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Abstract. Our submission to the CLEF NewsREEL 2107 News Recommenda-

tion Evaluation Lab attempts to apply the concept of storytelling to the partici-

pating news domains. The goal is to guide the user through a series of related 

articles where each transition from one article to the next provides an oppor-

tunity to steer the storyline in a certain direction using recommendations. The 

approach employs collaborative filtering to discover an optimal sequence of ar-

ticles – a killer sequence. The choices that were made by users reading two or 

more successive articles were stored in the graph database Neo4J. The recom-

mendations were generated by querying this database for the most popular his-

toric sequences containing the concerning article. For articles that were not yet 

part of any sequence we generated the recommendations from a dynamic set of 

the most recently changed publications for that domain. The performance of our 

combined algorithm was approximately 79% better for Click Through Rate 

(CTR) than the competition baseline. We investigated whether this top perfor-

mance was due to unwanted behavior of the recommender, such as only an-

swering on certain domains or times, but could not conclude that this was the 

case.  

Keywords: Recommender Systems, News Recommender Engine, Graph Data-

base, Sequence, Evaluation, Collaborative filtering, Real-time recommenda-

tions. 

1 Introduction 

The holy grail for (online) publishers is reader engagement. The more engaging the 

user's experience, the more likely that they will come back, increasing their loyalty to 

the domain during each visit until they may even become brand ambassadors. Once 

the consumer has crossed the barrier to enter the domain, the goal is to keep him there 

as long as possible. One of the important strategies to achieve this is storytelling. On 

the content side this requires rich and interactive media to retain the reader's attention. 

This can be reinforced by artificial intelligence and automation tools providing rele-

vant personalized content to individual readers.  
Many types of algorithms could be considered for this job. However, traditional 

news recommendation algorithms rarely consider the time sequence characteristic of 

user browsing behaviors. Also, using strategies from other domains such as movies or 

music offers no solution as in these cases the order in which items are consumed is 
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hardly relevant, while this is crucial for news articles which are much less independ-

ent from each other. Text mining may be employed to classify the articles into topics 

or to calculate similarities but this approach is also symmetric under the order in 

which articles are read.  

To tackle this subtle issue, we have chosen to go with a collaborative filtering ap-

proach where the wisdom of the crowds will provide the information in which order 

the articles are best presented. The collective behavior of the users will uncover dom-

inant sequences of articles that together form a powerful story. This sequence can 

then be suggested to new users via the recommendations causing them to stay more 

engaged and consume more content from the domain.  

There is some related work which uses the timestamps of user-item interaction 

events [11, 13]. We have not based our work specifically on these papers but followed 

a pragmatic approach based on our experience in the online news industry. 

2 Approach  

The Living Lab Evaluation [2] was performed using the open recommendation plat-

form (ORP) provided by plista. By redirecting some of the live traffic, the ORP al-

lows participants to test algorithms in a real environment. There are four types of 

events that are sent from ORP: Recommendation requests, Impressions, Item Updates, 

and Error Messages (such as timeout).  

 

 

Fig. 1. Data processing infrastructure 

 

Our infrastructure choices were dictated by two main requirements: 1) the system 

should answer recommendation requests as fast as possible, and 2) the system should 

be extensible and support many different algorithms running in parallel.  In order to 

satisfy both these requirements it was necessary to decouple the processing of rec-

ommendation requests from the processing of impressions, clicks and item updates.  

We settled on Apache Kafka [1] to implement this decoupling.  As can be seen in 



 

Errore. L'origine riferimento non è stata trovata. all requests are first 

processed by a Node.js [9] server.  All requests are stored in MongoDB [3] for track-

ing and debugging. If the request is a recommendation request, the recommendations 

are gathered and returned.  If the request is an impression, a click or an item update, 

the request is published to a Kafka topic. The recommendation algorithms can sub-

scribe to this topic and process the necessary information as it becomes available.  

This decoupling ensures that the time to answer a recommendation request is not af-

fected by the number or nature of the recommendation algorithms.  We found that a 

single Node.js process was enough to adequately handle all the recommendation re-

quests (note that Node.js processes are always single threaded). 

