
WIREFRAME: Two-phase, Cost-based Optimization
for Conjunctive Regular Path Queries

Parke Godfrey† Nikolay Yakovets‡

Zahid Abul-Basher§ Mark Chignell§

†York University, Toronto, Canada
godfrey@yorku.ca

‡Eindhoven University of Technology, Eindhoven, The Netherlands
n.yakovets@tue.nl

§University of Toronto, Toronto, Canada
{zahid,chignell}@mie.utoronto.ca

1 Introduction

Graph-like data has come to the forefront with the advent of social networks
and the Semantic Web. As methods and tools have been deployed for handling
graph data, many others have found the paradigm to benefit their applications.
Large biological corpora fit the model well.

The W3C standards offer a graph data model via RDF, and a corresponding
declarative query language for it via SPARQL. The queries are suited to sub-
graph matching into a large data graph. Each subgraph answer itself is small,
but there can be many answers. The query language encompasses the earlier de-
fined concept of regular path queries (RPQs) and conjunctive regular path queries
(CRPQs). An RPQ queries for pairs of nodes from the data graph which have
a requisite path between them which matches the RPQ’s specification. CRPQ
queries for tuples of nodes (subgraph matches) such that pairs within match by
specified RPQs. This, of course, also entails that the pairs join up (conjoin) in the
way the query asks. One can then call a CRPQ a “query graph”: its “nodes” are
the query’s binding variables; and the “edges” between nodes are the constituent
RPQs. Let these query edges be distinctly labeled.

While graph databases and their applications are coming into wide use, we
are only at the very beginning of understanding how to scale these systems well.
Recent work has brought a cost-based optimization approach to RPQs [6]. We set
out a framework herein which we call Wireframe for a two-phase, cost-based
optimization for CRPQs. In Wireframe, CRPQ planning—and, likewise, evalu-
ation—is separated into two phases. In the first phase, the plan is for evaluating
the “answer graph”. In the second phase, a plan is posited for enumerating the
subgraph-match answer tuples from this answer graph.

In this brief paper, we provide the motivation for Wireframe, present its
general framework, and lay out our agenda for, and the challenges in, realizing
the approach fully.



(a) Query graph symmetry. (b) Many-many join multiplicity.

Fig. 1: Two query graphs: symmetry & join multiplicity.

2 WIREFRAME’s Approach

Within SPARQL, a CRPQ query is with a fixed number of named node vari-
ables,1 and a number of “edge” conditions defined via RPQs (property paths in
SPARQL) between node variables. Let us define “closed SPARQL”, cSPARQL,
to encompass this CRPQ fragment with the proviso that each query edge (RPQ)
is distinctly labeled.2 A query in cSPARQL then can be considered as a labeled,
directed multi-graph, the query graph, the same as the graph database itself (the
data graph), albeit, significantly smaller, over which it is to be evaluated. Let the
evaluation of a cSPARQL query also be a labeled, directed multi-graph, the
answer graph. As with RDF, let the answer graph be represented as an answer
set of triples: the “edges” are node pairs—with the nodes drawn from the data
graph—labeled by the query graph’s edge labels. Each answer edge means that
the pair of nodes is an answer to the corresponding RPQ. And each answer edge
must participate in some subgraph match that answers the CRPQ. This treats
graph query evaluation algebraically : the result of the evaluation is a graph itself.

How to evaluate efficiently the answer-graph triples of a cSPARQL query
with respect to a data graph is a worthwhile endeavor in its own right. This can
also be used to evaluate the query with respect to SPARQL, to find the sub-
graph match (SGM) tuples. The set of answer triples suffices to enumerate the
SGM tuples. This approach to CRPQ evaluation for SPARQL then is two-phase.
1. optimization. How to evaluate the answer graph most efficiently.
2. enumeration. How to enumerate the SGM tuples most efficiently.

The two phases have quite different optimization criteria; separating the steps
allows for us to plan them “independently”. Division between the answer graph
and the subgraph-match answers also allows for factorization, which escapes
from the combinatoric complexity that arises from subgraph match symmetries
during evaluation against the data graph. At the core of planning in each phase
is the choice of a spanning tree in the query graph. For the answer-graph phase,
this directs the graph walk during evaluation. For the subgraph-match phase,
this directs the enumeration of the SGM answer tuples for the CRPQ.

1 Some may be free which are returned as part of an answer’s bindings, and the others
existential which are not. Query “edge” conditions may be between any of the node
variables. Let us consider here only queries with free node variables.

2 This has been introduced in SPARQL with the use of CONSTRUCT operator [3].



At one end of the spectrum, a CRPQ is simply sub-graph match template.
Let each query edge be a data-graph label (the simplest RPQ). This type of
SPARQL query has now been well studied [4]. The number of sub-graph matches
can be extremely large, due to two causes: symmetry in the query graph; and
multiplicity from “many-many joins”. For example, if 〈1, 2, 3〉 (on 〈A,B,C〉) is
an answer tuple to query graph in Fig. 1a, then so is 〈3, 2, 1〉. If sub-tuple 〈4, 5〉
on 〈D,E〉 appears in m sub-tuple answers on 〈A,B,C,D,E〉 and appears in
n sub-tuple answers on 〈D,E, F,G,H〉 to query graph in Fig. 1a, then 〈4, 5〉
appears in m× n answer tuples (on 〈A,B,C,D,E, F,G,H〉).

