assumptions a reverse attack is initiated. Therefore, it seems fruitful
to investigate the exact relation between systems that are equipped with a re-
verse defeat and systems that only make use of direct defeats. In this paper, we
contribute to this line of research by studying two questions. First, we investi-
gate under which conditions ABA equipped with direct but not reverse defeat
satisfies the consistency postulate. Thereafter, we investigate the relationship
between these two frameworks by providing translations.

Outline of the paper: In Section 2 we review the different versions for ABA
defined by: non-prioritized defeats —i.e. attacks (ABAf), preference-based de-
feats (ABAd), and preference-based defeats extended with reverse defeat (ABAr).
In Section 3 we motivate the translations by showing first that ABAd is well-
behaved and secondly that ABAd and ABAr give rise to incomparable outcomes.

? The research of the authors was supported by a Sofja Kovalevkaja award of the
Alexander von Humboldt-Foundation, funded by the German Ministry for Education
and Research. The authors thank two anonymous reviewers for helpful comments.



Then in Section 4, we provide first a translation from ABAd to ABAf. In Section
5 we show ABAr and ABAd are conservative extensions of ABAf. This result also
extends the translation from Section 4 into ABAr. In Section 6, we complete the
cycle by providing a direct translation from ABAr to ABAd. The contributions
of this paper can be summarized in the following diagram:

ABAf ABAd ABAr

Sec. 6

Sec. 4+Sec. 5

Sec. 4

Sec. 5

2 Assumption-Based Argumentation

ABA, thoroughly described in [2], is a formal model on the use of plausible
assumptions used “to extend a given theory” [2, p.70] unless and until there are
good arguments for not using (some of) these assumptions.

Inferences are implemented in ABA by means of rules formulated over a
formal language. Furthermore, defeasible assumptions are introduced, together
with a contrariness operator to express argumentative attacks. We adapt the
definition from [5] for an ABA+ assumption-based framework as follows:

Definition 1 (Assumption-based framework). An assumption-based frame-
work is a tuple of the form ABF = (L,R, Ab, ,V,≤, υ), where:

– L is a formal language (consisting of countably many sentences).
– R is a set of inference rules of the form A1, . . . , An → A or → A, where
A,A1 . . . , An ∈ L.

– Ab ⊆ L is a non-empty set of candidate assumptions.
– : Ab→ ℘(L) is a contrariness operator.
– The members of V are called values and we require that V 6= ∅ and V∩L = ∅.
– ≤ ⊆ V× V is a preorder over the values.
– υ : Ab→ V is a function assigning values to the assumptions1.

As usual, we define ≥ as the inverse of ≤, and define α < β iff α ≤ β and β 6≤ α.
An ABF without priorities is simply defined as a tuple ABF = (L,R, Ab, ).2

Remark 1. In many publications (e.g. [2, 11, 6, 7]), attention is restricted to so-
called flat ABFs, i.e. ABFs that contain no rules A1, . . . , An → A such that A ∈ Ab.
We do not make this assumption but will point to simplifications allowed by it.

1 In [6], a preference order ≤ ⊆ Ab × Ab is defined directly over the assumptions. It
will, however, greatly increase readability to use values to express priorities in this
paper. Clearly, these modes of expression are equivalent.

2 If needed, one can identify an ABF without priorities (L,R, Ab, ) with a trivial
prioritized ABF = (L,R, Ab, ,V,≤, υ) given by υ(A) = υ(B) for all A,B ∈ Ab.



In some presentations of ABA, deductions are obtained from a set of strict
premises Γ ⊆ L, a set of plausible assumptions Ab ⊆ L and a set of rules R.
Here we follow [5], by rewritting each strict premise A ∈ Γ as an empty-bodied
rule → A (contained in the set of rules R).

The previous definition generalizes the contrariness function : Ab → L in
[5], from a single contrary A = B, to a set of contraries Bi ∈ A = {B0, . . . , Bk}.
(Although in our examples, for the sake of simplicity, A will denote an arbitrary
member of A.) The reason for this generalization is to avoid clutter for the
translations presented. 3

Definition 2 (R-deduction). Given ABF = (L,R, Ab, ,V,≤, υ) and a set
∆ ⊆ Ab, an R-deduction from ∆ of A, written ∆ `R A, is a finite tree where

1. the root is A,
2. the leaves are either of the form B, where → B ∈ R, or elements from ∆,
3. the children of non-leaf nodes are the conclusions of rules in R whose an-

tecedents correspond to their own parents,
4. ∆ is the set of all B ∈ Ab that occur as nodes in the tree.

Remark 2. Note that for flat ABFs, if ∆ `R A then ∆ will be the set of all B ∈ Ab
occurring as leaves in the tree. The following example shows that for non-flat
ABFs we also have to consider non-leaf nodes.

Example 1. Let ABF = (L,R, Ab, ,V,≤, υ) be given by: Ab = {p, q, r} and the
set of rules R = {p→ r, p→ q, q → r}. Note that there is no deduction {p} `R r
since r appears as a node in any derivation of r. We have both {r} `R r, whose
tree only consists of the root r, and {p, r} `R r with root r and unique leaf p.

