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Abstract. Videogames have become an important field in both the en-
tertainment industry and the computational intelligence research com-
munity. Procedural Content Generation (PCG) allows to generate au-
tomatically interesting contents for a videogame with a low supervision
from the game designers, or even without their supervision. This paper
presents a search-based procedural content generator algorithm, that can
create interesting maps in a 3D game using an evolutionary approach.
Specifically, the algorithm is used in a tactical action game, based on the
popular sport Paintball. The maps are generated with an objective in
mind: they should be balanced, so any level should not provide an ini-
tial advantage of a team over the opponent. The algorithm proposed has
been experimentally tested by generating different maps. These maps are
represented by graphs of zones and populated with obstacles according
to their densities. An evolutionary algorithm evolves these zones looking
for an adequate distribution of obstacles in order to generate balanced
maps. The experimental analysis shows how the algorithm is able to
automatically create suitable maps for the game.

1 Introduction

From its beginning in the early 1970s to the present day, the video game industry
has become the main component of the entertainment industry, as well as a
powerful international industry capable of penetrating such varied sectors as the
economic, social, technological and cultural. According to the Entertainment
Software Association [5] there are more than 150 million of gamers just in the
United States, who spent 15.4 billion dollars in videogames. These numbers
highlight the tremendous impact that videogames have on the economy and
society [10], establishing synergies with other fields such as education [1,13],
computational intelligence [11] and aerospace industry [21,22].

Making videogames is a time-consuming process, which turns into a high cost,
that requires a considerable team of highly proficient professionals from different
areas of expertise. For this reason, researchers from the computational and arti-
ficial intelligence in games community, have been researching for improvements
to reduce both, the resources and time required to design videogames.



Related to this problem, Procedural Content Generation (PCG), which can
be defined as: ”generating game content through algorithms instead of manually
creating it”, has been an active field within the aforementioned community. The
term “content” refers to every component that makes up a video game with an
exception: the behaviour of the non-playable characters (NPCs), which makes
itself a whole field of research.

The advantages of creating videogames content using algorithms can be sum-
marized as follows [26]:

– It reduces the memory consumption

– It helps the game designer during the process of creating content, thus re-
ducing costs

– It allows for creating novel game-play mechanics

– It facilitates the development of games that adapt themselves to the player

– It may be used as a source of inspiration to the designers

PCG has been used in many commercial games for almost three decades. For
instance, Elite [9] is a space trading and combat simulator developed in 1984
with content such as planets and space stations, that is generated procedurally.
Traditionally, algorithms have been quite simple as the only goal were to generate
playable content, that is, content that fulfil every game-play requirement, so they
were practically optimized random number generators. Recent research on PCG
techniques aim to create content that is not only correct, but have additional
features that may increase the player satisfaction.

One of the most important contents to be generated by using PCG techniques
is the map, or level, of a videogame. Almost in every type of videogame, the
map can strongly influence the gameplay, and thus, having automatic algorithms
and tools to create enjoyable maps is extremely helpful. The research on map
generation algorithms have been popular for some years, especially for tactical
games with two dimensional scenarios as Startcraft [25,27]. However, there is
little literature focused on the generation of 3D environments for tactical games,
in which the different 3D objects contained in the map and the terrain altitudes
are considered to create interesting maps.

In this work, we study the application of PCG techniques into a 3D Action
RTS game, named Paintbol, in which two teams of characters compete by playing
a game based on the popular Paintball sport. Based on Genetic Algorithms [4],
our approach tries to create interesting maps for this videogame by modelling
the 3D map as a graph of interconnected zones, and then analysing the altitude
and level of obstacles (i.e. trees) for each of the zones, which will give some
ratings about the zone that will support the optimization process.

The paper is structured as follows: Section 2 analyses the state of the art
focusing on level generation, Section 3 provides a description of the game whose
maps are procedurally generated by the algorithm described in Section 4. Sec-
tion 5 describes the experimental setup used to test the feasibility and perfor-
mance of the generator. Finally, conclusions are drawn in Section 6.



2 Background

Procedural Content Generation (PCG), as part of the field of artificial and com-
putational intelligence in games [12], has become an active research topic as
shown by the large number of papers on this topic [15], as well as the creation
and growth of conferences and journals that include PCG among their topics.

It is possible to establish several distinctions related to procedures and meth-
ods to use when automatically generating content for videogames. According to
the taxonomy proposed by Togelius et al. [26], this generation process may be
performed at the same time the user is playing (online generation), or prior to
the publication of the game during its design and development (offline gener-
ation). Moreover, PCG methods should create the content using random seeds
in a stochastic manner, using parameters in a deterministic way, as well as a
combination of both. At the same time, the content may be necessary (that is,
essential for the gameplay) or optional. Depending on the objectives to accom-
plish, the generation could be done in a constructive way thus ensuring that the
content is always valid or using a generate-and-test scheme, in which the con-
tent is verified after its creation and discarded if its quality does not meet the
standards. Therefore, this paper presents a stochastic PCG method to generate
necessary content using a generate-and-test scheme.

