
Towards Multi-decision-maker Requirements
Prioritisation via Multi-Objective Optimisation

Fitsum Meshesha Kifetew1, Angelo Susi1, Denisse Muñante1, Anna Perini1,
and Alberto Siena2 and Paolo Busetta2

1 Fondazione Bruno Kessler (FBK)
kifetew,susi,munante,perini@fbk.eu

2 Delta Informatica
alberto.siena,paolo.busetta@deltainformatica.eu

Abstract. Requirements prioritisation is a key decision making activ-
ity of the software development process, which relies on the capability
of different decision-makers to identify the optimal candidate rankings
of the requirements, in order to be able to perform a strategic choice
among them. In this paper, we formulate such multi-decision-maker re-
quirements prioritisation as a multi-objective optimisation problem, and
outline a solution that takes advantage of metaheuristic algorithms. The
proposed solution allows different decision-makers to specify their rank-
ings according to a set of prioritisation criteria, it then synthesises them
into a set of Pareto optimal global rankings. The ultimate choice of the
prioritisation of the requirements would be made upon a focused analysis
of the trade-offs amongst the solutions on the Pareto frontier.

Keywords: Requirements prioritisation; multi-decision-maker prioriti-
sation; evolutionary algorithms; multi-objective optimisation

1 Introduction

Requirements prioritisation is an important decision-making activity in the soft-
ware development process that comes into the scene when the needs and desires
of customers must meet the delivery capacity of the development team [1]. Once
requirements have been successfully gathered, constraints and limitations create
a trade-off between the opportunity gained from implementing the largest possi-
ble part of them, and the disadvantage of attempting to implement too many of
them. In this case, knowing which are the best candidate requirements worthy
of passing to the implementation phase allows to reduce the risk of failing to
deliver the product.

Practitioners mostly carry out the requirements prioritisation activity with
traditional approaches, such as focus groups. Several approaches have also been
proposed to guide practitioners perform requirements prioritisation in a struc-
tured way [1]. A variety of automatic techniques to reduce the human effort in
this process have been defined, which use, for example, the Analytical Hierarchy

Jolita
Typewritten Text
X. Franch, J. Ralyté, R. Matulevičius, C. Salinesi, and R. Wieringa (Eds.):
CAiSE 2017 Forum and Doctoral Consortium Papers, pp. 137-144, 2017.
Copyright 2017 for this paper by its authors. Copying permitted for private and academic purposes.

Jolita
Typewritten Text

Kifetew, Susi, Muñante, Perini, Siena, Busetta

Process (AHP) [15, 2] method, and approaches based on Machine learning [11],
or Constraint Satisfaction [10]. However, such activity can become a complex
decision-making problem in the presence of certain conditions, e.g., (a) the
number of candidate requirements increases, (b) the number of criteria for the
prioritisation increase, (c) the dependencies between requirements are not neg-
ligible, or (d) different stakeholders are involved in the decision-making process,
with their specific roles and competences. In this situation, the challenge be-
comes that of identifying the set of global rankings that better meet the various
perspectives, thus ensuring the optimality of the final requirements prioritisation
decision.

We observed examples of this situation in two small-medium companies in
the context of the SUPERSEDE 3 project, a project focusing on feedback-driven
adaptation and evolution of software systems. The first company is SEnerCon, a
German company working in the domain of energy efficiency management, pro-
viding online applications in support of household energy saving. SEnerCon re-
ports that when major innovation of their products need to be planned, different
actors are relevant in prioritising the candidate requirements that might include
the new ones that have been identified along the funding opportunities [9].

The second company is Delta, an Italian company working in serious gaming
for professional training. As part of an industrial project, called PRESTO [13],
Delta is working with researchers in the area of serious gaming and interac-
tion design, and with domain experts to develop a virtual reality application
for training in emergency management. Also in this case, actors with different
roles and expertise contribute to prioritise the requirements to be considered for
development.

