
A Feature-based Categorization of Multi-Level
Modeling Approaches and Tools

Muzaffar Igamberdiev, Georg Grossmann, and Markus Stumptner

Advanced Computing Research Centre
School of IT and Mathematical Sciences

University of South Australia, Mawson Lakes, SA 5095, Australia
{firstname.lastname}@unisa.edu.au

Abstract. The traditional two-level modeling approaches produce ac-
cidental complexities when modeling multiple abstraction levels. This
problem is addressed by the emerging multi-level modeling paradigm
that allows an arbitrary number of modeling levels. To date, multiple
frameworks and tool implementations have been proposed, but so far
there is no comprehensive comparison of commonalities and differences
of design choices that have been made in those frameworks and tools.

We propose a feature-based comparison framework that covers three core
perspectives on multi-level modeling approaches and tools: language en-
gineering, domain modeling and tool support, and evaluated a selected
set of existing approaches and tools according to them.

The framework highlights research challenges and trends for future re-
search and its results support users to choose a specific approach de-
pending on the application domain. The framework can also be used as
a basis to map and transform between approaches.

1 Introduction

Traditionally, modeling is performed within two classification levels, the model
and the meta-model level. This type of modeling leads to accidental complexi-
ties as pointed out by Atkinson et al.[8]. Multi-level modeling supports elements
and relationships across an arbitrary number of meta-levels. It overcomes the
restriction of two meta-levels and supports complex domains which require a
number of abstraction layers. Multi-level modeling reaches a separation of con-
cerns in terms of linguistic and ontological dimensions by addressing linguistic
and domain elements separately [8,25].

A new research area needs the firm definitions of its concepts and consensus
between members of the research community to be applied in practice. Multi-
level modeling is not the exception. In addition, there is a need for an objective
evaluation criteria to assess the multi-level modeling approaches and tools. In
this sense, a meta-discussion of the open-questions of multi-level modeling has
been initiated recently [5] to achieve the required consensus and alignment of
terminological differences.



This paper follows on from a previous discussion [5] but with a different goal:
to propose a feature based comparison framework to categorize different multi-
level modelling approaches and identify research challenges and new trends. An-
other goal is to to guide end users in choosing which approach is more suitable for
a particular application. For example, a user with the Eclipse Modeling Frame-
work (EMF) experience may choose Melanee [4] or the DPF Workbench [21]
because of their close relationship to EMF.

The remainder of the paper is organized as follows. Section 2 lists and de-
scribes the criteria for the comparison framework. Section 3 assesses multi-level
modeling approaches and tools against the criteria and highlights some results
and implications. Related work is discussed in Section 4. The paper concludes
with discussing limitations open challenges for multi-level modeling in Section 5.

2 Comparison criteria

The goal of the comparison criteria is to make the diversity of design choices
explicit. In order to achieve this we have applied domain analysis to analyze
and model the common and variable design choices or features in the context
of multi-level modeling. This work was inspired by the feature-based classifica-
tion of model transformations by Czarnecki et al.[11]. Differently, the framework
assesses a number of approaches and tools against the criteria by means of the
standard feature-diagram notation [9] to document our evaluation criteria as
illustrated in Figure 1.

A Multi-Level 
Modeling Approach

1. Intended Target 
Audience

2. Language
Engineering

3. Formalization
4. Domain
Modelling

5. Tool Support 6. Evaluation

2.1. Linguistic 
Meta-Model Plug-

In Mechanism

2.2. Language 
Design

2.3. Primary 
Modelling Features

2.4. Linguistic 
Extension

2.3.1. Feature
2.3.2. 

Connection/Edge
2.3.3. Entity/Node 2.3.4. Relationship

Optional

Mandatory

Fig. 1: Comparison criteria for multi-level modeling

Comparison criteria represent the different aspects of multi-level modeling.
They are organized from the language engineering, domain modeling and tool
support perspectives which are highlighted by a different background in Figure 1.
Some of the criteria have been initially described in related work [25,5,15]. Each
criterion is classified as mandatory or optional, for example, a multi-level model-
ing approach must have the language engineering, domain modeling and target
audience features, while it is optional to have tool support.