Deductions are neither monotonic in the antecedent, e.g. we do not have
{p, r, q} `R r in Ex. 1; nor need the antecedent be a closed set of assumptions,
e.g., {p} `R p although p→ r ∈ R in Ex. 1.

We define various ways to lift ≤ to sets of assumptions.

Definition 3 (≤-minimal set). Given an assumption-based framework ABF =
(L,R, Ab, ,V,≤, υ) and ∆ ⊆ Ab, we define υ(∆) = {υ(A) : A ∈ ∆} and:

min(∆) =
{
α ∈ υ(∆) : @β ∈ υ(∆) such that β < α

}
min(∆) =

{
α ∈ υ(∆) : ∃β ∈ min(∆) such that β 6< α

}
.

The intuition behind min(·) is to close min under incomparable elements: min(∆)
includes all the elements that are incomparable to at least one element of min(∆).

Definition 4 (Lifting of ≤). Given an assumption-based framework ABF =
(L,R, Ab, ,V,≤, υ), ∆ ∪ {A} ⊆ Ab, we define 4

3 If one is interested in reducing a set of contraries B = {A1, . . . , An} to a single
contrary {A1}, one can simply add the rule Ai → A1 for every 1 < i ≤ n, cf. [11,
p. 109].

4 It is not necessary to consider the lifting: ∆ <min
∃ A iff for some υ(B) ∈ min(∆),

υ(B) < υ(A). It can be proved that <min
∃ and <min

∃ coincide: ∆ <min
∃ A iff ∆ <min

∃ A.

Furthermore, notice that <min
∀ ⊆ <min

∀ ⊆ <min
∃ .



∆ <min
∃ A iff for some β ∈ min(∆), β < υ(A)

∆ <min
∀ A iff for all β ∈ min(∆), β < υ(A)

∆ <min
∀ A iff for all β ∈ min(∆), β < υ(A)

Remark 3. For any ABF = (L,R, Ab, ,V,≤, υ) such that ≤ over V is total, the

three liftings<min
∃ ,<min

∀ and<min
∀ coincide. From here on, then, when≤ is a total

order, we will simply use < to denote any of its liftings: <min
∃ , <min

∀ , <min
∃ . The

following example shows that all of these lifting principles give rise to different
outcomes when considering a non-total preorder.

Example 2. Let V = {α1, α2, α3, α4, α5} be a set of values with υ(Ai) = αi and
≤ given by the following figure (where a line means that the upper value is more
preferred than the lower value, e.g. α1 > α3). We have the following:

α1

α3

α5

α4

α2

{A2, A3} <min
∃ A4

{A2, A3} 6<min
∀ A4

{A1, A3, A4} <min
∀ A5

{A1, A3, A4} 6<min
∀ A5

Definition 5 (Attack, defeat, reverse defeat). Given a framework ABF =

(L,R, Ab, ,V,≤, υ), a lifting < ∈ {<min
∃ , <min

∀ , <min
∀ } and ∆ ∪ {A} ⊆ Ab,

∆ attacks A (with ∆′) iff there is ∆′ ⊆ ∆ such that ∆′ `R B for some B ∈ A

∆ d-<-defeats A iff ∆ attacks A with some ∆′ such that ∆′ 6< A

We also say that ∆ attacks ∆′ iff ∆ attacks some A ∈ ∆′; and similarly for ∆
d-<-defeats ∆′. Finally, we say that

∆ r-<-defeats5∆′ iff


∆ d-<-defeats ∆′ or

for some ∆′′ ⊆ ∆′ and A ∈ ∆,

∆′′ attacks A with A > ∆′′
(reverse defeat)

In the context of ABA without priorities, attack coincides with d-defeat,
so we will sometimes write f-defeat instead of attack to avoid confusion. From
here on, ABAf, ABAd and ABAr denote assumption-based argumentation using,
respectively f-, d- and r-defeats.

Definition 6 (S-closure). Given an ABF = (L,R, Ab, ,V,≤, υ), where ∆ ⊆
Ab and S ⊆ R, we define:

5 We follow [6] in letting A reverse defeat ∆′′ only if A > ∆′′. However, we do not see
any conclusive reason why we should not let A reverse defeat ∆′′ only if A ≤ ∆′′.
We leave the investigation of this alternative form of r-<-defeat for future work.



A ∈ ClS(∆) iff there is a sequence A1, . . . , An with A = An, and for 1 ≤ i ≤ n
Ai ∈ ∆ or Ai is obtained by an application of a rule

Ai1 , . . . , Aim → Ai where i1, . . . , im < i

℘S(∆) = {∆′ ⊆ ∆ : ∆′ = ClS(∆′)} (S-closed sets within ∆).

Finally, we say that ∆ is S-closed iff ∆ ∈ ℘S(Ab).

The consequences of a given ABF are determined by the argumentation se-
mantics. On the basis of argumentative attacks, the semantics determine when
a set of assumptions ∆ is acceptable. Informally, an acceptable set ∆ should
at least not attack itself, and it should be able to defend itself against attacks
from other sets of assumptions. Argumentation semantics, originally defined for
abstract frameworks in [8], have been reformulated for ABA in e.g. [2].