The setup we used for this contest relied only on two recommendation algorithms: 

most recent (the baseline) and killer sequence.  Recommendations were taken from 

killer sequence if available and otherwise from most recent.  In the future, once more 

recommendation algorithms have been implemented, we would like to experiment 

with a meta-algorithm for selecting the algorithm from which recommendations 

should be used for a particular request. Therefore, our infrastructure already takes 

multiple algorithms into account. 

2.1 Killer sequence algorithm 

For each new item update event an article node is generated in the Neo4J graph data-

base [10]. A flag is also set to indicate whether the article is available for recommen-

dations. This flag can be altered by later item updates with the same id.  

Based on the impression events we keep track of user sessions. When an impres-

sion event is received, a new session is created containing the user ID and the article 

ID in the REDIS [4] database with an expiration time of 60 seconds. When a second 

impression with the same id is handled within these 60 seconds, the session is updated 

with the new article ID and a relation is set in Neo4J between the first and the second 

article nodes signifying that these two articles were read in this specific order by the 

user. The sequence can grow to as many articles as the user consumes as long as there 

is less than 60 seconds between the events so the session does not expire.   

 



 

Fig. 2. A schematic overview of the event handling for the killer sequence algorithm. 

The replies to the recommendation requests are generated by querying the Neo4J 

graph database for the strongest sequence containing the concerning article. The top X 

results are returned and the ID's are sent to the ORP. We employ a breadth-first search 

of only one layer deep because it could be undesirable to skip an article in the se-

quence that forms a news story. To make the recommendation more personalized, we 

would like to incorporate the historical sequence of a user into the search but in the 

current implementation this information is no longer available since the we store the 

sum of all interactions and not the individual actions.  

When the graph query does not return any recommendations because the article is 

not yet part of a sequence, a fallback recommendation is used randomly taken from a 

dynamic set of the most recently changed articles per domain, as implemented in the 

example code provided for the challenge.  

The expiration time of 60 seconds was chosen arbitrarily and we expect that opti-

mizing it will improve the performance of the algorithm. 

3 Results and analysis 

By participating in the CLEF NewsREEL 2107 Task 1 we were able to test our algo-

rithm in a real-life environment and compare our algorithm to other algorithms. Orig-

inally, multiple test periods were planned and a single evaluation period was available 

at the end. However, due to technical issues on both sides, given by corporate envi-

ronments, we started straight into the final evaluation period. 

In Table 1 we show the overall results of CLEF NewsREEL 2107 Task 1. Our al-

gorithm is ORLY_KS and is shown in bold, while the baseline algorithm is shown as 

BL2Beat. Our algorithm performs 79% better than the baseline, and scores the highest 

CTR of all algorithms with more than 1000 widget impressions. Overall, the CTRs 

are higher than during CLEF NewsREEL 2016, where the highest CTR reported was 

1.23% [6]. One recommendation widget could contain multiple items, with the num-



 

bers of items not always being the same. Only one recommendation item per page 

could be clicked for a refresh to trigger, hence the CTR for items is always lower than 

for widgets. Because the item/widget ratio for our recommender is the lowest of all 

recommenders, the per item CTR is even slightly higher being 82% better than the 

baseline. However, the amount of widgets impressions for our recommender is quite a 

bit lower than the baseline and some other algorithms. 

From previous years of CLEF NewsREEL (e.g. [8]) it is known that CTR ratios 

can differ hugely between different times and different domains. Therefore, answer-

ing a selective number of recommendation requests or having a different sampling of 

the available requests could make the CTR ratios incomparable. We will therefore 

focus our analysis on finding out if we inadvertently achieved a high CTR by answer-

ing selectively. 

 

Table 1. Overall results of algorithms in CLEF NewsREEL 2107 Task 1 sorted by CTR. 