1. Intended target audience. This defines the end-user, i.e., who is going to
use the approach. It is important to choose the user audience to prevent misun-
derstandings between approaches as described in [5].

2. Language engineering. This core criterion defines the language syntax and
grammar of a multi-level modeling approach.

3. Formalization. This is an important feature because it benefits an approach
by avoiding the introduction of imprecision or ambiguity in the process [16]. For
example, an approach can be formalized by relational logic, Diagram Predicate
Framework (DPF) or F-Logic.

4. Domain modeling. This core feature deals with concepts, deep charac-
terization and modeling features. Differently from the meta-modeling in MDE
context, multi-level modeling deals with domain modeling and language engi-
neering separately.

5. Tool support. One of the core and practical features of an approach, which
demonstrates practical applicability. Sub-categories are related to domain mod-
eling features.

6. Evaluation on industry models. This criterion identifies if the approach has
been applied in big industry models. It determines the scalability, performance,
and commercialization of an approach/tool among others in industry.

2.1 Language engineering perspective

This criterion organizes the features related with the linguistic dimension of a
multi-level modeling approach.

2.1. Linguistic meta-model plug-in mechanism. This feature defines the flex-
ibility to extend or to plug in the additional linguistic elements which are not
addressed in the core linguistic meta-model. It may be need when an underly-
ing model has its custom and domain related linguistic elements, such as the
standards in the oil and gas industry [19].

2.2. Language design. It defines whether to define its own language or adapt
a set of existing modeling concepts from model repository/library [5].

2.3. Primary modeling features. It defines the primary linguistic modeling
features that an approach may have. In addition, there are the additional mod-
eling feature, which will be addressed under the domain modeling perspective.

2.4. Linguistic extension. An ability to introduce an element at any onto-
logical level without its ontological type [25]. It is practical to introduce an
unpredictable arbitrary element.

2.3.1. Feature. It is a future of an entity (modeling element) that may be
characterized by the entity’s attribute and/or method. It represents respectively
property and behavior of an entity.

2.3.2. Connection. It is a concept that connects two entities. It represents
any type of domain related connection that relates two domain entities.

2.3.3. Entity. A main building block that represents a concept in a multi-level
modeling approach.



2.3.4. Relationship. A traditional object-oriented modeling relationship to
relate two entities. Differently from the connection it does not represent domain
related connections.

2.2 Domain modeling perspective

This subgroup of the comparison criteria (Figure 1) addresses modeling prin-
ciples of multi-level modeling. The modeling patterns and additional modeling
features (Feature 4.1 and 4.4 in Figure 2) originates from [25]. These features
are realized in the tool support.

4. Domain Modeling

4.1 Modeling 
Patterns

4.2 Metamodeling 
Strictness

4.3 Implementation 
Aspect at Meta-

Model

4.4 Additional 
Modeling Features

4.5 Level Property 
at Model Element

4.6 Deep 
Characterization

4.1.1. Type-Object 
Pattern

4.1.2. Dynamic 
Features

4.1.3. Dynamic 
Auxiliary Domain 

Concepts

4.1.4 Relation 
Configurator

4.4.1. Multiple 
Types

4.4.2 Customized 
Meta-Modeling 

Facilities

4.4.3. Cloning 
Mechanism

4.1.5 Element 
Classification

Optional

Mandatory 4.6.1. Potency 4.6.2. Constraints

Fig. 2: Comparison criteria for domain modeling

4.1. Modeling patterns. This feature/criterion represents a group of modeling
patterns, which were defined and evaluated in the meta-models from different
model repositories [25], such as the OMG specifications.

4.2. Meta-modeling strictness. There are two types: strict and loose meta-
modeling. The strict meta-modeling requires that only the instance-of rela-
tionship crosses exactly one meta-level boundary. In contrast, the loose meta-
modeling opposes the strict one by meaning that the location of model elements
is not determined by their place in the instance-of hierarchy [3].