In such situations, each actor involved in the prioritisation process has his/her
own view regarding the priorities of the requirements, depending on their exper-
tise and goals. Furthermore, these views of the various actors are typically of
conflicting nature. For instance, developers may tend to give higher priorities
to requirements that could be implemented with less effort, while experts from
management may give higher priorities to requirements that would bring higher
customer satisfaction (even if they incur higher development effort). Hence, the
problem then becomes how to reconcile these individual views on the priorities
into a final prioritisation of the requirements. We refer to the human actors
involved in such a process, by providing their own preferences regarding the pri-
oritisation of the requirements, as decision-makers (DMs); and we refer to the
problem as a Multi-decision-maker Requirements Prioritisation problem.

In this paper, we formulate the Multi-decision-maker Requirements Prioriti-
sation problem as a multi-objective optimisation problem, and propose an ap-
proach that uses Evolutionary Algorithms (EA) to find optimal solutions to it.
Given a set of rankings for the candidate requirements, which are made by dif-
ferent experts along multiple criteria, the proposed method allows to synthesise
global requirements prioritisations located on a Pareto optimal frontier, thus

3 www.supersede.eu

138

Multi-decision-maker Prioritisation via Multi-Objective Optimisation

supporting the decision-maker by providing him/her with a view on alternative
optimal requirements prioritisations.

The main contributions of this paper include: (i) a generic formulation of
the Multi-decision-maker Requirements Prioritisation problem; (ii) an approach
based on multi-objective optimisation for finding optimal solutions to this prob-
lem.

The rest of this paper is organised as follows: in Section 2, the formulation of
the problem is given. The proposed approach for Multi-decision-maker Require-
ments Prioritisation is outlined in Section 3. The related works are discussed
in 4. Finally, conclusions are presented in Section 5.

2 Problem Formulation

In a generic requirements prioritisation process, multiple decision-makers
involved in a software project express independently their own priority list. Each
decision-maker has a relative weight with respect to the other decision-makers,
depending on aspects such as his/her role, expertise and so on. Moreover, any
number of evaluation criteria, each with its own weight with respect to the
expected final decision, can be used to perform the prioritisation. These criteria
could represent positive (values) or negative (costs) evaluations about a given
prioritisation of requirements, what is important here is that decision-makers
are not obliged to summarise their positive (or negative) considerations along
one single criterion. Furthermore, the requirements to be prioritised have their
own characteristics, which must be taken into consideration when deciding on
the final ranking, such as dependencies among requirements.

The Multi-decision-maker Requirements Prioritisation problem con-
sists of finding the best ranking that takes into account all the individual rankings
of the various decision-makers. Reaching consensus regarding the final ranking of
the requirements out of the individual rankings, given by the decision-makers, in-
volves: (i) identifying the alternative global rankings that can be drawn from the
decision-makers’ opinions; and (ii) selecting the final ranking, through a decision
process that takes into account additional contextual and strategic information.
While the final decision remains a strategic action, the Multi-decision-maker Re-
quirements Prioritisation problem concerns supporting the identification of the
optimal rankings.

In summary, given:

– a set of n decision-makers who providing their prioritisations;
– a set of m requirements to be prioritised (not necessarily independent);
– a set of dependencies where (Ri → Rj) implies that requirement Ri depends

on requirement Rj ;
– a set of k criteria along which the prioritisation is to be performed;
– weights corresponding to each criterion;
– weights corresponding to each decision-maker for each criterion;
– the prioritisations of each decision-maker with respect to each criterion;

139

Kifetew, Susi, Muñante, Perini, Siena, Busetta

the Multi-decision-maker Requirements Prioritisation problem consists of find-
ing the final prioritisation (ranking) of requirements with the mini-
mum possible distance from the individual prioritisations (rankings)
of all decision-makers, while respecting the constraints imposed by
the dependencies. Distance represents a quantification of the dissimilarity
between rankings.

3 Multi-Decision-Maker Prioritisation

The problem formulation presented in the previous section evidences the in-
herent multi-objective nature of the problem. In fact, the optimal solution to
the problem involves trade-offs in different directions, in particular among the
prioritisation criteria and among the preferences of the various decision-makers
involved. Our proposed approach is based on the notion of minimising the dis-
similarity among the preferences of the various decision-makers involved in the
process. Given the preferences of each decision-maker with respect to each cri-
terion, we try to find the prioritisation that is at the least possible level of
dissimilarity from all the prioritisations of all decision-makers — the middle
ground. In general, given a set of m requirements, there are m! possible pri-
oritisation of these requirements. Hence, our approach employs multi-objective
optimisation to explore this space of m! candidate solutions with the objective of
finding those with the minimum levels of dissimilarity from those of the decision-
makers. Considering the potentially large number of alternatives, our proposed
approach is based on Evolutionary Algorithms (EAs) [4] which are proven to
be effective at scaling to large search spaces while at the same time providing
optimal solutions for smaller spaces as well.