As studied in [28], evolutionary algorithms are broadly used when develop-
ing PCG algorithms, specially those that follow a generate-and-test scheme as
our method do. However, it is possible to use other methods such as cellular
automata [17], formal grammars [18] and software agents [3].

The kind of content suitable to be generated by PCG algorithms is varied,
being maps and levels the predominant type. For instance, Frade et al. pro-
posed the use of genetic programming to evolve terrains by using both human
evaluation as well as quality measures such as the accessibility [7], or the edge
length [8] of the terrains. Ferreira and Toledo [6] presented a method able to gen-
erate levels for the game Angry Birds. A different approach to tackle the same
problem was presented in [23], where Shaker et al. defined a system to tune the
parameters that control a level generator for a platform game for adapting it to
the way a user plays the game. Another approach is presented by Lara et al.
in [19,20], where the authors designed an algorithm to generate balanced and
dynamic maps for the real-time strategy game Planet Wars using evolutionary
computation; in this case the quality of the maps were evaluated by playing and
analysing several games between artificial players.

There are additional types of contents that have been created using PCG
techniques: Collins [2] explored some approaches to procedural music compo-
sition for videogames; Hastings et al. [14], developed an algorithm capable of
generate the weapons for a space shooter; and Stockdale [24], who presented a
mystery game capable of generating its own narrative.
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Fig. 1. (a) Screenshot of the game Paintbol, showing three agents from the same team
following each other and (b) game functional diagram.

3 Paintbol: game description

PaintBol is the name of the videogame used in this work as the basis for our PCG
algorithm. It is a tactical action game based on the sport Paintball, where two
teams of five characters compete by hitting opponents with breakable paintballs
in a 3D environment (see Figure 1(a)).

The game’s internal basics can be seen in Figure 1(b). The MatchHandler

class provides the instances of the Actor class, which represent the characters
of the game, with the information obtained by their senses or sensors (eyes and
ears). It also carries out the actions of the characters on the game environment:
running, walking, crouching, communicating with other players, shooting, melee-
attacking and throwing grenades). Every action in the game produces a certain
amount of noise that can be heard by the players if they are close enough to the
source of noise when it occurs.

In this game each character has 5 lives. When a character is hit by an attack,
he loses one life and disappears for 6 seconds, then reappears in a random place.
When the player loses all lives, it goes to the “dead” state and does not reappear.

The scoring system of Paintbol, which decides what team has won at the end
of a match, considers the following parameters:

– Lives removed, representing the number of times that a character has reached
an enemy with any possible attack.

– Melee, which represents the number of times that a character has reached
enemies with a melee attack.

– Shooting, which represents the number of times that a character has reached
enemies by a gunshot.

– Grenades, which represents the number of times that a character has reached
enemies with a grenade attack.

– Stealth, which represents the number of times that a character has reached
enemies before the enemy catches the attacker in its line of sight.



– Headshots, which represents the number of times that a character has reached
enemies by a gunshot to the head.

– Multiple attacks, which represent the number of times that a character man-
aged to hit more than one enemy using one single attack.

– Friendly fire, which represents the number of times that a character has
reached its own allies with an attack.

– Remaining lives, which represents the number of lives of a character at the
end of the match.

– Remaining grenades, which represents the number of grenades that a char-
acter holds at the end of the match.

Then, these parameters are used to compute some score components, such as:
Score for lives removed, bonus for remaining lives, bonus for gunnery, bonus for
remaining grenades and bonus for variety. Finally, the score of each character
is computed as the sum of these score components, and the total score of each
team is computed as the sum of scores of each character in the team.

The 3D environment in which the game takes place, together with the rele-
vance of the topography of the maps and the distribution of the terrain objects
with respect to the mechanics of the game, make the terrain analysis (or terrain
reasoning) an useful and interesting tool for characters in the game.

The behaviour of the teams characters is made up of heterogeneous and
independent agents. They are heterogeneous in the sense that the algorithms that
control each of the agents can be completely different, and they are independent
because all the agents have private information about the state of the game in
function of different parameters like its position and the direction where the
character is watching. For example, at the beginning of a match, agents do not
know where their allies or their enemies are, or what they are doing unless they
are within their arc of vision.

All these features allow the creation of team strategies based on hierarchies,
which gives rise to interesting situations when, for example, part of a team is
left out of the game and the remaining agents could know how to react to that
situation. Agents controlling the characters can communicate partial information
about the state of the game, such as sightings of adversaries or allies, locations of
strategically advantageous zones in the map. This aspect facilitates and promotes
the appearance of emerging behaviours at the level of the teams.