Name Clicks Widgets 

shown 

CTR Items 

shown 

ctrItem Items / 

Widget 

% CTR 

base-

line 

Riadi_NV_01 12 443 2.709% 1380 0.8696% 3.1151 232% 

ORLY_KS 896 42786 2.094% 130221 0.6881% 3.0435 179% 

ody4 1139 72601 1.569% 230896 0.4933% 3.1803 134% 

IRS5 58 3708 1.564% 11856 0.4892% 3.1974 134% 

ody5 1268 81245 1.561% 255663 0.4960% 3.1468 133% 

ody3 813 59227 1.373% 184052 0.4417% 3.1076 117% 

ody2 875 63950 1.368% 199547 0.4385% 3.1204 117% 

IT5 925 68582 1.349% 214922 0.4304% 3.1338 115% 

Eins 817 61524 1.328% 191647 0.4263% 3.1150 114% 

yl-2 747 60814 1.228% 192207 0.3886% 3.1606 105% 

WIRG 600 49830 1.204% 154419 0.3886% 3.0989 103% 

ody1 810 68768 1.178% 214406 0.3778% 3.1178 101% 

BL2Beat 726 62052 1.170% 193014 0.3761% 3.1105 100% 

RIADI_pn 879 77723 1.131% 244334 0.3598% 3.1437 97% 

IL 813 79120 1.028% 249492 0.3259% 3.1533 88% 

RIADI_nehyb 764 75535 1.011% 236322 0.3233% 3.1286 86% 

Has logs 6 816 0.735% 2610 0.2299% 3.1985 63% 

ody0 166 23023 0.721% 72599 0.2287% 3.1533 62% 

RIADI_hyb 2 349 0.573% 1146 0.1745% 3.2837 49% 

3.1 Response time analysis 

One of the properties of a good real-time news recommendation system is having a 

fast response time, preferably within 100 milliseconds. Also, since the ORP might 

drop recommendations after 100 ms, we decided to log the performance of our re-

sponse times. The results are shown on a density plot in Fig. 3. In 99.9% of the cases 



we responded within 90 milliseconds, and on average we responded in 7 milliseconds. 

Given that our recommender was located at the same hosting provider (Hetzner 

Online GmbH), 10 milliseconds is more than enough for transfer times. Therefore it is 

very unlikely that response time problems played a role in having less widget recom-

mendations. 

 

Fig. 3. Density plot of response times for our recommender during evaluation on a log-scale. 

Data gathering starts during the contest at 2017-04-28. 

3.2 Weekly results and error reports 

ORP provided us with an API to query the weekly results during the contest. The 

results are shown in Table 2. While our error ratios (in bold) for both weeks are high-

er than most recommenders, other recommenders like RIADI_nehyb have even higher 

error ratios but are able to produce more impressions. 

The most likely explanation for the connection problems was that our corporate 

policy asked for a firewall of the TCP port in case an insecure connection was used. 

As the connection was insecure, the port was firewalled and whitelisted only certain 

IP addresses. However, in week 1 certain IP addresses were not whitelisted, while in 

the second week servers were added by plista, which were whitelisted only after a 

small delay. 

In Table 3 we show the error notifications received by our server. The amount of 

content errors received exactly matches with 1415 instances. Probably, these content 

errors were caused by a deploy on 2017-06-28. Strangely, connection errors also seem 

to match somewhat, while it is usually impossible for a server to communicate such 

an error in case of a firewall blocking the connection. The number of timeouts errors 

is  negligible. 

Overall, the number of errors is still quite low and does not prevent other recom-

menders from achieving high numbers of impressions. Also, the errors are not only 

related to recommendation requests, but also to other requests. We therefore assume 

that the impact from these errors was quite low. 
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Table 2. Weekly results of algorithms in CLEF NewsREEL 2107 Task 1 sorted by overall 

CTR. Note that counts for both weeks are almost, but not precisely matched with overall re-

sults. 

