Phase-based Minimalist Parsing and
complexity in non-local dependencies

Cristiano Chesi
NETS - IUSS
P.zza Vittoria 15
[-27100 Pavia (Italy)

cristiano.chesi@iusspavia.it

Abstract

English. A cognitively plausible parsing
algorithm should perform like the human
parser in critical contexts. Here I propose
an adaptation of Earley’s parsing algo-
rithm, suitable for Phase-based Minimal-
ist Grammars (PMG, Chesi 2012), that is
able to predict complexity effects in per-
formance. Focusing on self-paced reading
experiments of object clefts sentences
(Warren & Gibson 2005) I will associate
to parsing a complexity metric based on
cued features to be retrieved at the verb
segment (Feature Retrieval & Encoding
Cost, FREC). FREC is crucially based on
the usage of memory predicted by the dis-
cussed parsing algorithm and it correctly
fits with the reading time revealed.

Italian. Un algoritmo di parsing cogniti-
vamente plausibile dovrebbe avere una
performance paragonabile a quella
umana in contesti critici. In questo lavoro
propongo un adattamento dell’algoritmo
di Earley che utilizza Grammatiche Mini-
maliste basate sul concetto di Fase (PMG,
Chesi 2012). Associata all’algoritmo,
verra discussa una funzione di costo (Fea-
ture Retrieval & Encoding Cost, FREC)
capace di misurare la difficolta relativa al
recupero dei referenti coinvolti in dipen-
denze a distanza. La funzione si basa sui
tratti morfosintattici archiviati nel me-
mory buffer utilizzato dal parser. Concen-
trandosi sulle strutture scisse ad estra-
zione dell’oggetto, si mostrera come il
FREC risulti predittivo dei dati sperimen-
tali ricavati da studi classici di lettura au-
toregolata (Warren & Gibson 2005).

1 Introduction

The last twenty years of formal linguistic research
have been deeply influenced by Chomsky’s mini-
malist intuitions (Chomsky 1995, 2013). In a nut-
shell, the core Minimalist proposal is to reduce
phrase structure formation to the recursive appli-
cation of a binary, bottom-up, structure-building
operation dubbed Merge. Merge creates hierar-
chical structures by combining two lexical items
(1.a), one lexical item and an already built (by pre-
vious application of Merge operations) phrase
(1.b) or two already built phrases (1.c).

(1) a. b. c.
N N N
X oy X YP XP YP

Phrases are not linearly ordered by Merge. Only
when they are spelled-out (i.e. sent to the Sensory-
Motor interface, aka Phonetic Form, PF), lineari-
zation is required: assuming that X and y are ter-
minal nodes (i.e. words), either <X, y> or <y, x>
can both be proper linearizations of (1.a). Hierar-
chical structure (and linearization) is also deter-
mined by another structure building operation:
Move (or Internal Merge, Chomsky 1995); Move
re-arranges phrases in the structure by re-merging
an item (already merged in the structure) to the
edge of the current, top-most, phrase: for instance
[XP [YP [ZP]]] can lead to [ZP [XP [YP (ZP)]] if
XP (the probe) has a feature triggering movement
(e.g. +f) and ZP (the goal) has the relevant feature
qualifying it as a plausible target for movement
(e.g. -f). At the end, the element displaced (ZP)
will occupy the edge of the structure. When the
items within an already built phrase, for instance
XP, are delivered to PF, they get properly linear-
ized according to their hierarchical structure (e.g.
Linear Correspondence Axiom, Kayne 1994), in-
trinsic phonetic properties (e.g. cliticization), as

well as economy conditions (e.g. an items should
not be pronounced twice). Such a (cyclic) spell-
out happens at phases: XP will be delivered to PF
only if it qualifies as a phase (Chomsky 2013). In
this sense, a phase should be a constituent/phrase
with some degree of completeness with respect to
semantic interpretation (Logic Form, aka LF).
Most minimalist linguists agree on the fact that a
full-fledged sentence (aka Complementizer
Phrase, CP) is a phase, the highest argumental
shell of a predicate qualifies as a phase (aka little-
v Phrase, VP) and also a full argument is a phase
(aka Determiner Phrase, DP). Such a simple (and
computationally appealing) model has been fully
formalized (Stabler 1997, Collins & Stabler 2016)
and some parsing algorithm that implements main
minimalist insights has been discussed in litera-
ture (e.g. Harkema 2001, Chesi 2012 a.o.).

