
On the Non-Generalizability in Bug Prediction

Haidar Osman

Software Composition Group
University of Bern, Switzerland

osman@inf.unibe.ch

Abstract

Bug prediction is a technique used to estimate the most
bug-prone entities in software systems. Bug prediction
approaches vary in many design options, such as de-
pendent variables, independent variables, and machine
learning models. Choosing the right combination of de-
sign options to build an e↵ective bug predictor is hard.
Previous studies do not consider this complexity and
draw conclusions based on fewer-than-necessary experi-
ments.

We argue that each software project is unique from the
perspective of its development process. Consequently,
metrics and machine learning models perform di↵erently
on di↵erent projects, in the context of bug prediction.
We confirm our hypothesis empirically by running di↵er-
ent bug predictors on di↵erent systems. We show there
are no universal bug prediction configurations that work
on all projects.

1 Introduction

A bug predictor is an intelligent system (model) trained on data derived from software (metrics)
to make a prediction (number of bugs, bug proneness, etc.) about software entities (packages,
classes, files, methods, etc.).

Bug prediction helps developers focus their quality assurance e↵orts on the parts of the system
that are more likely to contain bugs. Bug prediction takes advantage of the fact that bugs are not
evenly distributed across the system but they rather tend to cluster [19]. The distribution of bugs
follows the Pareto principle, i.e., 80% of the bugs are located in 20% of the files [17]. An e↵ective
bug predictor locates the highest number of bugs in the least amount of code.

Over the last two decades, bug prediction has been a hot topic for research in software engineer-
ing and many approaches have been devised to build e↵ective bug predictors. Researchers have
been probing the problem/solution space trying to find universal solutions regarding the software
metrics to use [16][10][15][20][1][9][5] and machine learning models to employ [6][12][4][14][5] to
predict bugs in software entities.

However, these studies do not consider the complexity of building a bug predictor, a process
that has many design options to choose from:

Copyright

c� by the paper’s authors. Copying permitted for private and academic purposes.

Proceedings of the Seminar Series on Advanced Techniques and Tools for Software Evolution SATToSE2016 (sat-

tose.org), Bergen, Norway, 11-13 July 2016, published at http://ceur-ws.org

1



1. The prediction model (e.g., Neural Networks, Support Vector Machines, Random Forest,
Linear Regression).

2. The independent variables (i.e., the metrics used to train the model like source code metrics,
change metrics, etc.).

3. The dependent variable or the model output (e.g., bug proneness, number of bugs, bug
density).

4. The granularity of prediction (e.g., package, class, binary).

5. The evaluation method (e.g., accuracy measures, percentage of bugs in percentage of software
entities).

Most previous approaches vary one design option, which is the studied one, and fix all oth-
ers. This a↵ects the generalizability of the findings because every option a↵ects the others and,
consequently, the overall outcome, as shown in Figure 1.

Level of Prediction

Binary

Package / Module

Class / File

Method

Line of Code

Dependent Variable
Class (buggy/non-buggy)

Bug Proneness

Number of Bugs

Bug Density

Prediction Model
Regression

Probability

Binary

Cache

Evaluation Method

Confusion Matrix

Statistical Correlation
Percentage of Bugs

Cost-Aware Evaluation

Independent Variables
Source Code Metrics

Version History Metrics

Organizational Metrics

OutputInput

has an impact 
on the

of theis s
uit

ab
le f

or decides

decides

has an impact 

on the ha
s a

n im
pac

t 

on t
he

Figure 1: The design aspects of Bug prediction. The diagram shows the e↵ects aspects have on
each other.

It has been shown previously that a model trained on data from a specific project does not
perform well on another project and the so called cross-project defect prediction rarely works
[21]. We take this idea even further and hypothesise that bug prediction findings are inherently
non-generalizable. A bug prediction configuration that works with one system may not work
with another because software systems have di↵erent teams, development methods, frameworks,
and architectures. All these factors a↵ect the correlation between di↵erent metrics and software
defects.

To confirm our hypothesis, we run an extended empirical study where we try di↵erent bug
prediction configurations on di↵erent systems. We show that no single configuration generalizes
to all our subject systems and every system has its own “best” bug prediction configuration.