Definition 7 (Argumentation semantics [2]). Given a framework ABF =

(L,R, Ab, ,V,≤, υ), a lifting < ∈ {<min
∃ , <min

∀ , <min
∀ } and sets ∆,∆′ ⊆ Ab, we

define for S ⊆ R and each x ∈ {f, d, r}:

∆ is x-<-S-conflict-free iff for no ∆′ ∈ ℘S(∆), ∆′ x-<-defeats ∆

∆ is x-<-S-naive iff ∆ is R-closed and ⊆-maximally x-<-S-conflict-free

∆ x-<-S-defends ∆′ iff for any ∆′′ ∈ ℘S(Ab) that x-<-S-defeats ∆′,

there is ∆′′′ ∈ ℘S(∆) such that ∆′′′ x-<-defeats ∆′′

∆ is x-<-S-admissible iff ∆ is R-closed, x-<-S-conflict-free

and ∆ x-<-S-defends every ∆′ ⊆ ∆
∆ is x-<-S-complete iff ∆ is x-<-S-admissible

and ∆ contains every ∆′ it x-<-S-defends

∆ is x-<-S-preferred iff ∆ is ⊆-maximally x-<-S-admissible

∆ is x-<-S-grounded iff ∆ is ⊆-minimally x-<-S-complete

∆ is x-<-S-stable iff ∆ is R-closed, x-<-S-conflict-free

and ∆ x-<-defeats every A ∈ Ab \∆

We will denote naive, grounded, preferred resp. stable by naiv, grou, pref,
stab. For any semantics sem ∈ {naiv, grou, pref, stab}, we define x-sem<

S (ABF) as
the sets of assumptions that are x-<-S-sem, as defined above. 6

Remark 4. In many papers (e.g. [2, 5]), a set ∆ is admissible if it can defend
itself from every R-closed set of assumptions that defeats ∆. In the context
of priorities, however, this might not always be the most intuitive outcome, as
demonstrated by Ex. 3. Therefore, we define both semantics where this require-
ment is enforced (setting S = R in Def. 7) and semantics where defeaters are
not required to be closed (setting S = ∅ in Def. 7).

6 Since the order < does not matter in any semantics f-sem<
S (ABF) or f-<-S-sem, we

will simply write this as f-semS(ABF) and, resp., f-S-sem.



Example 3. Let ABF = (L,R, Ab, ,V,≤, υ) be given by Ab = {p, q, r}, V =
{1, 2, 3}, υ(p) = 1, υ(q) = 2, υ(r) = 3 with 1 < 2 < 3 and R = {q → p; r →
p; r → q}. For any x ∈ {d, r}, we have one x-<-R-complete set: {q}. To see that
q is complete, observe that {p, r} is the only closed set that x-<-defeats q. Since
{q} x-<-defeats {p, r}, {q} defends itself from {p, r}. When we move to x-<-∅-
complete sets, the situation changes: in that case only {p, r} is x-<-∅-complete.
To see this, note that {r} x-<-defeats q and q does not x-<-defeat {r}.

One might ask if it is more intuitive to have {p, r} and {q} as complete
extensions, or just {p, r} (which contains the <-maximal element r). Here we
study both options. This example motivates studying defeaters that are not
closed under the full set R, as in Ex. 3. In Section 6, we will see an example of
an ABF whose defeaters should be closed under a proper subset of the set of rules
R. For another example of semantics parametrized with a set of rules, although
for different purposes, see [4].

3 Some considerations on ABAd and ABAr

In this section we motivate the translations given in Sections 4 and 6. First we
show that ABAd is well-behaved: it satisfies the postulate of Consistency under
the assumption of contraposition. Secondly, we show that even with contraposi-
tion, ABAd and ABAr might produce incomparable outcomes.

ABAd and Conflict Preservation

In [3], several rationality postulates were proposed for structured argumentation
systems. These postulates describe desirable properties to be satisfied by these
systems. The only rationality postulate proposed in [3] that is non-trivial for
ABAd and ABAr frameworks is the postulate of consistency :

– no set of assumptions∆ selected by a given semantics contains an assumption
A for which A is derivable from ∆

(see Theorem 1 below for a formal statement). One of the reasons for introducing
reverse defeats in ABAr is to avoid violations of the postulate of consistency
by preserving conflicts between assumptions even if the attacking assumptions
are strictly less preferred then the attacked assumption. The following example
shows that for ABAd, conflicts are not necessarily preserved:

Example 4. Let Ab = {p, q}, R = {p → q}, V = {1, 2}, v(p) = 1 and v(q) = 2.
Note that {p} does not d-<-defeat q. As a consequence, {p, q} is d-<-S-conflict-
free for both S = R and S = ∅, but at the same time it entails q.

Accordingly, one might ask under which conditions consistency is preserved
in the context of ABAd. As in ASPIC+ [9], one might start by looking at
contraposition-like properties.



Definition 8 (Contraposition [11]). ABF = (L,R, Ab, ,V,≤, υ) is closed
under contraposition if for every non-empty ∆ ⊆ Ab:

if ∆ `R C for some C ∈ A
then for every B ∈ ∆ it holds that {A} ∪∆ \ {B} `R D for some D ∈ B.