In these pages, I will present some of the ad-
vantages of retaining such a simplified computa-
tional approach to syntactic derivation. Crucially,
I will try to overcome some clear disadvantages in
assuming the just presented standard, bottom-up,
structure building operations, while obtaining, at
the same time, a better empirical fit: on the one
hand, I will avoid any non-efficient deductive-
parsing perspective (that is a consequence of the
assumed bottom-up nature of the Merge and
Move operations); on the other, I will promote a
more transparent relation between formal compe-
tence, parsing and psycholinguistic performance
by presenting a simple adaptation of Earley’s
Top-Down parsing algorithm (Earley 1970) and a
complexity metric that refers directly to parsing
memory usage: this metric will be able to account
for complexity in retrieving the correct item while
processing specific non-local dependencies. By
“non-local” dependencies I refer to those relations
involving movement, namely constructions where
the very same item occurs in two distinct, non-ad-
jacent, positions: for instance, wh-dependencies in
English require the wh- item (who, in (1)) to be
interpreted both in a the left peripheral (focalized)
position (the Criterial position, in the sense of
Rizzi 2007) and in the thematic lower position
(right next to the verb meet in (1))":

(1) Who1 do you think Mary will meet _1?

The critical derivation I will discuss in this pa-
per is that of object clefts (Gordon et al. 2001) that

! Coreference in non-local dependencies will be indi-
cated by the same subscript placed both on the “dis-
placed” item and on the thematic position (the non-

with wh-questions share a similar non-local de-
pendency formation:

(2) a. It is [pp1 the banker|John|me] that
[op2 the lawyer|Dan|you] will meet pe:

In short, the head of the dependency (DP1) should
be interpreted both as a focalized item and as the
direct object (this is where the name of the con-
struction “object cleft” comes from) of the embed-
ded verb. The difficulty of parsing this structure
has been deeply discussed in literature (Gordon et
al. 2004). What is considered a crucial factor is the
role of the similarity between DP; and DP; (the
subject of the cleft, Belletti and Rizzi 2013, §2).
To capture this fact, I will re-adapt Earley’s algo-
rithm (§3.1) to operate on a specific version of
Minimalist Grammar (§3). This would allow us to
subsume the similarity effect by predicting read-
ing differences as revealed in self-paced reading
experiments (e.g. Warren & Gibson 2005, §4).

2 Parsing with Minimalist Grammars

Since Merge and Move strictly operate “from bot-
tom to top”, we expect sentence structure in (2) to
be built in 9 steps (and 5 phases: phl, ph2 ...):

[ph1 the banker]

[ph3 meet [ph1 ...]]]

[ph3 will [meet [ph1 ...]]]

[ph2 the lawyer] (independently built)

[ph3 [phz ...] will [meet [pn1 ...]]]

[pha that [ph3 [ph2 ...] will [meet [ph1 ...]]]]

[[pht ...] [pha that [ph3 [phz ...] will [meet (ph1 ...)]]]]

(ph1 moves to pha edge)

8. [phsis [[pht ...] [pha that [ph3 [ph2 ...] will [meet
[pna ... J1111

9. [phs it [is [[ph1 ...] [ph4 that [ph3 [ph2 ...] will [meet

(pnz ... 1111}

NNk -

With the exception of step 4, all other steps must
be strictly ordered. As a consequence, moving the
direct object in the relevant position would force
the linearization to place ph; first at the edge of
phs, then at the edge of phs. This is how Minimal-
ism derives the relevant non-local dependencies in
(2). Obviously this is not transparent at all with
respect to parsing (e.g. Fong 2011), where the pro-
cessing order is expected to be completely re-
versed:

1. [phs] is initiated
2. [ph1]1is fully processed while [pns] is still open

pronounced item in the thematic position is indicated
with a co-indexed underscore)

[ph4] is initiated (a Relative Clause)

[pn3] is initiated as well (Verbal Phrase)

5. [ph2 ...] is fully processed while [pns], [phs] and [pn3] are
open

6. [pn1] finally receives a thematic role, hence [phs], [ph4]

and [ph3 | can be closed.