2 Experimental Setup

Dataset

We run the experiments on the “bug prediction data set” provided by D’Ambros et al. [3] to
serve as a benchmark for bug prediction studies. This data set contains software metrics on the
class level for five software systems (Eclipse JDT Core, Eclipse PDE UI, Equinox Framework,
Lucene, and Mylyn). Using this data set constrains the level of prediction to be on the class level.
We compare source code metrics and version history metrics (change metrics) as the independent
variables.

2



Dependent Variable

All bug-prediction approaches predict one of the following: (1) the classification of the software
entity (buggy or bug-free), (2) the number of bugs in the software entity, (3) the probability of
a software entity to contain bugs (bug proneness), (4) the bug-density of a software entity (bugs
per LOC), or (5) the set of software entities that will contain bugs in the near future (e.g., within
a month). In this study, we consider two dependent variables: number of bugs and classification.

Evaluation Method

An e↵ective bug predictor should locate the highest number of bugs in the least amount of code.
Recently, researchers have drawn attention to this principle and proposed evaluation schemes
to measure the cost or e↵ort of using a bug prediction model [13][1][9][11][8][18][2]. Cost-aware
evaluation schemes rely on the fact that a bug predictor should produce an ordered list of software
entities, and measure the maximum percentage of predicted faults in the top k% of lines of code
of a system. These schemes take the number of lines of code (LOC) as a proxy for the e↵ort of
unit testing and code reviewing.

In this study, we use an evaluation scheme called cost-e↵ectiveness (CE), proposed by Arisholm
et al. [1]. CE ranges between �1 and +1. The closer CE gets to +1, the more cost-e↵ective the
bug predictor is. A value of CE around zero indicates that there is no gain in using the bug
predictor. Once CE goes below zero, it means that using the bug predictor costs more than not
using it.

Machine Learning Model

For classification, we use Random Forest (RF), K-Nearest Neighbour (KNN), Support Vector Ma-
chine (SVM), and Neural Networks (NN). To predict the number of bugs (regression), we use
linear regression (LR), SVM, KNN, and NN. We used the Weka data mining tool [7] to build
these prediction models1.

Procedure

For every configuration, we randomly split the data set into a training set (70%) and a test set
(30%) in a way that retains the ratio between buggy and non-buggy entities. Then we train the
prediction model on the training set and run it on the test set and calculate the CE of the bug
predictor. For each configuration, we repeat this process 30 times and take the mean CE.

3 Results

First, we compare the di↵erent machine learning models. To see if machine learning models
perform di↵erently, we apply the analysis of variance, ANOVA, and the post-hoc analysis, Tukey’s
HSD (honest significant di↵erence), to the di↵erent models in classification and to di↵erent models
in regression.

The tests were carried out at 0.95 confidence level. Only when the ANOVA test is statistically
significant, do we carry out the post-hoc test. Otherwise, we only report the best performing
model. Statistically significant results are reported in boldface in the result Tables 1, 2, and 3. As
can be seen from the results in Table 1, It is clear that di↵erent machine learning models actually
perform di↵erently. Also there is no dominant model that stands out as the best model throughout
the experiments.

Second, to compare the two di↵erent types of metrics, we compare the best-performing model
using source code metrics and the best-performing model using change metrics using the student’s
t-test at the 95% confidence level. We compare using both classification and regression. Table 2
shows the results of the test, where bold text indicates statistically significant results. It can be
deduced from the results that source code metrics are better than change metrics in some projects
and worse in others. No type of metrics is constantly the best for all projects in the dataset.

1
We use Weka’s default configuration values for the models

3



Table 1: This table shows the results of the analysis of variance, ANOVA, and the post-hoc
analysis, Tukey’s HSD (honest significant di↵erence). Bold text indicates statistically significant
results at 95% confidence level.