4.3. Implementation aspect at meta-model. It defines whether the implemen-
tation details of a multi-level modeling approach are addressed at the meta-
model level of the approach. It facilitates the mapping of linguistic and domain
concepts into the implementation language.

4.4. Additional modeling features. This is an additional criterion to describe
a group of modeling features [25] on top of the primary ones (see Feature 2.3).

4.5. Level property at model element. It represents how to number and name
the ontological levels. The approaches are distinguished between the explicit and
deducted (calculated) features.

4.6. Deep characterization. It defines the instantiation mechanism through
ontological levels. It covers potency and constrain in multi-level models.



4.1.1. Type-object pattern. This criterion defines the explicit modeling of
types and their instances [25]. The types can be added dynamically. It is useful,
when one needs to add a type (e.g. a product type) dynamically, on-demand and
then its instance.

4.1.2. Dynamic features. It indicates a feature that allows to add new features
and their values dynamically to a type and its instances respectively [25]. It
benefits when it is not possible to foresee the features needed by a certain type.

4.1.3. Dynamic auxiliary domain concepts. It is a variant of the dynamic
features pattern, but, instead of features it adds dynamic entities (together with
their instances) related to a type [25]. For example, an entity Color can be added
on-demand to describe the colors of a type Shape.

4.1.4. Relation configurator. It allows dynamic creation of the configuration
of a reference type and its instance based on that configuration [25]. For example,
a shape can be restricted to have exactly one color by dynamically configuring
the association ends of the reference type between an entity Color and a type
Shape.

4.1.5. Element classification This feature defines the element inheritance
from a dynamically created parent type to child types, consequently the element
is populated in the instances of both parent and child types. The hierarchy may
have some types without instances, namely abstract types. It helps to organize
common features that can be reused by children [25].

4.4.1. Multiple types. This criterion characterizes an ability for a clabject to
have multiple ontological types [25]. It can be useful to categorize an element
according to different standards.

4.4.2. Customized meta-modeling facilities. It defines an ability to offer cus-
tomization of meta-modeling features, like restriction to single inheritance or
usage of a domain-specific set of data types [25].

4.4.3. Cloning mechanism. It defines the libraries with a group of prede-
fined elements to be cloned/populated in the model being built [25]. It helps
to organize the model repositories with commonly used model structures and
hierarchies based on application domain.

4.6.1. Potency. It defines an instantiation mechanism by providing a number
of possible instantiations through ontological levels. In each level the potency is
decreased by one and eventually reaches zero at the bottommost level [7].

4.6.2. Constraints. This feature defines a constraint for entities, attributes,
connections and multiplicity constraints among others.

2.3 Tool support perspective

This perspective reviews multi-level modeling against the tool support. The tool
support is an essential perspective to demonstrate the abilities including practi-
cality, performance and scalability of an approach. The tool support criteria are
illustrated in Figure 3. The label of each feature is self-explanatory and is not
explained here further due to space limitations.



A
p
p
ro

a
ch

2
.

L
a
n
g
.

en
g
.

3
4

D
o
m

a
in

m
o
d
el

in
g

5
T

o
o
l

su
p
p

o
rt

6

2
.1

2
.2

2
.3

2
.4

4
.1

M
o
d
.

p
a
tt

er
n
s

4
.2

4
.3

4
.4

A
d
d
.

m
.