P

Unless we deeply revise Minimalist Grammars
(both with respect to movement, Fong 2005, and
to thematic role assignment, Niyogi & Berwick
2005), we are left with an asymmetry that can not
be explained simply in terms of structure building
operations as discussed in the next section.

2.1 The “similarity” problem

Warren & Gibson (2005) show that in clefts con-
structions like the one discussed in (2), the varia-
tion of the two DPs [pn1] and [pn2] produces dif-
ferences in reading time at the verb segment in
self-paced reading experiments with the full-DP
matching condition ([,n1 the barber] that [y the
banker] praised ...) and proper nouns matching
condition ([pn1 John] that [, Dan] praised ...)
ranking higher in terms of difficulty (greatest slow
down at verb segment), while pronouns ([,n1 you]
that [pn2 we] praised ...) are easier (fastest reading
time). No CFG-based parsing algorithm (in fact,
no classic algorithm implements the non-local de-
pendencies in (2) as presented in §2) or Minimal-
ist deductive parsing (parsing strategies exploit
the weak equivalence of MGs with multiple Con-
text Free Grammars, Michaelis 1998) have a
chance to compare these cases.

3 A processing-friendly proposal

Phase-based Minimalist Grammars (PMGs, Chesi
2012) suitable for parsing of sentences like the
ones in (2) can be formalized as follows:

(3) PMG able to parse cleft sentences

Lexicon

[[+p+sg Johni] [N _i]], [[+D+sg Dani] [N _i]], [N +sg banker],
[N +sg lawyer], [+pthe], [+D+P1+Pl+casc_ace me [N @]],

[+D +P2 +Sg +case_nom YOU [N ¢]], [+T Wlll], [+T that],

[=[DP (+case_nom)] =[DP (+case acc)] v meet], [+exp it], [=rcp BE is]
Phases

DP =4 [op ([+F @Y/[+S @]) +D N]

Cleft > [cp +Exp BE]

rCP -> [cp +F +FIN (+S) +T V]
Operations

Merge = ([pnH +f (+fa) (H)], [+ L]) = [pn [+ L (+£n) (H)]]
Phase Projection = [phH =phx H] = [phr =phx H [phx]]
Move = if expected [phx +f X] and found

[phx [phy +f+g Y] X] > MEM([phy +g <Y>)])

As in MGs (Stabler 1997), the Lexicon is a finite
set of lexical items storing phonetic, semantic
(here ignored) and syntactic features (functional
+F, selectional =S, categorial C); an item bearing
a selection feature, e.g. [-xp A], requires an XP
ph(r)ase right afterward: [= A [xp]] (once fea-
tures are projected in the structure, i.e. [xp], the
selection features are deleted, i.e. =p); functional
features, e.g. +X express a functional specifica-
tion like determiner +D, tense +T or topic +S
(when placed under brackets, e.g. (+f), functional
features are optional; @ indicates phonetically null
items).

Merge simply unifies the expected structure built
so far with a new incoming item, if and only if,
this item bears (at least) the first relevant feature
expected (Merge operation is greedy: an item
bearing more features in the correct expected or-
der will lexicalize them all):

1. Merge([+x+y+zw], [+x+y AD)=[[+x+y A] +zw]
2. Merge([[+x+y A] +zw |, [+ B]D=[[+x+y A][+=B]w]
3. Merge([[+x +y A][+zB]w], [w C])=[[+x+y A][+=B][w C]]

Move uses a Last-In-First-Out (LIFO) memory
buffer (M) to create non-local dependencies: M is
used to store unexpected bundles of features
merged in the derivation (below, underlined fea-
tures, e.g. [+wu], are the unexcepted ones trigger-
ing Move):

1'. Merge([+x+y+zw], [+x+wu A]) = [[+x=wu A] +zw]
2'. Move([+x +wu A]) = M[+w u <A>]

Items in the memory buffer M will be re-merged
in the structure, before any other item taken from
the lexicon, as soon as a coherent selection is in-
troduced by another merged item:

3'. Merge([... [w=pwy C[+wu]]], M[zwu <A>]) =
[... [w=pwg C[+wu<A>)]]], M[empty |

Notice that phonetic features (items under angled
brackets, i.e. [<A>]) are not re-merged in the struc-
ture (that is, they are not expected to be found in
the input) since they are already been pro-
nounced/parsed in the higher position. When the
M(emory) buffer is empty and no more selection
features must be expanded, the procedure ends.