Classification

Metrics JDT PDE Equinox Mylyn Lucene

Version
History

NN > KNN
NN > RF
NN � SVM

SV M > KNN
SVM � RF
SVM � NN

SVM
SV M > KNN
SV M > RF
SVM � NN

SV M > NN
SVM � RF
SVM � KNN

Source
Code

KNN > SV N
KNN > NN
KNN > RF

KNN > SV N
KNN � NN
KNN � RF

KNN
NN > SV M
NN � KNN
NN � RF

RF > NN
RF � SVM
RF � KNN

Regression

Metrics JDT PDE Equinox Mylyn Lucene

Version
History

SV M > NN
SV M > KNN
SVM � LR

LR > NN
LR > KNN
LR � SVM

LR > KNN
LR � SVM
LR � NN

SV M > KNN
SV M > NN
SVM � LR

LR

Source
Code

KNN > SV N
KNN > NN
KNN > LR

KNN > SV N
KNN > NN
KNN � LR

SV M > KNN
SV M > NN
SVM � LR

SV M > KNN
SV M > NN
SVM � LR

KNN > NN
KNN � SV N
KNN � LR

Table 2: This tables shows the t-student test between the best performing model trained on
source code metrics (SM) and the best performing model trained on change metrics (CM). Bold
text indicates the statistically significant results at 95% confidence level.

JDT PDE Equinox Mylyn Lucene

Classification CM < SM CM < SM CM > SM CM > SM CM > SM

Regression CM � SM CM  SM CM  SM CM > SM CM > SM

4



Table 3: This tables shows the student’s t-test between the classifier (CLA) and the best regressor
(REG). The test is carried out at the 0.95 confidence level. Bold text indicates the statistically
significant results at 95% confidence level.

JDT PDE Equinox Mylyn Lucene

REG � CLA REG � CLA REG > CLA REG � CLA REG � CLA

Table 4: The most cost-e↵ective bug prediction configuration for each system and the correspond-
ing mean CE.

Subject Independent Variables Prediction Model Dependent Variable Mean
System (Metrics) (Output) CE

Eclipse JDT Core Change Metrics SVM Number of Bugs 0.356

Eclipse PDE UI Source Code Metrics KNN Number of Bugs 0.246

Equinox Source Code Metrics SVM Number of Bugs 0.429

Mylyn Change Metrics SVM Number of Bugs 0.484

Lucene Change Metrics LR Number of Bugs 0.588

Third, we compare the the two types of response variables (classification vs regression) by com-
paring the best performing model from each using also the student’s t-test at the 95% confidence
level. Table 3 shows that the comparisons are in favour of regression all projects in our dataset
but with statistical significance only in case of Equinox. This means that treating bug prediction
as a regression problem is more cost e↵ective than classification.

Finally, we compare configurations with the highest CE for the five projects in the data set. In
Table 4, we report the highest mean CE and the configuration of the bug predictor behind. The
results show that there is no global configuration of settings that suits all projects.

To summarize the results of the experiments, we make the following observations:

1. Di↵erent machine learning models actually perform di↵erently in predicting bugs and there
is no dominant model that stands out as the best for all projects.

2. There is no general rule about which metrics are better at predicting bugs.

3. The configurations of the most cost-e↵ective bug predictor vary from one project to another.

4. The cost e↵ectiveness of bug prediction is di↵erent from one system to another.

4 Conclusions

Building a software bug predictor is a complex process with many interleaving design choices. In
the bug prediction literature, researchers have overlooked this complexity, suggesting generaliz-
ability where none is warranted. Our results suggest that a universal set of bug prediction
configurations is unlikely to exist. Among the five subject systems we have, no type of metrics
stands out as the best and no machine learning algorithm prevails when building for building a
cost-e↵ective bug predictor. This indicates a need for more research to revisit literature findings
while taking bug prediction complexity into account. In the future we plan to explore di↵erent
ways to automatically find the most e↵ective bug prediction configurations for a specific project.
This enables a bug predictor to be adaptive to the di↵erent characteristics of di↵erent software
projects without manual intervention.

5



References

[1] E. Arisholm, L. C. Briand, and E. B. Johannessen. A systematic and comprehensive investi-
gation of methods to build and evaluate fault prediction models. J. Syst. Softw., 83(1):2–17,
Jan. 2010.

[2] G. Canfora, A. De Lucia, M. Di Penta, R. Oliveto, A. Panichella, and S. Panichella. Multi-
objective cross-project defect prediction. In Software Testing, Verification and Validation
(ICST), 2013 IEEE Sixth International Conference on, pages 252–261, Mar. 2013.

[3] M. D’Ambros, M. Lanza, and R. Robbes. An extensive comparison of bug prediction ap-
proaches. In Proceedings of MSR 2010 (7th IEEE Working Conference on Mining Software
Repositories), pages 31–40. IEEE CS Press, 2010.