4
.5

4
.6

D
ee

p
5
.1

5
.2

5
.4

5
.5

V
er

if

2
.3

.1
4
.1

.2
4
.1

.3
4
.1

.4
4
.1

.5
4
.4

.1
4
.4

.2
4
.4

.3
4
.6

.1
4
.6

.2
5
.5

.1
5
.5

.2
5
.5

.3

T
el

o
s[

2
7
]

D
M

A
L

T
N

S
F

V
O

D
A

K
[2

0
]

D
∼

L
T

N
A

F

O
C

A
[7

]
D

M
A

S
M

M
2

V
T

O
S

F

S
K

IF
[1

8
]

A
M

A
S

N
/
A

T
N

S
F

M
a
te

ri
a
l.
[1

2
]

∼
M

A
S

N
/
A

T
F

V
P

M
[3

6
]

D
M

A
L

2
M

V
N

S
F

V
M

T
S
[2

6
]

A
M

A
S

N
/
A

T
O

S
F

P
ow

er
ty

p
e[

1
7
]

M
A

L

D
ee

p
J
av

a
[2

2
]

A
M

A
S

M
T

F

N
iv

el
[2

]
A

A
S

M
M

2
T

N
M

F

A
sc

h
a
u
er

[1
]

D
A

L
N

/
A

M
T

M
-O

b
je

ct
s[

2
8
]

A
M

A
S

M
T

O
S

F

D
ee

p
M

M
[3

4
]

D
M

A
S

S
M

2
M

T
O

S
F

Q

O
M

M
E

[3
7
]

A
M

A
S

N
/
A

V

X
L

M
[1

3
]

A
M

A
S

N
/
A

V
T

O
S

F

D
P

F
[2

3
]

A
M

A
S

M
V

O
S

F

D
D

I[
2
9
]

A
M

A
L

M
T

N
S

F
Q

D
es

ig
n
S
p
a
ce

[1
4
]

A
M

A
S

M
V

T
O

S
F

M
L
T

[1
0
]

D
M

A
L

N
/
A

O
M

L
M

[1
9
]

A
A

S
S
M

2
M

T
N

A
F

Q

D
D

M
[3

2
]

A
A

L
S
M

T
N

A
F

Table 1: Comparison of multi-level modeling approaches and tools.



5. Tool Support

5.1 Transformation 
Import/Export 5.2 Notation 5.3 Environment 5.4 Modeling Editor

5.5 Verification and 
Reasoning

5.1.1. Multi-Level 
to Two-Level

5.1.2. Two-Level to 
Multi-Level

5.1.3. Multi-Level 
to Multi-Level

5.2.1. Textual

Optional

Mandatory

5.2.2. Visual
5.3.1. 

Compile-time
5.3.2 Run-

Time
5.5.1. 

Language
5.5.2. Scope

5.5.3. 
Properties

Fig. 3: Comparison criteria of tool support for multi-level modeling

3 Comparison of approaches and tools

We have selected a number of multi-level modeling approaches and tools from the
literature, which will be compared against the selection criteria. The selection
list is not exhaustive, though we attempted to focus on recent and popular tools.
The multi-level modeling tools are organized in chronological order, starting from
1990 (Telos [27]) up to this date (DDM [32]) shown in Table 1. The meaning of
the values within this comparison table is explained below:

– Features: - supported, - semi-supported, empty - not supported. ∼ -
unknown. N/A - not applicable.

– Language engineering: 2.2 (D)efined,(A)dapted. 2.3 (M)ethod,(A)ttribute.
– Domain modeling: 4.2 (S)trict, (L)oose. 4.6.1 (S)ingle, (M)ulti-potency.
– Tool Support: 5.1 2M - two-level to multi-level, M2 - the opposite. 5.2

(T)extual, (V)isual. 5.5.1 (O)CL, (N)on-OCL. 5.5.2 Single & All levels. 5.5.3
(F)unctional & (Q)uality properties.

Design choices. Regarding Feature 2.2 Language Design, some approaches
and tools based on the existing implementation languages build their multi-level
modeling language by adapting the concepts and reasoning features (e.g., DDM
and OMLM), while few approaches define their own language, such as Melanee
and MetaDepth. However, they also leverage on the EMF and Epsilon languages
respectively. For the Feature 4.2 Meta-Modeling Strictness, only a couple of
approaches [2,32] support loose, but the rest follow strict meta-modeling. Only
few approaches prefer to define level number at model elements, while in others
it is indicated through the potency of the model.