Our two-phase approach will often result in better plans for pure sub-graph
match queries. It improves extremely, however, for CRPQs where the query edges
are complex RPQs. The graph walks for evaluating the RPQs are not effectively
repeated due to multiplicities resulting from SGM matching. Given a CRPQ, let
k be the number of node variables, n be the number of triples in its answer
graph, and s be the number of its SGM tuples. Most always 3n � ks. This
is akin to factorization in relational queries. In certain application scenarios, it
has been demonstrated that solving projections of the query can offer immense
performance improvement, as the “final” answers are many-many joins of the
projected answer tuples [2]. This is always the scenario for CRPQs. The ultimate
factorization of a CRPQ is down to node pairs—the answers to the individual
RPQs—which are our very answer-graph triples.

A way to evaluate the answer graph is to use a rooted spanning tree of the
query graph. Evaluate the RPQs emanating from the root node. Only triples
for each RPQ that join at the root may be expanded upon. Call query edges
that are not in the spanning tree filter edges. On reaching a node with filter
edges, we can only expand a node value (to find triples with respect to the
RPQs in the spanning tree from this node) which matches via triples across the
filters on the corresponding nodes. (This is sideways information passing.) This
operation is quite similar to what is called a semi-join; optimizations for semi-
join [5] can be employed. When a node value fails the filter test ultimately, those
answer triples are removed, recursively up to the root. The evaluation proceeds
recursively, expanding nodes down the spanning tree. Wireframe uses a cost-
based planner to choose the most cost-effective spanning tree of the query graph
for evaluating the answer graph.

A way to enumerate the sub-graph match tuples given the answer graph is to
use a rooted spanning tree of the query graph. Join answer triples by the root node
to create sub-tuples. A sub-tuple covers partially the spanning tree from the root.
Again, call those query edges not participating in the spanning tree filter edges.
Whenever a sub-tuple covers a filter edge, check that the pair-projection of the
tuple is an answer triple labeled by that edge. Proceed recursively. Wireframe
uses a cost-based planner to choose the most cost-effective spanning tree of the
query graph for enumerating the SGM tuples from the answer graph.

Note that the spanning tree chosen for answer-graph evaluation is not likely
to be the same spanning tree for SGM-tuple enumeration. The filter edges for the
two are used in quite different ways. For answer-graph evaluation, an existence



check for a node value must be made over the answer triples for the edge (RPQ).
For SGM-tuple enumeration, an existence check for a node-pair value is made.

In [6], Waveguide, a cost-based optimizer that enumerates through a plan
space for RPQs, was presented. Wireframe employs Waveguide for planning
the RPQs. As a CRPQ also encompasses joins between the RPQs, the results of
one constrain the results of others. Choice of a spanning tree in the query graph
specifies a topological sort of the RPQs. The cardinality reductions conferred
by an earlier RPQ on latter ones can be passed to Waveguide for planning for
those. (Choice of the spanning tree dictates that the remaining edges are filters.)
Cost considerations can be additionally made on sharing parts of RPQ plans, as
RPQs may overlap in their regular expressions, as is explored in [1]. The space
of spanning trees can be enumerated to choose a best one.

A cost-based enumeration of spanning trees can be also done to choose the
best plan for enumerating the SGM tuples from the answer graph. The cost
criteria here are that the multiplicity from the many-many join at each branch
in the tree is minimized, while also maximizing the filtering by the filter edges.
Essentially, this is the best plan for “defactorizing” the SGM tuples.

3 Next Steps & Challenges

Wireframe offers a viable cost-based optimization methodology for CRPQs.
Our next steps in the work are to implement cost metrics, to design a dynamic-
programming enumeration for constructing the best spanning trees for both
phases, and to devise efficient runtime execution. The challenges are to couple
this more tightly with the Waveguide optimizer for the RPQ planning [6], while
also taking advantage of commonalities across the RPQs [1].

References

1. Z. Abul-Basher, N. Yakovets, P. Godfrey, S. Ghajar-Khosravi, and M. H. Chignell.
TASWEET: Optimizing Disjunctive Path Queries in Graph Databases. In EDBT,
pp. 470–473, March 2017.

2. N. Bakibayev, D. Olteanu, and J. Závodnỳ. FDB: A Query Engine for Factorised
Relational Databases. In VLDB, 5(11):1232–1243, 2012.

3. S. Harris, A. Seaborne, and E. Prudhommeaux. SPARQL 1.1 Query Language.
W3C Recommendation, 21(10), 2013.

4. J. Pérez, M. Arenas, and C. Gutierrez. Semantics and Complexity of SPARQL. In
ISWC, pp. 30–43. Springer, November 2006.

5. K. Stocker, D. Kossmann, R. Braumandi, and A. Kemper. Integrating Semi-join-
reducers into State-of-the-art Query Processors. In ICDE, pp. 575–584. IEEE, April
2001.

6. N. Yakovets, P. Godfrey, and J. Gryz. Query Planning for Evaluating SPARQL
Property Paths. In SIGMOD, pp. 1–15, ACM, June 2016.


	Wireframe: Two-phase, Cost-based Optimization for Conjunctive Regular Path Queries