Indeed, contraposition guarantees consistency, as shown next. 7

Theorem 1 (Consistency). Let ABF = (L,R, Ab, ,V, υ,≤) be closed under

contraposition. For any < ∈ {<min
∃ , <min

∀ , <min
∀ }, S ⊆ R and ∆ ⊆ Ab,

if ∆ is d-<-S-conflict-free, then for no A ∈ Ab, we have A ∈ ∆ and ∆ `R A.

The proof of all results in this paper are left out due to space restrictions.
Note that Theorem 1 immediately implies that if∆ is d-<-S-naive, -preferred,

-grounded or -stable then for no A ∈ Ab, we have A ∈ ∆ and ∆ `R A.

On the relation between ABAd and ABAr

Since ABAr reverse-defeat is essentially a form of contrapositive reasoning (cf.
Section 6), one might ask whether a given ABF closed under contraposition gives
the same outcomes under ABAd (i.e. without reverse-defeat) and ABAr. A par-
tial answer is given by the following result:

Theorem 2. Given some ABF = (L,R, Ab, ,V,≤, υ), a set S ⊆ R and some

< ∈ {<min
∃ , <min

∀ , <min
∀ }, assume ABF is closed under contraposition. Then,

(1) any d-<-S-admissible set is an r-<-S-admissible set; and
(2) every d-<-S-complete set is a subset of an r-<-S-complete set.

However, in general the two approaches produce different outcomes (as can be
verified by inspection of [11, Ex. 13]):

(3) not every d-<-S-complete set is r-<-S-complete, and moreover
(4) not every r-<-S-admissible set is d-<-S-admissible (or extensible to such a

set)

4 Translating ABAd into ABAf

The translation from ABAd into ABAf essentially embeds the priority ordering
≤ over V into an expanded object language LV. The expanded language LV

contains atoms Aα for each atom A ∈ L and value α ∈ V, and we translate

τ : ABF = (L,R, Ab, ,V,≤, υ) 7−→ τ(ABF) = (LV, τ(R), τ(Ab),
′
)

7 In ASPIC+ [9], contraposition together with various other conditions are sufficient
for consistency. However, for ABAd it turns out that contraposition alone guarantees
consistency.



(In fact, we expand the set V with a maximum element ω, and abusing notation
we denote V∪{ω} again as V.) With more detail, we translate into non-prioritized
ABA frameworks as follows: the assumptions Aυ(A) ∈ τ(Ab) encode the priority
υ(A) of the assumption A ∈ Ab; the rules in τ(R) carry over the antecedents’
priorities to the consequent by taking their minimal value; and the contrariness

operator
′

(again written as for simplicity) mirrors the idea of d-defeat being
an attack that succeeds by restricting the contrary pairs A ∈ B to those pairs
Aα ∈ Bβ satisfying α 6< β.

We first discuss the translation for flat, totally ordered frameworks, thereafter
explaining the complications when these restrictions are given up.

Flat Frameworks

Definition 9 (Translation τ). Where ABF = (L,R, Ab, ,V,≤, υ) is flat and
V is totally ordered by ≤, its translation τ(ABF) = (LV, τ(R), τ(Ab), ) is defined
as follows:

LV = {Aα : A ∈ L, α ∈ V}
τ(A1, . . . , An → A) =

{
A1

α1 , . . . , An
αn → Aα : α ∈ min(α1, . . . , αn)

}
τ(→ A) = {→ Aω}
τ(R) =

⋃
r∈R τ(r)

τ(Ab) = {Aυ(A) : A ∈ Ab}
Aα ∈ Bυ(B) iff A ∈ B and α 6< v(B)

The translation of any set ∆ ⊆ Ab will also be denoted τ(∆) = {τ(A) : A ∈ ∆}.

Example 5. Let ABF = (L,R, Ab, ,V,≤, υ) be given by Ab = {p, q}, R = {q →
s} and s ∈ p; and V = {1, 2} with 1 < 2 and υ(p) = 1, υ(q) = 2.

Applying Def. 9 gives us τ(ABF) = (LV, τ(R), τ(Ab), ) defined by: τ(Ab) =
{p1, q2}, q2 → s2 ∈ τ(R) and s2 ∈ p1.

Theorem 3.8 For any flat framework ABF = (L,R, Ab, ,V,≤, υ) with a total
ordering ≤, any semantics sem ∈ {naiv, grou, pref, stab}, any set S ⊆ R and

lifting < ∈ {<min
∃ , <min

∀ , <min∀ },

∆ ∈ d-sem<
S (ABF) iff τ(∆) ∈ f-semτ(S)(τ(ABF))

Non-Flat Frameworks The need for modifying Def. 9 in non-flat frameworks
is shown next.

Example 6. Let ABF = (L,R, Ab, ,V,≤, υ) be given by: Ab = {p, q, r}, V =
{1, 2, 3}, υ(q) = 1, υ(r) = 2, υ(p) = 3, with 1 < 2 < 3, and

R =
{
p→ q; p, q → r

}
.

8 This theorem is a particular case of Theorem 4, based on a further modification of
the translation τ from Def. 9, also a particular case of Def. 10 below.