Challenges and trends. The Feature 2.1 Linguistic Meta-Model Plug-in
Mechanism is addressed only by OMLM. This feature provides a flexibility of
the linguistic meta-model extension for models with domain specific linguis-
tic elements. The multi-level modeling can attract more attention and users
by applying the approaches in real-life industry models (Feature 6), which is
limited with a couple of approaches [25,19] at the moment. In terms of multi-
level modeling patterns, few tools support the element classification. Addressing
Feature 4.3 Implementation Aspect at Meta-Model Level provides an ability to
explicitly capture the mapping of the multi-level meta-model to an existing pro-
gramming language and multiple advantages such as decoupling the multi-level



framework from the implementation language, comparing of implementations in
different programming languages and automating code generation. Similarly, the
Feature 4.4 Additional Modeling Features need more attention, while we have
limited support for Feature 4.4.2 Customized Meta-Modeling Facilities.

User guidance and support. Users from two-level modeling technical
space can orient their decisions based on the import and export features of
the tools, so that they can import their original two-level models to benefit from
multi-level modeling. Another criterion that defines usability is Feature 5.2 Tool
Notation, the visual (GUI) based tools are more attractive for users than textual
notation based ones. The most of the existing verification languages in multi-
level modeling tools are based on OCL, such as DeepOCL [4] and EVL [24],
which attract users with OCL experience. However, non-OCL based languages
are also interesting for users who are interested in futures, such as reasoning and
querying facilities in Flora-2, which are not addressed in OCL based verification
languages.

Application area of the comparison framework. The tool comparison
can benefit to discover and exchange features between approaches and tools, to
make their benefits (e.g. GUI or reasoning power) available across approaches.
In addition, as we suggest in conclusion, the criteria can be a starting point for
the evaluation criteria for multi-level modeling tool contest.

4 Related work

We have referred to multi-level modeling characteristics and features to build
the comparison criteria. To date, several reviews of multi-level modeling ap-
proaches have analyzed multi-level modeling approaches from different perspec-
tives [30,31,5,33,35]. A comparison presented by Atkinson et. al [5] define the
minimum core criteria for an approach to be called as multi-level and deep mod-
eling: classification relationships, type and instance dual facets and a mechanism
for deep characterisation. Rossini et al. [33] define the criteria based on the ex-
pressiveness and usability of the examined modelling solutions, and compare
two-level and multi-level modeling in a real life example, CloudMF, against the
criteria, such as language size, OCL complexity, precision, flexibility, extensibil-
ity and tooling. Another criteria by Neumayr et al. [31] have been defined based
on the making domain models more simple, concise and flexible. This criteria
was extended by locality, decoupling of relationship semantics and multiple cat-
egorization by the SLICER framework to cover aspects of joint meta-models in
a an interoperability scenario [35]. De Lara et al. [25] presented five multi-level
modeling patterns and additional modeling features, which have been reused in
our domain modeling criteria. These criteria are goal-driven. Similarly, we also
define our criteria towards the research challenges and trends, and user decision
support in multi-level modeling approaches and tools. Differently from these re-
views, we consider the features of multi-level modeling design choices mainly
from three core perspectives, language engineering, domain modeling and tool
support.



5 Limitations and Conclusion

The feature hierarchy can be regarded as a course-grained representation of the
domain. Its comparison results into the ’supported‘, ’semi-supported‘ and ’not
supported‘ options only. In order to turn the comparison into an evaluation
framework, we need to attach a respective weight number for each criterion to
calculate the overall evaluation number of an approach or tool.

We have presented a comparison framework for multi-level modeling based on
a feature hierarchy and compared the relevant approaches and tools to highlight
research challenges. It supports end users in their decisions about multi-level
modeling approaches and tools. To elaborate the comparison into an evaluation,
a multi-level modeling tool contest, for example, in the context of the MULTI
workshop [6] could provide an interesting environment for such an evaluation.

Acknowledgements

This research was supported by the South Australian Premier’s Research and
Industry Fund (PRIF).