4 A procedural level generator

To facilitate the map generation for the AI platform defined in Section 3 we have
designed a search-based procedural level generator capable of evolving interesting
levels in a way that any team has no advantage over the others, that is, balanced
levels. This criterion is interesting for the platform, because the behaviours that
could be designed for the teams of NPC players should take the environment into
account, to develop their full potential cooperation and collaboration strategies.
The core of the level generator is a genetic algorithm that evolves a population
of maps through an iterative process. The algorithm has been executed several
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Fig. 2. (a) A map’s graph representation. There is an edge between two nodes (zones)
if the distance between them is lower than 50 units. (b) Computation of the flanking
coefficient of a zone (white node). In this case, after removing the zone, there are 2
connected components, hence ki = 1 − 2
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times varying some parameters, in order to study its performance and behaviour;
the reader can find the results in Section 5.

Regarding map representation, it has been decided to encode a map as a
graph that represents a distribution of the zones over the map: nodes are related
to the coordinates where the zone is on the map. There is an edge between two
nodes if the distance between them is lower than a certain threshold (see Figure
2(a)), which is 50 game units1 in the engine used to develop the game (i.e. Unity).
Every node (zone) has information about its coordinates as well as the density
of obstacles on it, while the edges has the density of obstacles between two
nodes (zones). In terms of the individuals of the algorithm, they use a vector
representation with three consecutive groups of values: the coordinates of the
zones, their density of obstacles and the edges’ density of obstacles (see Figure 3).
Note that there is a density value for every possible edge between two zones
but, if those are not close enough, this value is ignored. Due to the gameplay
requirements of Paintbol, maps must have at most one connected component
and the zones must be within the boundaries of the 3D mesh corresponding to
the terrain (note that this mesh is an input for the generator).

As stated before, generated maps should be as balanced as possible, in such
a way that there is no clear advantage for a team such as an isolated elevated
zone with many obstacles. The fitness function is defined as follows:

f = Υ (µd) · α+ ς(µk) · β + χ(σd) · Γ + χ(σk) · Γ (1)

Υ (x) =
e−

(x−0.5)2

2×0.17

√
2× 0.17× π

ς(x) = sin

(
xπ − π/2

2

)
+ 0.5

χ(x) = cos
(xπ

2

)
+ 0.5

1 A game unit in Unity is equivalent to 1 meter



where α, β and Γ are coefficients for defensiveness, flanking and dispersion
respectively. The main components of the fitness are the mean (µd,µk) and stan-
dard deviation (σd,σk) of both defensiveness and flanking values of the zones.

di =
Densityi + Densitypaths + Heighti

3
(2)

Densityi =
δi

δMAX
(3)

Densitypaths =
δMAX −

∑γi
j=0

(
δj
γi

)
δMAX

(4)

Heighti =

∑γi
j=0

(
hi−hj

γi

)
+∆height

2∆height
(5)

The defensiveness of a zone (eq. (2)) is made up of multiple factors:

– The density of the obstacles in that zone (see Eq. (3), with δi and δMAX

being the density of node i and the highest density, respectively). Therefore,
a zone densely covered with obstacles is considered a high defensive zone.

– The density of obstacles between the zone and the nearest zones (see Eq.
(4), where γi represents the degree of node i, and δj represents the density of
the edge j). If a zone has paths with many obstacles its defensiveness should
be high.

– A measure related to the height difference between the corresponding zone
and the nearest ones (see eq. (5), with ∆height being the maximum difference
between the height of two adjacent zones, and hi,hj being the heights of the
zone i and its adjacent zones j, respectively). Height information comes from
the 3D mesh passed as input to the algorithm. The higher the zone is with
respect to its neighbours; the more defensiveness score it will have.

ki =

{
1− φi

γi
if γi 6= 0

0 otherwise
(6)

The flanking coefficient of a zone (node) is computed by counting the number
of connected components in the sub-graph made of its adjacent zones (φi in Eq.
(6)) after removing the zone itself (see Fig. 2(b)). If the zone has no connected
zone, its flanking coefficient is zero. Hence, if a zone has its neighbours connected
between them, it is possible to flank it having defensive coverage while moving
between zones, making the game more interesting and dynamic.

Regarding the genetic operators, the generator performs variation with a
probability of 0.1, and recombination with a probability of 0.75, by using muta-
tion and crossover operators as follows. The mutation operator applies random
permutations to the values of an individual, adding or multiplying a random
value to it, drawn from a uniform distribution. The decision of adding or mul-
tiplying is made by chance with the same probability. In the event of mutating



an individual in a way that it becomes invalid for the game requirements, the
algorithm assigns a fitness of zero to it, to assure that the invalid solution will
not be propagated to the next generation due to the elitist selection method. Af-
ter performing a mutation, the map graph is recomputed to include the possible
new edges between two zones if they become close enough due to the mutation.