Name Evaluation week 1 Evaluation week 2 

clicks im-

pressi

ons 

CTR Con-

nect 

error 

Con-

tent 

error 

clicks im-

pressi

ons 

CTR Con-

nect 

error 

Con-

tent 

error 

Riadi_NV_01      12 443 2.709% 7204 4576 

ORLY_KS 367 18930 1.939% 3836 1415 529 23931 2.211% 3355 0 

ody4 571 36917 1.547% 583 0 560 35404 1.582% 465 0 

IRS5 58 3708 1.564% 902 31      

ody5 608 41515 1.465% 630 0 655 39449 1.660% 994 0 

ody3 392 29983 1.307% 1113 0 417 29035 1.436% 531 0 

ody2 457 32751 1.395% 624 0 416 30995 1.342% 489 0 

IT5 438 33766 1.297% 498 12 482 34534 1.396% 466 8 

Eins 405 32207 1.257% 867 0 411 29024 1.416% 109 0 

yl-2 401 32572 1.231% 331 84 343 27891 1.230% 63 84 

WIRG 316 27031 1.169% 4001 55 284 22882 1.241% 2595 1 

ody1 413 35382 1.167% 590 0 397 33141 1.198% 499 0 

BL2Beat 322 29535 1.090% 1740 402 405 32586 1.243% 548 0 

RIADI_pn 409 37488 1.091% 334 13 470 40184 1.170% 93 0 

IL 388 40345 0.962% 752 8 422 38526 1.095% 765 7 

RIADI_nehyb 326 36414 0.895% 24847 578 437 38858 1.125% 969 46 

Has logs      6 816 0.735% 12 0 

ody0 103 12982 0.793% 17815 0 61 9828 0.621% 0 0 
RIADI_hyb 2 349 0.573% 82787 0      
   



Table 3. Error codes received. Unfortunately, these can also occur outside of recommendation 

requests. 

Error code Constant Count 

455 ERRCODE_CONNECTION_FAILED 6658 

442 ERRCODE_FORMAT_INVALID 1415 

408 ERRCODE_CONNECTION_TIMEOUT 76 

Total 

 

8149 

3.3 Returning the wrong (number of) recommendations 

A possible cause for not having the lowest number of recommendation items per 

widget is that our recommender simply does not return enough recommendations. As 

we stored almost all recommendations our recommender did in MongoDB, it was 

possible to investigate these. We also record which algorithm did the recommenda-

tion. In Table 4 the results of this analysis are shown. It is clearly visible that some-

thing went wrong during a deploy with a re-implementation of the baseline recom-

mender (Most recent) in Redis. The idea of this re-implementation was to be able to 

restart the recommender without losing state, however it contained an off-by-one 

error. Therefore, it usually returned a recommendation more than requested. 

We however expect that returning one recommendation too many is not a huge 

problem, as ORP usually requests more recommendations than it needs anyway. Most 

likely the extra recommendation was simply ignored. 

It is also shown that our killer sequence recommender more frequently gives less 

recommendation than requested. In some cases it handed out 0 recommendations 

which was fixed later on and probably explains the difference between outgoing and 

incoming recommendations. In case both recommenders cannot obtain a result, no 

result was returned. In case the killer sequence recommender had fewer than request-

ed recommendations, we did not add results from the baseline recommender. This 

might explain why our algorithm had the lowest item/widget ratio. 



 

Table 4. Number of recommendations versus recommendation limit for different algorithms. 

Returning 7 recommendations is the result of an off-by-one bug. 

# rec’s 0 1 2 3 4 5 6 7 Total % 

K. Sequence 526 2358 1384 1140 1114 929 66061  73512 42.93% 

Most Recent  24 85 30 12 23 35141 62415 97730 57.07% 

All Outgoing 526 2382 1469 1170 1126 952 101202 62415 171242 100.00% 

All Incoming    8  8 172144  172160  
 

In case an article is received from ORP it also contains a flag indication whether 

this article is recommendable. Articles with a flag other than 0 are not considered 

recommendable, however the baseline implementation ignores this flag when recom-

mending, in both the Java and Node.js versions of the example code supplied by the 

organization. Also it does not check whether it recommends the same article multiple 

times. 

In Table 5 we show an analysis of whether a recommendation contains an unrec-

ommendable article or a duplicated recommendation. Especially the baseline recom-

mender almost always does this. This is no surprise, as it does not check the com-

mendable flag and returns from a set of recently updated articles. Out of 698340 re-

ceived article updates, 460743 (66%) contain an non-recommendable article. If select-

ing 6 or 7 from these updates the probability of getting a non-recommendable article 

is quite high. Also, it is likely that the same article is updated multiple times within a 

short period, resulting in duplicate recommendations in 22% of the cases. 

While our killer sequence never returned duplicates, it also failed to check the sta-

tus flag which we did store in Neo4J. Therefore, it did return non-recommendable 

articles in 23% of the cases. 