In ABF we have that {p, q} does not defeat r since q < r. Using Def. 9, however,
we obtain in τ(ABF): {p3} `R q3 and thus {p3} `R r3, so {p3, q1} defeats r2.
The problem is that the translation from Def. 9 allows us to derive r3 from p3

(using q3). This does not mirror the behaviour of ABAd, since there the only
deduction of r using p would be {p, q} `R r. Since q is used in this deduction, it
does not defeat r (since v(r) > v(q)). Consequently, the translation from Def. 9
is not adequate for non-flat frameworks.

Translation for ABAd under <min
∀ . Let us proceed to define a translation

for the lifting <min
∀ (see Def. 4) which is adequate for frameworks whose preorder

(V,≤) is not necessarily total.

Definition 10 (τ for <min
∀ -d-defeat). Given ABF = (L,R, Ab, ,V,≤, υ), we

define its translation τ(ABF) = (LV, τ(R), τ(Ab), ) as in Def. 9 except for:

τ(A1, . . . , An → A) =
{
Aα1

1 , . . . , Aαn
n , A

g(A1)
1 , . . . , A

g(An)
n → Aα

}
α1,...,αn∈V

where α = min({α1, . . . , αn}) and

g(Ai) = υ(Ai) if Ai ∈ Ab, and g(Ai) = αi otherwise

τ(R) =
(⋃

r∈R τ(R)
)
∪
{
Aα → Aυ(A) : A ∈ Ab, α ∈ V

}
Examples like 6 are handled in the translation in Def. 10 by translating rules

r = A1, . . . , An → A in a slighlty different way: each antecedent Ai in the rule r

is translated below into a pair Aαi
i , A

g(Ai)
i of antecedents in τ(r).

An additional change to Def. 9 can be motivated by Ex. 6 as well. Indeed,
note that the set {p3} would be closed in the translated framework τ(ABF) with
Def. 9 since p3 → q3 ∈ τ(R) but p3 → q1 /∈ τ(R). However, {p} is not closed in
ABF and it can be easily seen that this gives rise to non-adequacies in any of the
semantics defined. This can be fixed by adding new rules in τ(R) of the form:
Aα → Aυ(A) for any A ∈ Ab and α ∈ V.

Theorem 4. Let ABF = (L,R, Ab, ,V,≤, υ) be given, and let τ be as in Def. 10.
For any semantics sem ∈ {naiv, grou, pref, stab} and any S ⊆ R:

∆ ∈ d-sem
<min

∀
S (ABF) iff τ(∆) ∈ f-semτ(S)(τ(ABF))

Translation for ABAd under <min
∀ and <min

∃ . For these two liftings, further
complications arise, the investigation of which is left for future work.

5 ABAf as a special case of ABAr and ABAd

Suppose a framework ABF = (L,R, Ab, ,V,≤, υ) is given, where υ is defined by
trivial priorities: υ(A) = υ(B) for any A,B ∈ Ab. It can be easily verified that
both the d-<-S-sem and r-<-S-sem sets of assumptions coincide with f-S-sem
sets of assumptions for all liftings in Def. 4. This means that we can capture
ABAf in both ABAr and ABAd, i.e. both ABAr and ABAd are conservative
extensions of ABAf, generalizing Theorem 5 in [6].



Theorem 5. Let ABF = (L,R, Ab, ,V,≤, υ) be given, where υ(A) = υ(B) for
any A,B ∈ Ab. For any semantics sem ∈ {naiv, grou, pref, stab}, lifting < ∈
{<min

∀ , <min
∃ , <min

∀ }, set of rules S ⊆ R and any ∆ ⊆ Ab:

∆ ∈ f-semS(ABF) iff ∆ ∈ d-sem<
S (ABF) iff ∆ ∈ r-sem<

S (ABF).

6 Translating ABAd and ABAr

The translation from ABAr into ABAd is based on the idea that reverse-defeat
in ABAr is an instance of contrapositive reasoning: whenever ∆ `R A but ∆
is strictly less preferred than A, then we should instead reject ∆. This means
that an assumption can r-defeat a set of assumptions without attacking any
particular member of this set; e.g. it can be observed in Ex. 6 that r r-defeats
{p, q} without r-defeating {p} or {q}. Note that this mechanism from ABAr is
ruled out in ABAd: whenever ∆ d-defeats Θ, then ∆ `R B for some B ∈ Θ. In
order to capture it within ABAd, we proceed stepwise: first, we add a conjunction
∧ to ABAr to make explicit the ABAr way of defeating a set of assumptions;
second, we translate frameworks with conjunction: from ABAr

∧ to ABAd
∧. These

two steps expand the set R with, first, rules for the introduction and elimination
of conjunction and, second, with contrapositive rules.

ABAd
∧ ABArABAr

∧
Thm. 6Thm. 7

The ABAr
∧ and ABAd

∧ systems

In the following, let ∆′ ⊆fin ∆ denote that ∆′ is a finite subset of ∆, and let
℘fin(∆) = {∆′ : ∆′ ⊆fin ∆}.

