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Abstract. The main goa of the paper is to show that wavelet transforms and
packets have the multiparametric representation in the form of a product of the
rotation Jacobi matrices. These representations we call the third and the fourth
canonical multiparametric form. Each multiparametric wavelet transform
(MPWT) depends on severa free Jacobi parameters. When parameters are
changed multiparametric transform is changed too taking form of all known and
unknown orthogonal wavelet transforms. It gives unified approach to describ-
ing awide set of cyclic orthogona wavelet transforms and endows with adap-
tive properties of those transforms.
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1 I ntroduction

The wide class of orthogonal wavelet transforms WT can be defined by two sets of
coefficients 1, 2: h,, h,, ..., h_, and g9,, 9,, ..., 9,4, where L=2D isan even

number. In fact WT is determined only by a set of h-coefficients h,, h,, .....h ;,

since the second set of coefficients is usualy assigned according to the rule
go=h_, 9,=-h_,, ..., 9,,=-h,. For this reason we will designate wavelet

transformas WDT,, [ hy,h,,....h ., ].

LRI ]
Coefficients h,, h,,...,h _, depend upon each other, because changing any coefficient

from them requires changing the rest ones, if we wish are stayed in the orthogonal
class of wavelet transforms. The coefficients, which we can change independently of
one another, staying wavelet transform in the class of orthogonal transforms, will be
called parametersin this paper.

We will prove that multiparametric presentation of wavelet transform exists and that
any orthogonal wavelet transform dependson D angle-parameters ¢, @, ..., @p_;:

WDT, [ ho,hy,....h , |=WDT,.[05,0,...05 ], 1)
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where L=2D. Letm= Jlog,2D[ be the smallest positive integer such that
m-1 m n-m+l
2" <2D<2". Let WDT,[hyhy..h )= Il (AW, 4lhghyh @)1

r="

be arbitrary cyclic wavelet transform, written in stairs-like form.

2n 72n—r+l}

2 Third canonical form of MPWT

2.1 Multiparametric presentation of atomic wavelet transforms

In order to find multiparametric form of wavelet transform we will use the Jacobi
rotations. For that we should define the (2" x2") sparse rotation matrix on an angle ¢

inthe plane spanned on i and | basis vectors, where ¢ =cos(¢) and s=sin(¢):
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The wavelet transform WDT,, is factorized into a product of sparse matrixes, named
stairs-like atomic wavelet transform AWT,, [hg,h,,...,h, , |. We will multiply the
wavelet transform matrix AWT,, [hy,h,,....,h, ;| by CS (p) matrix sequentially

with such choice of angles 17 that product
CS, ;. (@)--CS_ j () AWT [ho,hl,---,hu] will be permutation matrix or unit ma-

trix. As an example, we have taken the atomic Daubechies-6 (8x 8)-matrix:

hO 1 2 3 h4 h5
h4 h5 0 1 hZ h3
h, h, h, h h, h, (3

AWT,[ hg,h,,h,,hg,h, by | =

h, —h, h, —h, h —h,
1 7ho hs 7h4 h3 7h2
h, —h, h,  —h, h, —h,

The angle ¢, can be chosen such away that the coefficient h, =0 in the zeroth and
fourth rows in the left product of matrix (3) by CS, ,(¢,) . In this case coefficient h,
will be zero in the same rows too. That is, coefficients are zeroed by couples.



h h h
CSO,A((”O)'AWTs[hovhlvhzvhsthrhs:': ; > : . ) (4)

if the angle s chosen such that ¢h,—s,h, =0, where ¢, = cos(gp, ) and s, =sin(g, ).

CS;7(95) - CS;5(05) - CSy5(5) - CSy 4 (95) - AWT, I:hov hy, hy.hy,hy, hs} =
Mo b hy g
o hi hy g
Mo hy hy g
h, i h, hy i h
Y 3 R ETE T S | = AWT,[ b, b, b, b, ).
h, i =h, i hy i -hy
h, i —hj h,  —H,
h, -h, h :-hj

©®)

As aresult we get a new atomic matrix AWT,[ hg,h;,h;,h; | with four coefficients.
To get the atomic matrix with two coefficients we should iterate foregoing procedure:
CSy7 () -CS;6(%1) -CSy5(0)-CSy4 (@) - AWT, [y, b, b by | = AWT, [ e, b . (6)

Reiteration of this procedure on matrix AWT,[ h,hy| resultsin:

CS,+(#,) CSy6(9,)-CS;5(0,)-CS, 4 (,) - AWT, [ 5, by | = B, @

where P, is a quasipermutation matrix (there are only +1 or —1 in every row and in
every column of it). Asthe final result we get:
[Csm (®,) 'CSO,6(¢’2) 'C83,5(¢’2) 'C82,4(¢2)] :
[ CS(91)-CS35(91) - CS,5(1)-CSp4(e2) |-
[CS1(90)-CS,6(#)-CSy5(90) - CSy () | AWT, [ Do Py, g,y ] = P (8)