EAs are a class of metaheuristic search algorithms inspired by the process
of natural evolution in which a population of candidate solutions (individuals)
interact with each other and evolve through generations following the principle
of survival of the fittest [4]. EAs are widely used to solve practical optimisation
problems for which exact solutions could not be found in reasonable time. Fur-
thermore, EAs follow a global search strategy which is quite robust in exploring
the search space and finding globally optimal solutions by avoiding being trapped
in local optimal, a phenomenon commonly associated to local search algorithms.

The right side of Figure 1 depicts a simplified overview of the main aspects
of a typical EA, which starts by creating an initial population of individuals. It
then evaluates each individual in the population by means of a fitness function
and assigns it a fitness value. The EA then proceeds by selecting ‘fitter’ indi-
viduals (parents) from the current population and subjects them to the process
of reproduction or crossover resulting in offspring. The offspring could further
be subjected to a process of mutation with the aim of introducing diversity into
the population. The EA then selects, from the combined pool of parents and
offspring, the individuals that form the new population in the next generation
(survivors). This process continues to iterate until some stopping condition is
reached, in which case the EA terminates.

140

Multi-decision-maker Prioritisation via Multi-Objective Optimisation

Initialise

Evaluate

Selection
Reproduction

Mutation

Start

Stop

S
1
= R

2
 R

3
 R

1
 ...

...
S

n
= R

3
 R

2
 R

4
 ...

Requirements
R

1
, R

2
, R

3
, …, R

m

Prioritisations by DMs
[DM

1
][C

1
] R

4
 R

2
 R

1
 …

...
[DM

1
][C

k
] R

2
 R

4
 R

3
 ...

…
[DM

n
][C

1
] R

2
 R

3
 R

1
 …

...
[DM

n
][C

k
] R

3
 R

4
 R

2
 ...

Criteria + Weights
[C

1
] cw

1

[C
2
] cw

2

…
[C

k
] cw

k

Input Evolutionary Algorithm

dist(S
1
) = d

1

...
dist(S

n
) = d

n

Select solutions
with small
distances

Dependencies
R

1
 → R

2

…
R

4
 → R

3

DM Weights
[DM

1
][C

1
] w

1

[DM
1
][C

2
] w

2

…
[DM

n
][C

k
] w

z

Fig. 1: Overview of solution. Elements in the problem formulation (Input) are
mapped into the main phases of EA. Requirements and Dependencies are used to
encode and initialise population, Proritisations by DMs, Criteria, and Weights
are used to evaluate solutions using the fitness function.

Given the formulation of the multi-decision-maker requirements prioritisa-
tion problem outlined in Section 2, an instance of an EA could be applied to
search within the space of all possible prioritisations, with the ultimate goal of
finding one or more prioritisation(s) with minimal dissimilarity from all of the
given rankings. To this end, we need to appropriately define the corresponding
EA operations in such a way that we are able to find optimal solutions to our
problem. Specifically, we need to define (1) the encoding and initialisation of
individuals, (2) the fitness function for evaluating individuals with respect to
the problem, and (3) the selection, crossover, and mutation operators that allow
the EA to evolve the individuals through generations.

Solution encoding and initialisation: Given m requirements to be pri-
oritised, candidate solutions (individuals) are prioritisations (rankings) of these
requirements. Hence, we encode an individual as: (r1, r2, . . . , rm) where ri rep-
resents the rank of requirement i. For example, if m = 5, an individual could
be: (1,3,2,5,4). In this individual, the rank of requirement 1 is 1, the rank of
requirement 2 is 3, the rank of requirement 3 is 2, etc.