3.1 Parsing cleft structures with PMGs

The parsing algorithm using the minimalist gram-
mar described in (3) implements an Earley-like
procedure composed of three sub-routines:

1. Ph(ase)P(rojection) (Earley Prediction proce-
dure): the most prominent (i.e. first/left most) se-
lect feature is expanded (the sentence parsing
starts with a default PhP using one of the phases in
grammar (3));

2. Merge (Earley Scanning procedure): if Memory is
empty, the first available feature F in the expected
phase is searched in the input/lexicon and possible
items will be retrieved? (search(F) = [r lexi], [r
lexz] ... [r lex,]) then unified with the expected
structure (e.g. Merge([r ... x], [r lexi]) = [[r lexi]...
«]); items stored in Memory are checked before the
sentence input for Merge;

3. Move: if more features than the one expected are
introduced, those features are clustered and moved
in the LIFO Memory buffer:

M[[slot 1] [slot 2] cee [slot n]]

Given the recursive, cyclic, application of the
three subroutines above, this is the sequence of
steps needed for parsing a cleft sentence like (2):

Default PhP (in this case: Cleft): [cp +Exp BE]

Search(+exp): M[empty], Lex[[+exp it]]

Merge([cp +Exp BE], [+exp 1t]) = [cP [+exp it] BE]

Search(se): M[empty], Lex[[8E is]]

Merge([cp [+exp it] BE], [=rcp BE i5]) =
[cp [+exp it] [=rcP BE is]]

6. PhP([cP [+exp it] [=rcp BE iS]) =

[cp [+exp 1t] [=rcp BE 1S [CP +F +FIN +S +T V]]
7. Search(+r): M[empty], Lex[[op [+F @] +DN]]
8. Merge([...[cp +r+FiN+s+TV]], [DP [+F @] +DN]) =
[cp [oP [+F @] +DN] +FIN +s +T V]]
. Search(+p): M[empty], Lex[[+p the]]
10. Merge([op [+F @] +pN], [+D the]) =
[cp [op [+F @] [+p the] n] +FIN+s +T V]
11. Search(n): M[empty], Lex[[n banker]]
12. Merge([op [+F @] [+p the] n], [~ banker]) =
[cp [op [+F @] [+p the] [N banker]] +riN +s +Tv]]
13. Move([op [+F @] [+p the] n], [N banker]) =
M[[pp +p N <the banker>]]
(Move is triggered because at step 8 +D N were
unexpected; only after full lexicalization [pp [+F @]
+pN] is stored in M, namely at step 13)

14. Search(+riv): M[[pp +b N <the banker>]], Lex[[+Fmv that]]

15. Merge([cp [pp [+F @] [+p the] [N banker]] +FiN+s +T v]],
[+riv that]) = [cp [pp [+F @] [+D the] [~ banker]] [+Fi~ that]
+s+TV]]

16. Search(+s): M[[pp +D N <the banker>]],

Lex[[op [+s @] +pn]]

17. Merge([cp [op [+F @] [+b the] [N banker]] [+FiN that] +s +1
v]], [op [+s @] +pN]) = [cp [oP [+F @] [+D the] [banker]]
[+Fix that] [pp [+s @] +pN] +T V]]

18. (repeat 9-13 mutatis mutandis)

19. Search(+1): M[[pp +D ~ (the lawyer)],[op +b N (the

banker)]], Lex[+1 will]

O

2 For reason of space, I will not discuss here neither
lexical and syntactic ambiguity nor reanalysis (i.e. re-
covery from wrong expectations); the proposed algo-
rithm here is meant to be a Top-Down complete pro-
cedure, that is, all the possible ambiguities will be