Definition 11 (Conjunction). We say that an ABF = (L,R, Ab, ,V,≤, υ)
has a conjunction if there is a connective ∧ such that:∧

{A1, . . . , An} is in Ab, for every A1, . . . , An ∈ Ab (∧-closure of Ab,L)

where
∧
{A1, . . . , An} = A1 ∧ . . . ∧ An,9 and for any A1, . . . , An ∈ Ab and any

A ∈ ∆ ⊆ Ab with
∧
∆ ∈ Ab, the set R is closed under the following:

A1, . . . , An →
∧
{A1, . . . , An} (∧-introduction)∧

∆→ A (∧-elimination)

9 In order not to clutter notation we omit brackets and assume the connective ∧ to be
commutative and associative. An enumeration (A0, A1, . . . , An, . . .) of the countably-
many sentences in L can be used to define a canonical form for conjunctions, e.g. in
increasing order:

∧
{An0 , . . . , Ank} = An0 ∧ . . . ∧Ank for n0 < . . . < nk.



where ∧I and ∧E denote the sets of ∧-introduction- and ∧-elimination-rules.
For any ∆ ⊆ Ab, let

∆∧I = Cl∧I(∆) = {
∧
∆′ : ∅ ⊂∆′ ⊆fin ∆} where

∧
{A} = A

∆∧E = Cl∧E(∆) = {A :
∧
∆′ ∈ ∆,A ∈ ∆′∩Ab} for ∆ ⊆ Ab∧I

From now on, we proceed as follows: if an ABF has no conjunction we add one,
otherwise we use the one present in ABF. In either case, the ∧-closure of the
language L is defined as L∧ = L ∪ Ab∧I , and the closure of the set of rules is
denoted R∧ = R∪ ∧I ∪ ∧E .

Definition 12 (ABF∧ framework). Given an ABF = (L,R, Ab, ,V,≤, υ) frame-
work, we define ABF∧ = (L∧,R∧, Ab∧I , ,V∧, υ∧,≤∧) where L∧,R∧ and Ab∧I

are defined as above,10 V∧ = {V : ∅ ⊂ V ⊆fin V} υ∧ is defined as:

υ∧(A) = {υ(A)} for any A ∈ Ab

υ∧(
∧
∆) = min(∆) for any ∆ ⊆ Ab

and ≤ is, abusing notation, extended to Ab∧I as follows:

min(∆) = min(∆∧E) and min(∆) = min(∆∧E) for any ∆ ⊆ Ab∧I

Finally, we extend the lifting of ≤ to ≤∧ ⊆ ℘fin(Ab∧I)×Ab∧I . For Θ ⊆fin Ab
∧E ,

∆ <min
∃

∧
Θ iff for some β ∈ min(∆) and α ∈ min(Θ) we have β < α.

∆ <min
∃

∧
Θ iff for some β ∈ min(∆) and every α ∈ min(Θ) we have β < α.

∆ <min
∀

∧
Θ iff for every β ∈ min(∆) and α ∈ min(Θ) we have β < α.

Where x ∈ {f, d, r}, we use ABAx
∧ to denote assumption-based argumentation

for frameworks of type ABF∧ defined by the notion of x-defeat. For the translation
to work, only sets ∆ that are closed under ∧I and ∧E are allowed to r-defeat
other sets, i.e. ∆ = Cl∧I∪∧E(∆). This choice is not arbitrary: the ∧-introduction
and -elimination rules are domain independent and fix the meaning of the logi-
cal connective ∧. Indeed, not requiring this would give rise to counter-intuitive
examples, like being able to argue against p ∧ q but unable to defend against
{p, q}.

Example 7. Let ABF = (L,R, Ab, ,V,≤, υ) be given by: Ab = {p, q, r}; R =
{p, q → s} with {s} = r and V = {1, 2, 3} with 1 < 2 < 3 and υ(p) = 1,
υ(q) = 2, υ(r) = 3. Applying Def. 12, we obtain the following ABF∧ framework:

10 As stated in Theorem 6, in order to prove equivalence of ABAd and ABAd
∧ (resp.

ABAr and ABAr
∧) it is not necessary to define the contrariness operator for con-

junctions of assumptions. The situation changes when translating ABAr
∧ to ABAd

∧
as is demonstrated (see Def. 13 and Theorem 7) since contraries of conjunctions of
assumptions are essential when expressing r-defeat in ABAd

∧.



L∧ = L ∪Ab∧I R∧ = R∪ ∧I ∪ ∧E υ∧


s, . . .

p, q, r,

p ∧ q, p ∧ r,
q ∧ r, p ∧ q ∧ r



p, q → s p, q → p ∧ q p, r → p ∧ r
q, r → q ∧ r p, q, r → p ∧ q ∧ r
p ∧ q → p p ∧ q → q p ∧ r → p

p ∧ r → r q ∧ r → q q ∧ r → r


υ∧(p ∧ q) = {1}
υ∧(p ∧ r) = {1}

υ∧(p ∧ q ∧ r) = {1}
υ∧(q ∧ r) = {2}

Theorem 6. For any ABF = (L,R, Ab, ,V,≤, υ), sem ∈ {naiv, grou, pref, stab},
a defeat type x ∈ {d, r}, lifting < ∈ {<min

∃ , <min
∀ , <min

∀ } and any set S with
(∧I ∪ ∧E) ⊆ S ⊆ R∧, we have:

∆ ∈ x-sem<
S (ABF) iff ∆∧I ∈ x-sem<

S (ABF∧)