Fitness function: The goal of the fitness function is to objectively measure
how good (fit) an individual is with respect to the problem being solved. For
our problem, a good individual is one that has the lowest level of dissimilarity
(disagreement) among the prioritisations of the decision-makers. Hence, we first
quantify the level of dissimilarity between two rankings by means of a distance

141

Kifetew, Susi, Muñante, Perini, Siena, Busetta

(a) Two Point Crossover

(b) Swap Mutation

Fig. 2: EA Operators

function. Given two individuals I1 and I2 representing two rankings of m re-
quirements, the distance between them could be computed in a number of ways.
For instance, we can define a distance metric based on the (average) differences
between the ranks of the requirements:

d(I1, I2) =

m∑
i=1

|I1[i]− I2[i]| (1)

Similarly, other rank similarity metrics, such as Kendall’s τ statistic [7], could
be used to define a distance function:

d(I1, I2) = 1−KendallTau(I1, I2) (2)

Based on the distance functions given in Equations 1 and 2, we define fitness
functions for computing the fitness of an individual I in the EA. Specifically,
we consider a multi-objective perspective in which we compute the distance of I
with respect to more than one objective. For our problem formulation, we define
a fitness function considering the distance of I from each criterion.

The EA searches for individual(s) with the minimum values for the fitness
functions, i.e., solutions that represent minimal dissimilarity among the rankings
of the various decision-makers.

EA operators: Here we describe the two most important operators, crossover
and mutation, that enable the EA to evolve individuals through generations.
Two point crossover in each individual’s (parent) encoding, two points are
randomly picked, and parts of the individual’s encoding are exchanged. Figure 2a
illustrates this crossover operation. In case the crossover operator results in in-
valid individuals (e.g., duplicated ranks), the individual will either be corrected
in a subsequent phase, or the operation will be cancelled and performed again
choosing different points of crossover.
Swap mutation two points are randomly picked in the individual’s encoding,
and the values indicated by the selected points (indices) are swapped. Figure 2b
illustrates this mutation operation.

Algorithm: Given the problem formulation, the encoding of individuals, and
the operators defined above, our approach employs a multi-objective EA (e.g.,
NSGA-II [3]) based on the multi-objective fitness function described above to
find a set of Pareto optimal solutions. Each solution in the Pareto frontier rep-
resents a trade-off within the space of the objectives being optimised. Hence, de-
pending on the currently sought solution and context, the human expert should
choose one of the solutions.

142

Multi-decision-maker Prioritisation via Multi-Objective Optimisation

Dependencies among requirements could be handled in two ways:
As hard constraints: candidate solutions that violate the dependency constraints
will not be considered as valid candidates and hence will be discarded.
As soft constraints: dependency constraint violation is computed as a secondary
objective to be considered in case of equivalence in the first objective (i.e., dis-
similarity). Candidate solutions that violate fewer constraints will be preferred
in case of a tie between candidates with respect to their distances. This approach
is useful in cases where the number of dependencies is high, and consequently
the number of valid solutions is low.

In summary, the approach will search for optimal prioritisations that min-
imise dissimilarity (disagreement) among the various DMs involved in process,
finding the middle ground.

4 Related Works

Requirements prioritisation is an area of requirements engineering which has
received a significant amount of attention both from the research community
and industry [1]. This is mainly attributed to the fact that the decisions taken
during prioritisation could have profound effects on strategic as well as technical
(operational) aspects of an organisation [14, 8]. Relevant work identified and dis-
cussed the challenges of multi-stakeholder prioritisation from the perspective of
traditional (closed) organisation, e.g. [16, 12], and mostly addressed the multi-
decision-maker issue with negotiation approaches. Concerning the automatic
techniques used in requirements prioritisation, several approaches have been pre-
sented that use constraints based techniques and search-based techniques such
as Satisfiability Modulo Theory techniques, and heuristic based techniques, in
particular genetic algorithms [10, 17]. Considering the latter techniques several
search based approaches have been exploited for the solution of different kinds of
requirements engineering problems such as multi-objective requirements priori-
tisation and next release problem [6] also in presence of multiple customers [5].
Our approach considers some of the issues and observations reported in the men-
tioned works and aims at extending them to offer a distributed mechanism for
eliciting preferences from stakeholders with potentially different skills and exper-
tise, by employing a collaborative process that allow to find optimal trade-offs
among those preferences.