[4] K. O. Elish and M. O. Elish. Predicting defect-prone software modules using support vector
machines. Journal of Systems and Software, 81(5):649–660, 2008.

[5] E. Giger, M. D’Ambros, M. Pinzger, and H. C. Gall. Method-level bug prediction. In
Proceedings of the ACM-IEEE international symposium on Empirical software engineering
and measurement, pages 171–180. ACM, 2012.

[6] L. Guo, Y. Ma, B. Cukic, and H. Singh. Robust prediction of fault-proneness by random
forests. In Software Reliability Engineering, 2004. ISSRE 2004. 15th International Symposium
on, pages 417–428. IEEE, 2004.

[7] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten. The weka
data mining software: an update. ACM SIGKDD explorations newsletter, 11(1):10–18, 2009.

[8] H. Hata, O. Mizuno, and T. Kikuno. Bug prediction based on fine-grained module histories.
In Proceedings of the 34th International Conference on Software Engineering, ICSE ’12, pages
200–210, Piscataway, NJ, USA, 2012. IEEE Press.

[9] Y. Kamei, S. Matsumoto, A. Monden, K.-i. Matsumoto, B. Adams, and A. Hassan. Revisiting
common bug prediction findings using e↵ort-aware models. In Software Maintenance (ICSM),
2010 IEEE International Conference on, pages 1–10, Sept. 2010.

[10] S. Kim, T. Zimmermann, E. J. W. Jr., and A. Zeller. Predicting faults from cached history.
In ICSE ’07: Proceedings of the 29th international conference on Software Engineering, pages
489–498, Washington, DC, USA, 2007. IEEE Computer Society.

[11] K. Kobayashi, A. Matsuo, K. Inoue, Y. Hayase, M. Kamimura, and T. Yoshino. ImpactScale:
Quantifying change impact to predict faults in large software systems. In Proceedings of the
2011 27th IEEE International Conference on Software Maintenance, ICSM ’11, pages 43–52,
Washington, DC, USA, 2011. IEEE Computer Society.

[12] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch. Benchmarking classification models for
software defect prediction: A proposed framework and novel findings. IEEE Trans. Softw.
Eng., 34(4):485–496, July 2008.

[13] T. Mende and R. Koschke. Revisiting the evaluation of defect prediction models. In Pro-
ceedings of the 5th International Conference on Predictor Models in Software Engineering,
PROMISE ’09, pages 7:1–7:10, New York, NY, USA, 2009. ACM.

[14] T. Menzies, Z. Milton, B. Turhan, B. Cukic, Y. Jiang, and A. Bener. Defect prediction from
static code features: Current results, limitations, new approaches. Automated Software Engg.,
17(4):375–407, Dec. 2010.

6



[15] R. Moser, W. Pedrycz, and G. Succi. A comparative analysis of the e�ciency of change metrics
and static code attributes for defect prediction. In Proceedings of the 30th International
Conference on Software Engineering, ICSE ’08, pages 181–190, New York, NY, USA, 2008.
ACM.

[16] T. Ostrand, E. Weyuker, and R. Bell. Predicting the location and number of faults in large
software systems. Software Engineering, IEEE Transactions on, 31(4):340–355, Apr. 2005.

[17] T. J. Ostrand, E. J. Weyuker, and R. M. Bell. Where the bugs are. In ACM SIGSOFT
Software Engineering Notes, volume 29, pages 86–96. ACM, 2004.

[18] F. Rahman, D. Posnett, and P. Devanbu. Recalling the “imprecision” of cross-project defect
prediction. In In the 20th ACM SIGSOFT FSE. ACM, 2012.

[19] S. A. Sherer. Software fault prediction. Journal of Systems and Software, 29(2):97–105, 1995.

[20] E. J. Weyuker, T. J. Ostrand, and R. M. Bell. Do too many cooks spoil the broth? using the
number of developers to enhance defect prediction models. Empirical Softw. Engg., 13(5):539–
559, Oct. 2008.

[21] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and B. Murphy. Cross-project defect
prediction: A large scale experiment on data vs. domain vs. process. In Proceedings of the the
7th Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT
Symposium on The Foundations of Software Engineering, ESEC/FSE ’09, pages 91–100, New
York, NY, USA, 2009. ACM.

7