References

1. Thomas Aschauer, Gerd Dauenhauer, and Wolfgang Pree. Representation and
traversal of large clabject models. In MODELS, pages 17–31. Springer, 2009.

2. Timo Asikainen and Tomi Männistö. Nivel: a metamodelling language with a
formal semantics. Software & Systems Modeling, 8(4):521–549, 2009.

3. Colin Atkinson. Supporting and applying the uml conceptual framework. In UML,
pages 21–36. Springer, 1998.

4. Colin Atkinson and Ralph Gerbig. Melanie: multi-level modeling and ontology
engineering environment. In Proc. of 2nd Modeling Wizards, page 7. ACM, 2012.

5. Colin Atkinson, Ralph Gerbig, and Thomas Kühne. Comparing multi-level mod-
eling approaches. In MULTI 2014, page 53, 2014.

6. Colin Atkinson, Georg Grossmann, Thomas Kühne, and Juan de Lara, editors.
Proc. of MULTI Workshop co-located with ACM/IEEE MoDELS 2015, 2015.

7. Colin Atkinson and Thomas Kühne. The essence of multilevel metamodeling. In
UML 2001, pages 19–33. Springer, 2001.

8. Colin Atkinson and Thomas Kühne. Reducing accidental complexity in domain
models. Software & Systems Modeling, 7(3):345–359, 2008.

9. Don Batory. Feature models, grammars, and propositional formulas. 2005.
10. Victorio A Carvalho, João Paulo A Almeida, Claudenir M Fonseca, and Giancarlo

Guizzardi. Extending the foundations of ontology-based conceptual modeling with
a multi-level theory. In International Conference on CM. Springer, 2015.

11. Krzysztof Czarnecki and Simon Helsen. Feature-based survey of model transfor-
mation approaches. IBM Systems Journal, 45(3):621–645, 2006.

12. Mohamed Dahchour, Alain Pirotte, and Esteban Zimányi. Materialization and its
metaclass implementation. IEEE TKDE, 14(5):1078–1094, 2002.

13. Andreas Demuth, Roberto E Lopez-Herrejon, and Alexander Egyed. Cross-layer
modeler: a tool for flexible multilevel modeling with consistency checking. In Proc.
of ESEC/FSE 2011, pages 452–455. ACM, 2011.



14. Andreas Demuth, Markus Riedl-Ehrenleitner, and Alexander Egyed. Towards
Flexible, Incremental, and Paradigm-agnostic Consistency Checking in Multi-level
Modeling Environments. In MULTI 2014, page 73, 2014.

15. Sebastian Erdweg, Tijs van der Storm, Markus Völter, Laurence Tratt, Remi
Bosman, William R Cook, Albert Gerritsen, Angelo Hulshout, et al. Evaluat-
ing and comparing language workbenches: Existing results and benchmarks for
the future. Computer Languages, Systems & Structures, 44:24–47, 2015.

16. Carlos A González and Jordi Cabot. Formal verification of static software models
in MDE: A systematic review. IST, 56:821–838, 2014.

17. Cesar Gonzalez-Perez and Brian Henderson-Sellers. A powertype-based metamod-
elling framework. Software & Systems Modeling, 5(1):72–90, 2006.

18. Patrick Hayes and Christopher Menzel. A semantics for the knowledge interchange
format. In IJCAI 2001 Workshop, volume 1, page 145, 2001.

19. Muzaffar Igamberdiev, Georg Grossmann, Matt Selway, and Markus Stumptner.
An integrated multi-level modeling approach for industrial-scale data interoper-
ability. Software & Systems Modeling, pages 1–26, 2016.

20. Wolfgang Klas and Michael Schrefl. Metaclasses and their Application: data model
tailoring and database integration. Springer Science & Business Media, 1995.

21. Ole Klokkhammer. A diagrammatic approach to deep metamodelling. Master’s
thesis, Department of Informatics University of Bergen, 2014.