There are two crossover operators, that are not applied at the same time,
but with a probability of 0.5 each. The former is a one-point crossover [16], that
selects a random cut point and creates two new individuals with the left slice
of one partner and the right slice of the other. The latter is aimed to produce
one child, which genes’ values are between corresponding genes of parents, and
another child, which genes’ values are outside of the range formed by correspond-
ing genes of parents. It randomly chooses a factor in the [0, 1] range and then,
for each pair of genes, it computes difference value, producing two children: one
between and one outside of the range formed by parents genes’ values.

5 Experimental Results

To assess the feasibility of procedurally creating balanced levels for the game,
we ran the following experiment. The algorithm has been implemented using
AForge.NET 2 , an open source library focused on computer vision and artificial
intelligence written in C#. The decision was made taking in account the game
was developed using the Unity3D engine, which supports the use of C# as a
scripting language hence making possible integrate it within the game itself.

In order to evaluate the effect of the selection method on the generation
process, the next experimental setup was designed: three independent sets of 10
runs of the algorithm, using a different selection method for each one, namely
elitism, roulette and rank selection was used. The elite selection method selects
a specified amount of best solutions to the next generation. The roulette method
selects solutions to the new generation according to their fitness values, so the
more fitness value chromosome has, the more chances it has to become member
of new generation (each solution can be selected multiple times). As occurs with
the roulette selection, the rank selection assigns a probability of being chosen
to each solution according to its fitness value; however, the latter orders the
solutions by their fitness values and then assigns a probability of 1 to the worst
individual, 2 to the next one and so on. The reader can see sample maps that
have been created using these selection methods in Figure 4.

2 http://aforgenet.com

Fig. 3. Encoding of an individual as a vector of 2N + N + N(N − 1) values, where N
is the number of zones and K the number of edges.
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Fig. 4. Procedurally generated maps generated using varied selection methods: (a)
Roulette, (b) Ranked and (c) Elitist. Light green dots are the obstacles that make the
zones, which are distributed according to the generated graph.

Table 1. Algorithm’s parameters

Parameter Value
Number of generations 100
Population size 20
Number of zones 20
Distance between zones (m.) [5, 30]
Density of obstacles [50, 100]

The rest of the parameters were the same for every run as detailed in Table 1.
Note there is a fixed number of zones on each map, each one having a density of
obstacles that ranges between 50 and 100. Moreover, the distance between those
zones is limited to the range [5, 30] to avoid isolated zones.

After running the executions, we have analysed the evolution of the fitness
values during the evolutionary process, obtaining the best fitness value for each
generation and computing the average over the 10 executions. As can be seen
on Figure 5, the roulette-selection method obtains the worst performance, while
the others share a barely similar performance according to the standard error of
the mean. The deficient performance of the roulette selection might be due to
big differences in the fitness values, so those individuals with the lowest fitness
are rarely selected. On the contrary, rank and elitist selection exhibit a reliable
performance, reaching a fitness of 0.70 (note that the maximum fitness is 1.00).
They have a similar beginning and ending with minimal differences in the middle
phase of the evolutionary process: elite selection converges faster than rank se-
lection which is, in fact, the expected outcome when using these kind of selection
methods (rank selection is more balanced with respect of the exploration and
exploitation factors so its convergence is typically slower). All three selection
method can generate playable levels with a distribution of zones and obstacle
densities that meet the requirements of defensiveness and flanking.
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Fig. 5. Evolution of the mean best fitness over the 10 executions using varied selection
methods. Shaded area represents the standard error of the mean.

6 Conclusion

In this paper we have introduced an evolutionary algorithm that generates levels
for a 3D action game, Paintbol, inspired on the Paintball sport. This game has
been designed as a research platform for developing intelligent algorithms, which
can be applied over teams of agents. To improve its potential, the algorithm
evolves graphs that represent zones with obstacles on the map. The distribution
of the zones as well as their density of obstacles have been optimized to make
balanced maps. As demonstrated by the experimental results, the algorithm is
capable of automatically create this kind of maps for Paintbol, even using varied
selection mechanisms in the algorithm.

According to the obtained results, rank and elitist selection methods perform
better than roulette selection (fitness values around 0.7 and 0.57 for the former
and the latter, respectively). This is probably due to a wide difference between
the fitness values that the population takes during the generational process.

Although the generated maps are fully playable, this paper represents an ini-
tial step towards a fully customizable procedural level generator with additional
criterion that maps should fulfil making the game more dynamic or even creating
aesthetic landscapes. Moreover, it should be possible to test how balanced a map



is by running several games between computer-controlled teams and analysing
several game metrics. These are our primary goals to reach in our future work.
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