20. Merge([cp [P [+F @] [+p the] [x banker]] [+Fin that] [pp
[+s @] [+p the] [n lawyer]] +1 v]], [+ will]) =
([cp [ppP [+F @] [+ the] [N banker]] [+ that] [pp [+s @]
[+p the] [nlawyer]] [+1 will] v]]

21. Search(v): M[[pp +b N (the lawyer)],[op +b N (the
banker)]], Lex[-pp -pp v meet]

22. Merge([cp [pp [+F @] [+ the] [n banker]] [+Fmv that] [pp
[+s @] [+p the] [~ lawyer]] [+ will] v]], [-pp -pP v meet])

[cp [oP [+F @] [+p the] [~ banker]] [+rin that] [pp [+s @]
[+p the] [~ lawyer]] [+r will] [=pp =pp v meet]]

23. PhP([cp ... [-pp-DP Vv meet]]) = [cp ... [-pr-DP v meet
[pp+DN]]]

24. Merge ([cp ... [-br-pp v meet [pP+DN]]], M[[DP +D N
(the lawyer)]] = ([cp ... [=pe=Dp v meet [pp +D N (the
lawyer)]]]

25. PhP([cp ... [-pp-pp v meet]]) = [cP ...
[pp+p N (the lawyer)] [pp+DN]]]

26. Merge ([cp ... [-pp=ppv meet ... [pp+DN]]], M[[DP +D N
(the banker)]] = ([cp ... [-pr=prv meet ... [DP+D N (the
banker)]]]

[=pp=pp v meet

According to the lexicon and the phase expecta-
tions, step 10 and 19 could have found in the input
[+p~ John], [+p~ Dan], [+p +p1 +pl +case acc M€ [N @]
Or [4D +P2 +Sg +case nom YOU [N @]], capturing all pos-
sible combinations of definite descriptions, cor-
rect pronominal DPs and proper nouns. Exactly all
the possibilities we want to test.

4 Explaining the “similarity” problem in
terms of cue-based feature retrieval

According to Warren & Gibson (2005) revealed
reading times (see also Gordon et al. 2004 for very
similar results) we can roughly rank on a difficulty
scale all the (3x3) tested conditions (D = definite
condition, e.g. “the banker”, N = nominal condi-
tion, e.g. “Dan”, P = pronoun condition, e.g. “we”;
for instance D-D stands for “it is the banker that
the lawyer will meet...”, vs D-P condition “it is
the banker that we will meet...”):

(4) D-D >N-D =N-N = P-D
>D-N>P-N>D-P>N-P~P-P

Building on Gillund & Shiffrin (1984) Search of
Associative Memory (SAM) model, and assum-
ing a cue-based retrieval mechanism for items in
memory (Van Dyke & McElree 2006), we can de-
fine a complexity (C) function associated to the
features to be retrieved from M (Feature Retrieval

taken into consideration and stored in the parsing
“chart” as in the classic Earley’s parser. For ranking
of alternatives see Hale (2001).

Cost, FRC, Chesi 2016) for each item to be re-
merged after the phase projection at verb (V):

\m;
(5) Crre(V) =112 Tae-
In the formula above, m is number of items stored
in memory at retrieval, nF is the number of fea-
tures characterizing the argument to be retrieved
that are non-distinct in memory (i.e. also present
in other objects in memory), dF is number of dis-
tinct cued features (e.g. case features explicitly
probed by the verb selection). Crrc will express
the cost, in numerical terms, that should fit with
the revealed reading time (i.e. higher differences
in reading times, higher differences in Crrc).
According to the lexicon in (3), the cost for re-
trieving the correct items in the D-D condition, for
instance, is calculated as follows:

L. [=[DP (+case_nom)] =DP(+case_acc) V meet] will trigger
retrieval of the first item (the last inserted one
in the buffer) which is (step 24) the DP
[+D +s¢ N (the lawyer)]

2. No cued-features are present (the verb selec-
tion only asks for an optional nominative
case) and the 3 features to be retrieved are in
fact shared with the other item in memory
([+D +s¢ ~ (the banker)])

_ (1+3)?

. 1+0)' _
3. Hence: Cgrc = 0 X (110).