Translating ABAr
∧ to ABAd

∧

When translating ABAr to ABAd we first translate ABAr to ABAr
∧ and subse-

quently to ABAd
∧. In the previous section we have shown how to do the former

step, now we show how to translate ABAr
∧ to ABAd

∧.
For this, we extend the language with new formulas A¬ for any A ∈ Ab∧ that

will function as an additional contrary of the assumption A (in Ex. 9 we will
motivate this extension). Furthermore we add contrapositive rules. In particular,
whenever:

– B ∈ C can be derived from A1, . . . , An, and
– C is strictly preferred (for some < ∈ {<min

∃ , <min
∀ , <min

∀ }) over {A1, . . . , An},

we add the rule C → D, whereD = (A1∧. . .∧An)¬ is the contrary of A1∧. . .∧An.

Definition 13 (ABF∧¬ framework). Given ABF∧ = (L∧,R∧, Ab∧, ,V,≤, υ),
we define its translation as ABF∧¬ = (L∧¬,R∧¬, Ab∧,˜,V∧, υ∧,≤∧), defined as
follows:

L∧¬ = L∧ ∪ {A¬ : A ∈ Ab∧}

R∧¬ = R∧ ∪

C → (A1 ∧ . . . ∧An)¬ :

{A1, . . . , An} `R∧ B and

B ∈ C and

{A1, . . . , An} < C


Ã = A ∪ {A¬}, for any A ∈ Ab∧

Example 8 (Cont’d). Let ABF∧ be as in Ex. 7. Note that {r} r-defeats {p, q}.
Applying Def. 13 to ABF∧, we obtain the translation ABF∧¬ given by:

L∧¬ = L∧ ∪
{
p¬, q¬, r¬, (p ∧ q)¬, (p ∧ r)¬, (q ∧ r)¬, (p ∧ q ∧ r)¬

}
R∧¬ = R∧ ∪ {r → (p ∧ q)¬}.
p̃ = p ∪ {p¬} q̃ = q ∪ {q¬} r̃ = {s, r¬} p̃ ∧ q = {(p ∧ q)¬} . . .

The following example shows why we cannot simply add C → A, where
A `R∧ C and A < C, as a contrapositive rule:



Example 9. Let ABF = (L,R, Ab, ,V,≤, υ) be given by: Ab = {p, q}; R = {p→
q; p → r} and υ(p) < υ(q). Suppose now that we would add q → p instead of
q → p¬ to R∧¬. In that case we would have the deduction {q} `R∧¬ r. Since
{q} 6`R r, this would render the translation inadequate.

Theorem 7. For any ABF∧ = (L∧,R∧, Ab∧, ,V∧, υ∧,≤∧), semantics sem ∈
{naiv, grou, pref, stab}, lifting < ∈ {<min

∃ , <min
∀ , <min

∀ } and any set S with (∧I ∪
∧E) ⊆ S ⊆ R∧:

∆ ∈ r-sem<
S (ABF∧) iff ∆ ∈ d-sem<

τ(S)(τ(ABF∧)).

The translation proposed here makes use of the (meta-)notion of a deduction,
i.e. C → (A1∧ . . .∧An)¬ ∈ R∧¬ iff {A1, . . . , An} `R∧ B and B > {A1, . . . , An}.
It would perhaps be more elegant to have contraposition on the level of the rules
rather than to base it on the derivability relation `R. Such a proposal, however,
runs into additional complications. The following example demonstrates why we
cannot just replace R∧¬ \ R∧ by {A→ (

∧n
i=1Ai)

¬ : A1, . . . , An → A ∈ R}:

Example 10. Let Ab = {p, q} and R = {p → s, s → q}. Note that we can’t add
q → s¬ to R since s¬ is not defined (since s 6∈ Ab). Of course one could extend
the language with A¬ for A ∈ L\Ab. However, we leave the investigation of this
proposal for future research.

7 Related Work

In [2, 10] ways of expressing priorities in the object language of ABA were pro-
posed. In our contribution we demonstrated how this idea can be utilised to
express the ways priorities are handled in ABAd and ABAr in the basic (non-
prioritized) ABA framework of [2]. In [7] it was shown that (a special case of)
ABAr conservatively extends ABA from [2]. We have generalized this result to
ABAd and by translating both to ABA we have shown that the expressive power
of the three frameworks (w.r.t. the standard semantics) is the same.

On the relation between ABA+ and ABAr. The idea of reverse-defeat
was first introduced in [6] in the context of ABA+. In this subsection we will
discuss the various versions of ABA+ and their relation to ABAr as defined in
this paper.

In [6] we find the following definition of defence and a corresponding notion
of admissibility (for flat assumption-based frameworks):

Definition 14 (Defence, admissibility in ABA+). Define, for ∆∪{A} ⊆ Ab,

∆ defends+ A iff ∆ r-<min
∃ -defeats every Θ ⊆ Ab that r-<min

∃ -defeats {A}.
∆ is admissible+ iff ∆ is r-<min

∃ -conflict-free and defends+ every A ∈ ∆.

This definition gives counter-intuitive outcomes as shown next.