22. Thomas Kuehne and Daniel Schreiber. Can programming be liberated from the
two-level style: multi-level programming with DeepJava. In ACM SIGPLAN No-
tices, volume 42, pages 229–244. ACM, 2007.

23. Yngve Lamo, Xiaoliang Wang, Florian Mantz, Oyvind Bech, Anders Sandven,
and Adrian Rutle. DPF workbench: A multi-level language workbench for MDE.
Proceedings of the Estonian Academy of Sciences, 62(1):3–15, 2013.

24. Juan Lara and Esther Guerra. Deep meta-modelling with MetaDepth. In TOOLS
2010, volume LNCS 6141, pages 1–20. Springer, 2010.

25. Juan De Lara, Esther Guerra, and Jesús Sánchez Cuadrado. When and how to
use multilevel modelling. ACM TOSEM, 24(2):12, 2014.

26. Tihamér Levendovszky, László Lengyel, Gergely Mezei, and Hassan Charaf. A sys-
tematic approach to metamodeling environments and model transformation sys-
tems in VMTS. Electronic Notes in Theoretical Computer Science, 2005.

27. John Mylopoulos, Alexander Borgida, Matthias Jarke, and Manolis Koubarakis.
Telos: Representing Knowledge About Information Systems. ACM TOIS, 1990.

28. Bernd Neumayr, Katharina Grün, and Michael Schrefl. Multi-level domain mod-
eling with M-objects and M-relationships. In Proceedings of the Sixth Asia-Pacific
Conference on Conceptual Modeling-Volume 96, pages 107–116. ACS, 2009.

29. Bernd Neumayr, Manfred A. Jeusfeld, Michael Schrefl, and Christoph Schätz. Dual
Deep Instantiation and Its ConceptBase Implementation. In Proc. of CAiSE 2014,
LNCS 8484, pages 503–517. Springer, 2014.

30. Bernd Neumayr and Michael Schrefl. Comparison criteria for ontological multi-
level modeling. In Dagstuhl Seminar on Conceptual Modelling. GI, 2008.

31. Bernd Neumayr, Michael Schrefl, and Bernhard Thalheim. Modeling techniques
for multi-level abstraction. In The Evolution of Conceptual Modeling, pages 68–92.
Springer, 2011.

32. Bernd Neumayr, Christoph G Schuetz, Manfred A Jeusfeld, and Michael Schrefl.
Dual deep modeling: multi-level modeling with dual potencies and its formalization
in F-Logic. Software & Systems Modeling, pages 1–36, 2016.



33. Alessandro Rossini, Juan de Lara, Esther Guerra, and Nikolay Nikolov. A com-
parison of two-level and multi-level modelling for cloud-based applications. In
Modelling Foundations and Applications, pages 18–32. Springer, 2015.

34. Alessandro Rossini, Juan Lara, Esther Guerra, Adrian Rutle, and Uwe Wolter. A
formalisation of deep metamodelling. Formal Aspects of Computing, 26(6):1115–
1152, 2014.

35. Matt Selway, Markus Stumptner, Wolfgang Mayer, Andreas Jordan, Georg Gross-
mann, and Michael Schrefl. A conceptual framework for large-scale ecosystem
interoperability. In Conceptual Modeling, pages 287–301. Springer, 2015.

36. Dániel Varró and András Pataricza. Vpm: A visual, precise and multilevel meta-
modeling framework for describing mathematical domains and uml (the mathe-
matics of metamodeling is metamodeling mathematics). Software and Systems
Modeling, 2(3):187–210, 2003.

37. Bernhard Volz and Stefan Jablonski. Towards an open meta modeling environment.
In Proceedings of the 10th Workshop on Domain-Specific Modeling. ACM, 2010.


	A Feature-based Categorization of Multi-Level Modeling Approaches and Tools
	Introduction
	Comparison criteria
	Language engineering perspective
	Domain modeling perspective
	Tool support perspective

	Comparison of approaches and tools
	Related work
	Limitations and Conclusion