(1+0)

16

Notice that retrieving the object when the subject
has been removed from memory has a minimal
cost since no confounding features are present an-
ymore in memory. As for the other relevant con-
ditions: N-N, as in D-D condition share the same
features hence we expect them to have similar cost
except for the fact that N feature is not fully lexi-
calized, but it is a trace of an N-to-D movement
(Longobardi 1994). Counting this as 0.5 (further
investigation is needed to correctly assign a cost
to an emptied lexical position), we obtain 12,25.
Same complexity for N-D condition (since the [x]
lexical feature in D is compared to the trace [i]
feature of N counting 0.5). While we would ex-
pect slightly smaller cost with the P-D condition
(P does have a [x @] empty feature), that is 9, we
will correctly predict simpler complexity for re-
trieving pronouns at the subject position, since
they are always bearing person features (which
are distinct from default 3™ person of D and N)
and they are marked for case (which is cued by the
verb, producing the minimal cost in the P-P con-
dition (Cerc= 1) and similar costs in the D-P and

N-P conditions (both Cerc=4). Predictions can be
further differentiated by adding a cost for encod-
ing the features in the structure (eF) which is (to
keep the calculation as simple as possible) propor-
tional to the number of lexical features to be en-
coded once an item is retrieved from memory (the
numerator of the Crrc cost function becomes:
(1 4 nF; + eF;)™i). This corresponds to an in-
crease of +1 for D and +0,5 for N at retrieval. The
new Crrec(V) in the different conditions becomes:

Cerec(V) pp= (1(*'1?;)1))2 (1(4-1(;1))1 _so
Cantipn - S5
Crrec(V) NN = <1+(i:2,)5)2 (1;2:2,)5)1 3037
Crrec(V) pp = (1:1?;)1))2 (1("1(14;)(;)1 5
Crrec(V) pn = (1+(i:g,)5)2 (1:1(::;)1 — 245
Crrec(V) px = (12:2-)5)2 (1:104;(;)1 1225
Crrec(V) pp = (1(*'11:1(;)2 (1:1(14;)1))1 _
Crrec(V) np = (1(+11_:;)2 (1-:2:(;,)5)1 _
Crrec(V) pp = “;:‘;)2 (1:1(12(;)1 _

Though in some cases FREC predicts slightly
larger differences (e.g. D-D vs N-D/N-N condi-
tion), it correctly ranks all conditions revealed by
the discussed experiment, and it is coherent with
specific predictions (e.g. related to feature match-
ing) discussed in literature (Belletti & Rizzi 2013).

5 Conclusion

In this paper I presented an adaptation of Earley’s
Top-Down parsing algorithm to be used with a
simple implementation of a Minimalist Grammar
(PMGQG). The advantages of this approach are both
in terms of cognitive plausibility and parsing/per-
formance transparency. From the cognitive plau-
sibility perspective, | showed how a re-orientation
of the minimalist structure building operations
Merge and Move is sufficient to include such op-
erations directly within a parsing procedure. This
is a step toward the “Parser Is the Grammar”
(PIG) default hypothesis (Phillips 2006) and a
welcome simplification of the linguistic compe-
tence description: such a grammar description (i.e.
our linguistic competence) is shared both in pro-
duction (generation) and in comprehension (pars-
ing); this seems trivial from a cognitive perspec-
tive (we have a unique Broca’s area activated in
syntactic processing both in parsing and in gener-
ation), but it is far from trivial in computational

terms. On the other hand, from the parsing/perfor-
mance transparency perspective, I presented a
complexity metric (FREC), based on cued fea-
tures stored in memory which better characterize
performance in object clefts constructions com-
pared to alternative models: for instance the
Depencency Locality Theory (DLT) based on ac-
cessibility hierarchy (Gibson 2000) is unable to
predict high complexity in N-N condition compa-
rable to N-D or D-D condition, since N should be
uniformly more accessible than D, contrary to the
facts. The proposed model, obviously should be
extended in many respects to capture other critical
phenomena (see Lewis & Vasishth 2005) but the
first results on specific well-studied constructions,
like object clefts, seem very promising.

Reference

Belletti, A., & Rizzi, L. 2013. Intervention in grammar
and processing. From grammar to meaning: The
spontaneous logicality of language, 293-311.