From here we obtain the multiparametric representation of the atomic wavelet trans-
form matrix:



AWT, |:hov hy.h,.hs,hy, hs] = |:C33,7(_¢)0) “CS, (%) - CS5(—90) - CSO.4(_¢O):| :
'[CSOJ (@) -CS;6(e1) - CS, 5(e) - CSL4((/71):| : 9
~|:CSL7((p2) -CSy6(92) - CS;5(92) - CSM((pz)] R=Ty (_(Do) ) Tsl(_(pl) Tg (_¢2)' P

where ¢ =cos(g, ), s =sin(g; ), =012 and every matrix T, (¢, ) is the product
of the following sparse rotation sin/cos— matrixes:

Tg(("o ) Csa,7(¢7o ) Csz,s(("o ) CSl,s(‘/’o ) CSO,4(‘/’0 ) )
Tal(¢o ) = CSOJ((PO ) CS3,6((00 )Csz,s((”o ) C81,4(¢’o ) ) (10)
Taz(% ) = Csm(% ) Cso,a((”o ) CSs,s((Po ) Csz,4(¢o ) .

Let us clarify regularity in the sequences of index’s couples. If r isanumber of an
iteration within atomic function in multiparametric presentation and i is a number of

the matrix T;n(—(pi ), the rule of index’s couples generating could be defined as fol-

lows: (k ® i,k+2”").
2"*[

0,4 14 2 4
15 2,5 35
2,6 36 0,6 (11)
37 0,7 17
0 0 D 0 0 0
(k) (k+4) (ke1) (k+4) (ke2) (k+4)

We will get the same results if (16x16)-matrix AWT,g[hy,h,,h,,hy,h,,hy] is cho-

sen as the source atomic transform matrix with the identical set of coefficients. In
order to zero the coefficients let us apply foregoing procedure to this matrix (compare
the result with (9)):

To( 02 )Ta( 22T 26 )AWT,6 [ o h, by by | =Py,

(12)
AWT16|:h h,,h,.hs.h,h :| 16( (/’O)Tlle( (pl)Tle( (Pz)le

where T —matrixes are the products of multiplying of CS-matrixes. This result is
genera and valid for any (2’ x 2’) atomic matrix:

P, :(i—jﬂ(@ )J-AWT [Ny P ],

AWT[h,hy,....hys ] = (.H T, (- )j (13)
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It is the multiparametric representation of the atomic orthogonal wavelet transform
matrix.

2.2 Multiparametric representations of wavelet transforms and wavelet
packets

Let’s begin with consideration of (16x16) Daubechies-4 wavelet transform. In the

meatrix form it is the product of the following atomic matrixes:

WDT, hy,h,, by, hy | =[AWT @1, [AWT,@I,][AWT,]. (14)

Every atomic matrix AWT,, AWT,, AWT,, can be represented in multiparametric
form:

AWT, = TB(*(”O)TA% (*Wl) Py AWT, = Tz?(_(/’o)Tal (*(01) Pe»

(15)
AWT,, = T3(-0, ) T (-0, ) Prs-

Therefore,
WDT, [h07 hy,h,, h3:| = I:Tf(*(ﬂo)-ri(*qﬂl) P, ol 12]‘[1-;(_400)1—; (*‘/’1) R &l 8:|‘

[ T30 ) Tis (1) Ps | =K]jTl(—¢i)) P ®|12}'

Kfp (- ng @laH[ﬁﬂe(—%)}aﬁ}. (16)

It is two-parametric form of Daubechies-4 wavelet transform. It is possible to obtain
al the transforms of WDT,q[ hy,hy, h,,h, | -type by changing the angles ¢, and ¢,

All the atomic matrices in multiparametric representation of wavelet transform are
characterized by the same set of angle-parameters. And all the angles have equal val-
ues in each atomic matrix and have to be chosen synchronously. Of course, it is possi-
ble to use different angles sets in different atomic matrixes and to change them not
synchronously, but in this case we will get heterogeneous wavel et transforms.

The most general expression for multiparametric presentation of wavelet transform is
the following:

WDTZH[I})'h""’hZD—l] - nﬁ |:( H T on- r+1( (DI J on-— r+l®| 2n2n—r+l:|' (17)

-1

where @ is addition modulo 2™ . The last expression presents any wavelet trans-
2!1*[
form in multiparametric form. We will call it the third canonical form.



The classical wavelet transform with coefficients hy,h,,...,h,; , is constructed from
atomic wavelet transforms according to the following rule:

n—m+1

WDTzn [h)' hl’ b hZD—l] = H |:AWT2n—r+1[hD' hp Rt} hZD—l]@I 2n72n—r+1 ] (18)

r=1

The atomic transform is used only once within each iteration in (18). In fact, the atom-
ic transform could be repeated not more then 2"/2""=2"" times Let

S =(5,8,.§ - Sy4) beabinary 2" -digital integer. Every binary digit sf con-

trolsthe t" position of the matrix AWT inthe r™ iteration sparse matrix.