Example 11. Let ABF be given by R = {p, q → r}, Ab = {p, q, r} and υ(p) <
υ(q) < υ(r). Note that {r} r-<min

∃ -defeats {p, q} but it defeats neither {p} nor
{q}. Consequently, {p, q} is admissible, even though {r} defeats {p, q} without
any defence from {p, q}.

This definition has been changed in an online manuscript [5], where we find
definitions for admissible and complete sets for which it can be routinely checked
to be equivalent to the definition of a r-<min

∃ -R-complete set. Thus, the results
in this paper cover the definitions of [5] as a special case.

On the relation between ABAd and ASPIC+. In [9], it was proven that
flat ABFs can be straightforwardly translated into ASPIC+. However, when pri-
oritized, non-flat ABFs come into play, this is not the case any more. In our Ex. 3,
it can be verified that ASPIC+ would give rise to the same outcome as the d-
<-∅-preferred semantics (which has not yet been considered in the literature).
For flat ABFs, our results together with those of [9] show that ABAd and ABAr

can be expressed in ASPIC+. Further investigations into the relation between
(non-flat) ABA, ABAd and ABAr on the one hand and ASPIC+ on the other
hand remain open for future research.

8 Conclusion

This paper contains two main results. First, we showed that ABAd, a system
that was not investigated until now, satisfies the consistency postulate when
ABFs are closed under contraposition. This result was to be expected in view
of analogous results for ASPIC+. Second, we investigated translations between
ABAf, ABAd and ABAr. We showed that ABAd can be translated into ABAf.

Intuitively, this means that –at least for ABA– structured argumentation
is as expressive as prioritized structured argumentation (the former encoding
on the object level the priorities that the latter system expresses on the meta-
level). This result is along the same line of results in abstract argumentation,
where it has been shown that enhancements of Dung’s original frameworks are
reducible to the original framework by adding extra arguments and attacks [1].
This does not mean that the enhancements are not useful e.g. for ease of repre-
sentation or succintness. These kind of results offer meta-theoretic insights into
the foundations of non-monotonic reasoning, while at the same time showing
that automatic reasoning systems devised for the base systems can still be used
(under translation) for the enhancements.

More specifically, one can summarize the insights exposed by our technical
results, as well as point out possibilities for future work arising from them:

(1) We have shown that the way priorities are handled in ABAd can be expressed
in the object language. We plan to investigate whether this is also the case for e.g.
ASPIC+, where priorities are handled in a similar way to ABAd. Furthermore,
expressing priorities in the object language will facilitate research on reasoning
about priorities in ABA.



(2) Our results show that reverse attacks can be expressed by means of contra-
position in ABAd given that the language is logically sufficiently expressive (i.e.
contains a conjunction). Consequently, our results clarify the status of reverse
attacks w.r.t. more orthodox approaches to handling priorities in structured ar-
gumentation.

(3) While studying the relation between ABAd and ABAr, we have shown that
adding a conjunction to these frameworks does not change the consequences of
a given ABF. In future work, we would like to investigate the effect of closing
ABFs under other logical connectives such as disjunction, implication or different
forms of negation. Similar research has been done for adaptive logics [12].

(4) We would also like to point out that in this paper we have made several
generalizations w.r.t. ABA as it is found in the literature. For example, we
“parametrized” the semantics in Def. 7 with sets of rules S and liftings < (of
which only one, <min

∃ , had been investigated in the literature for r-defeats). We
think that these generalizations of existing ABA semantics offer further avenues
for research, e.g. properties for non-monotonic reasoning (cf. [7]) and rationality
postulates.

References

1. Boella, G., Gabbay, D.M., van der Torre, L., Villata, S.: Meta-argumentation mod-
elling I: Methodology and techniques. Studia Logica 93(2), 297–355 (2009)

2. Bondarenko, A., Dung, P.M., Kowalski, R.A., Toni, F.: An abstract,
argumentation-theoretic approach to default reasoning. AI 93(1), 63–101 (1997)

3. Caminada, M., Amgoud, L.: On the evaluation of argumentation formalisms. AI
171(5-6), 286–310 (2007)

4. Craven, R., Toni, F.: Argument graphs and assumption-based argumentation. AI
233, 1–59 (2016)

5. Čyras, K., Toni, F.: ABA+: assumption-based argumentation with preferences.
arXiv preprint arXiv:1610.03024 (2016)

6. Čyras, K., Toni, F.: ABA+: assumption-based argumentation with preferences. In:
KR. pp. 553–556 (2016)

7. Čyras, K., Toni, F.: Properties of ABA+ for non-monotonic reasoning. arXiv
preprint arXiv:1603.08714 (2016)

8. Dung, P.M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. AI 77, 321–358
(1995)

9. Prakken, H.: An abstract framework for argumentation with structured arguments.
A&C 1(2), 93–124 (2010)

10. Toni, F.: Assumption-based argumentation for epistemic and practical reasoning.
Computable Models of the Law, Languages, Dialogues, Games, Ontologies 4884,
185–202 (2008)

11. Toni, F.: A tutorial on assumption-based argumentation. A&C 5(1), 89–117 (2014)
12. Van De Putte, F., Straßer, C.: Adaptive logics: a parametric approach. Logic Jour-

nal of the IGPL 22(6), 905–932 (2014)