All in all there is a huge room for improvement in returning valid recommendation 

results. However, given that the baseline recommender makes the same mistakes a lot 

of the time, we do not believe this is the cause for having less widget impressions. 

Table 5. Different situations for different sub-algorithms, percentages are for total recommen-

dations given by the sub-algorithm. A recommendation is considered ok if it has only recom-

mendations for articles with status=0 and no duplicates. Ok <6 means that there are less than 6 

recommendations returned, while Ok >6 means there are more than 6 recommendations re-

turned. Given that almost all requests were for 6 recommendations, Ok 6 with 6 returned rec-

ommendations, and no invalid or duplicate articles is probably preferable. 

 

With status != 0 With duplicates Ok <6 Ok 6 Ok >6 

KillerSequence 16954 (23%) 0   (0%) 4055 (6%) 52503 (71%) 0 (0%) 

Most recent 96812 (99%) 21102 (22%) 6 (0%) 122   (0%) 85 (0%) 

All Outgoing 113766 (66%) 21102 (12%) 4061 (2%) 52625 (31%) 85 (0%) 



3.4 So why did we do less widget impressions? 

The above analysis did not yield a conclusive result into the cause of having fewer 

impressions. Also, some recommenders in Table 1 do significantly more impressions 

than the baseline recommender does. We therefore assume that the variation of im-

pressions between different recommenders is probably also the result of some non-

random preference within the ORP platform. 

4 Discussion 

Currently the killer sequence algorithm behaves the same for every user. Given that 

not all users will have the same preferences, it is probably beneficial to personalize 

the algorithm towards certain user behavioral patterns. For example, instead of giving 

all follow relations the same weight, it is likely beneficial to give follow relations of 

similar users a higher weight. This would of course require a metric of similarity be-

tween users or a grouping of the users, where relations from the same user group are 

given more weight for the current user. We expect that a personalized version of the 

killer sequence will increase the performance. 

It is also likely that trends are not static over time. Currently we do not take into 

account temporal trends in the data, but it is likely that it would be better to take the 

time when paths occurred into account. For example, it would be possible to use a 

decay function which gives less weight to paths that have taken place a long time ago. 

In many machine learning problems, an ensemble multiple algorithms performs 

better than a single algorithm [6]. Our infrastructure already takes into account the 

possibility of using an ensemble of algorithms and using a meta-algorithm, however 

currently it uses just two algorithms and a very simple meta-algorithm. This of course 

offers many possibilities for using a better ensemble. 

Due to the test setup, it was unfortunately impossible to track which sub-algorithm 

leaded to which results. In the world of Real Time Bidding [12], it is commonplace to 

have a unique identifier for a certain impression, which is used throughout the whole 

interaction, for example also when an impression is clicked. In this case it would have 

been quite beneficial for the evaluation to have both a unique identifier, and the rec-

ommender used to give the impression as attributes in the protocol. As this was not 

the case, we can only estimate the performance of the Killer Sequence sub-algorithm. 

Fortunately our algorithm did not require a direct feedback loop of how well the rec-

ommendations where doing, as such would have been impossible. Debugging and 

click attribution would be greatly improved if a future version of the ORP supported 

attributes for unique identifiers. 

5 Conclusion 

The CLEF NewsREEL 2107 Task 1 provided a unique opportunity to test our killer 

sequence recommender in a real-life situation, and compare the results with other 

recommenders. It turned out that our killer sequence recommender performed 79% 



 

better than the baseline recommender. This resulted in the top position among the 

recommenders with more than 1000 recommendations. That could have been caused 

due to bad behavior, such as only answering requests only for certain high CTR do-

mains or times. We investigated whether this higher than expected performance was 

due to unwanted behavior of the recommender, but could not conclude that this was 

the case. Therefore, it appears that our algorithm performs very well in the test envi-

ronment. 
There are still many ideas left for improvement of the results. A future version of 

the recommender should avoid non-recommendable articles, duplicate articles within 

the recommendation, or returning fewer results than needed. Also, personalization of 

the killer sequence recommender and ensemble recommendation is expected to yield 

better results. 
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