Chesi, C. 2012. Competence and Computation: toward
a processing friendly minimalist Grammar. Padova:
Unipress.

Chesi, C. 2016. Il processamento in tempo reale delle
frasi complesse. EM Ponti, M. Budassi (eds.), 21-
38.

Chomsky, N. 1995. The Minimalist Program (Current
Studies in Linguistics 28). Cambridge (MA): MIT
Press.

Chomsky, N. 2008. On phases. In Robert Freidin, Car-
los P. Otero, and Maria Luisa Zubizarreta (eds.).
Foundational issues in linguistic theory, 133-166.

Chomsky, N. 2013. Problems of projection. Lingua,
130, 33-49.

Collins, C., & Stabler, E. 2016. A formalization of min-
imalist syntax. Syntax, 19(1), 43-78.

Earley, J. 1970. An efficient context-free parsing algo-
rithm. Communications of the Association for Com-
puting Machinery, 13(2), February.

Fong, S. 2005. Computation with probes and goals. In
Di Sciullo, A. M. and R. Delmonte (eds.). UG and
external systems: Language, brain and computa-
tion. 75, 311.

Fong, S. 2011. Minimalist parsing: Simplicity and fea-
ture unification. In Proceedings of Workshop on
Language and Recursion. Mons, Belgium: Univer-
sity of Mons. March.

Gibson, E. 2000. The dependency locality theory: A
distance-based theory of linguistic complexity. Im-
age, language, brain, 95-126.

Gillund, G., & Shiffrin, R. M. 1984. A retrieval model
for both recognition and recall. Psychological re-
view, 91(1), 1.

Gordon, P. C., Hendrick, R., & Johnson, M. 2001.
Memory interference during language processing.
Journal of Experimental Psychology: Learning,
Memory, and Cognition, 27(6), 1411.

Gordon, P., Hendrick, R., Johnson, M. 2004. “Effects
of noun phrase type on sentence complexity”,
Journal of Memory and Language 51, 97-114.

Hale, J. T. 2001. A probabilistic Earley parser as a psy-
cholinguistic model. In Proceedings of the second
meeting of the North American Chapter of the Asso-
ciation for Computational Linguistics on Language
technologies, 1-8.

Hale, J. T. 2011. What a rational parser would do. Cog-
nitive Science, 35(3), 399-443.

Harkema, H. 2001. Parsing minimalist languages. Uni-
versity of California, Los Angeles.

Kayne, R. S. 1994. The antisymmetry of syntax. Cam-
bridge (MA), MIT Press.

Lewis, R. L., & Vasishth, S. 2005. An activation-based
model of sentence processing as skilled memory re-
trieval. Cognitive science, 29(3), 375-419.

Longobardi, G. 1994. Reference and proper names: a
theory of N-movement in syntax and logical form.
Linguistic Inquiry, 25, 609-65.

Michaelis, J. 1998. Derivational Minimalism is Mildly
Context-Sensitive.” In M. Moortgat (ed.), Logical
Aspects of Computational Linguistics, (LACL ’98).
Lecture Notes in Artificial Intelligence. Springer
Verlag.

Niyogi, S., & Berwick, R. C. 2005. A minimalist im-
plementation of Hale-Keyser incorporation theory.
In A. M. Di Sciullo (ed.) UG and external systems
language, brain and computation, linguistik ak-
tuell/linguistics today, 75, 269-288.

Phillips, C. 1996. Order and structure. Doctoral disser-
tation, Massachusetts Institute of Technology.

Rizzi, L. 2007. On some properties of criterial freezing.
Studies in linguistics, 1, 145-158.

Stabler, E. 1997. Derivational minimalism. In Interna-
tional Conference on Logical Aspects of Computa-
tional Linguistics (pp. 68-95). Springer, Berlin, Hei-
delberg.

Van Dyke, J. A., & McElree, B. 2006. Retrieval inter-
ference in sentence comprehension. Journal of
Memory and Language, 55(2), 157-166.

Warren, T., & Gibson, E. 2005. Effects of NP type in
reading cleft sentences in English. Language and
Cognitive Processes, 20(6), 751-767.