5 Conclusion

We presented a multi-objective formulation of the multi-decision-maker require-
ments prioritisation problem, and outlined a solution based on Evolutionary
Algorithms. The proposed approach is based on the notion of finding Pareto
optimal prioritisations that exhibit the minimum levels of disagreement among
the various decision-makers involved in the process. The ultimate decision-maker
selects one of the optimal solutions based on additional interests (e.g., strate-
gic) not necessarily included in the prioritisation criteria. The work is currently

143

Kifetew, Susi, Muñante, Perini, Siena, Busetta

ongoing and we are working towards an empirical evaluation of the proposed
approach on real world case studies derived from the industry.

Acknowledgement. This work is a result of the SUPERSEDE project, funded
by the H2020 EU Framework Programme under agreement number 644018.

References

1. P. Berander and A. Andrews. Requirements Prioritization. In A. Aurum and
C. Wohlin, editors, Engineering and Managing Soft. Requirements. Springer, 2005.

2. P. Busetta, F. M. Kifetew, D. Munante, A. Perini, A. Siena, and A. Susi. Tool-
supported Collaborative Requirements Prioritisation. In Proceedings of the IEEE
Int. Conference COMPSAC, Torino, Italy, July 4-7, 2017. To appear.

3. K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast elitist multi-objective
genetic algorithm: NSGA-II. IEEE Trans. on Evol. Comp., 6:182–197, 2000.

4. A. E. Eiben and J. E. Smith. Introduction to evolutionary computing. Springer
Science & Business Media, 2003.

5. A. Finkelstein, M. Harman, S. Mansouri, J. Ren, and Y. Zhang. A search based
approach to fairness analysis in requirement assignments to aid negotiation, medi-
ation and decision making. Requirements engineering, 14(4):231–245, 2009.

6. D. Greer and G. Ruhe. Software release planning: an evolutionary and iterative
approach. Information and Software Technology, 46(4):243–253, 2004.

7. M. G. Kendall. A new measure of rank correlation. Biometrika, 30(1/2):81–93,
1938.

8. N. B. Moe, A. Aurum, and T. Dyb̊a. Challenges of shared decision-making: A
multiple case study of agile software development. Inf. Softw. Technol., 54(8):853–
865, Aug. 2012.

9. D. Muñante, F. M. Kifetew, and O. Albrecht. Modelling prioritisation decision-
making in software evolution. In Joint Proceedings of REFSQ-2017 Workshops,
Doctoral Symposium, Research Method Track, and Poster Track co-located with
the 22nd International Conference on Requirements Engineering: Foundation for
Software Quality (REFSQ 2017), Essen, Germany, February 27, 2017., 2017.

10. F. Palma, A. Susi, and P. Tonella. Using an smt solver for interactive requirements
prioritization. ESEC/FSE ’11, pages 48–58, New York, NY, USA, 2011. ACM.

11. A. Perini, A. Susi, and P. Avesani. A Machine Learning Approach to Soft-
ware Requirements Prioritization. Software Engineering, IEEE Transactions on,
39(4):445–461, 2013.

12. B. Regnell, M. Höst, J. N. och Dag, P. Beremark, and T. Hjelm. An industrial
case study on distributed prioritisation in market-driven requirements engineering
for packaged software. Requirements Engineering, 6(1):51–62, 2001.

13. M. Robol and P. Busetta. Applying bdi to serious games: The presto experience.
Technical report, Universita di Trento, 2016.

14. G. Ruhe and M. O. Saliu. The art and science of software release planning. IEEE
Softw., 22(6):47–53, Nov. 2005.

15. T. L. Saaty. What is the analytic hierarchy process? In Mathematical models for
decision support, pages 109–121. Springer, 1988.

16. V. Sinha, B. Sengupta, and S. Chandra. Enabling collaboration in distributed
requirements management. Software, IEEE, 23(5):52–61, 2006.

17. P. Tonella, A. Susi, and F. Palma. Interactive requirements prioritization using a
genetic algorithm. Inf. Softw. Technol., 55(1):173–187, Jan. 2013.

144