2n—r+1
AWT .., § =
AWT §, ={ L 3 - L (19)
o1 S - 0

All such matrices form a packet of atomic matrices

2r—1
AWPS = (JBAWTSr AWTE  eAWTS @ @AWT.Z: (0

on-r+l on-r+l on-r+l on-r+l

Using atomic packetsAWT s

on-r-1?

we obtain discrete controlled wavelet packet

n-m+1

My hyees 4] = H AWPZsr =

gl

2.
WDPS,

n-ms1| 2 -1 n-m+1 (21)
_ H{C—BAWTT ,ﬂ}_ H[AWTq SAWTS .. @AWT%”}

on-r+l on-r+l on-r+l
r=1

with discrete binary parameters  s'=(s), s’ =(5,}), $° =(s), 8,5, 5), ..,
ST (S )

g
But AWT2n = (H o1 (0 ) P;:_Hl. Substituting this expression in (21),

i=D-1
we obtain the third multiparametric representation of wavelet packets

8132 e n-mi1| 2 1 0 §
WDP """ [ho h,... hZD “ H t= 1(1_[ on- r(-9) J st't“ ra |- (22)

r=1 1

Multiparametric wavelet packets represent a generalization of multiresolution decom-
position and comprise the entire family of subband (tree) decomposition. Wavelet
packet best basis selection can be very efficient realize with help of multiparametric
wavelet packets.



2.3  Theinverse multiparametric wavelet transform

The direct multiparametric wavelet transform (MPWT) is defined by expression;

n-m+1 D-1

WDTZH [hO’ Il' T hZD—l] = H |:[HT2Dn_rl:f(_¢Dll)j Pzn—r+1 ®I o _on-r+1 :| (23)
r=1 i=0

This is the orthogonal matrix and so its inverse matrix coincides with its transpose

one. Transposing of the left and the right sides of equation (23) gives expression for

inverse matrix. To do this operation we rewrite expression (23) in more compact

form:

n-Jiog, L[+1

WDTzn = H |:A WT2n7r+1 ®I N _on-r+1 :| (24)
r=1
Then
n-Jiog, L[+1 ' n
t t
WDTznz( H [AWT, . @, .. ]J = ]1|_[L[[AWT2®I2",2,]. (25)
r= r=flog,
D-1 i
But AWT, :[HTzr (_¢D_i_1)} P, . therefore
M
AWT =P T[T, (), (26)

since [T(-¢)] = T(p) . Substituting (26) into (24), we get

n D-1
WDT '=WDT = H[P; 1'0[T2r (@)el, } (27)
q i=

r=

Every matrix T'. .., (-¢,) isthe product of commutative rotation CS -matrixesin the
2

case of direct wavelet transform:

) 2n*|' 1
T;::l(*wofifl)z g CSk 6 ik (@51 4)s
? (28)

21,

T,)=]] cs )

k ® (D-i-1)k+2" 1 (¢
2|’—l

Substituting (28) into (27), we get the final expression for inverse wavelet transform:



WDTZEl [hm hl’ Ll hZD—l] = WDTz;l [¢70! Dpseees ¢7D-1] =

p-1214 (29
—H{P;H [1cs, Py m]

i=0 k=0

where @l is addition modulo 2'*.
2r=

In much the same manner we get the expression of inverse wavelet packets:

WDPZ;].[(DO’q)l'""(DD—l] = ﬁ @{Pt H H CS k@ (D 1) k2" 1(@)] (30)

r=Jlog, L[ =1 i=0 k=0

3 Fourth Canonical Form of MPWT

3.1 Thedirect multiparametric wavelet transform

The atomic matrixes, which we took up below, were recorded with the “normal” order
of rows. That means the averaging h-rows is situated before the differencing g -rows

within the atomic matrix. The fourth canonical form of MPWT can be found with
using the cyclic presentation of atomic matrix:

h h b h h R
% 9 % O 9 G
h b h h h R
ATy [y ] = % G iﬁ :‘13 ;’2“ %zPBAWTB[hD,q,...,Q], (31)
9, G5 9% 9 9,09
h b h h h h
9 9 9 s % G

where P,, is the permutation matrix of ideal 2-adic mixing, which swaps the rows of
atomic matrix in stairs-like form AWT , [h,h,,...,h] according to the rule

0 1.2 3 4. 2-2 241
027 1 27+ 2 - 2'112r

(32)

In order to find third canonical form of multiparametric wavelet transforms we used
the Jacobi rotation matrix CS,j(@). In this case to find fourth canonical form of

MPWT we will use the sparse rotation matrix with reflection in the plane spanned on
i and j basisvectors. We will designate this matrix as CSiFfj (p) anditsdefinitionis:



1 0 0 0

Csf (o) = : A o 5
j O -8 i+w-i=—Ci--- O
0 - 0 -« 0 - 1

We will multiply matrix CAT,, [h,,h,...,h,, ;] sequentially with rotation-reflection
matrixes CSg, (¢,), CS5(¢),---»CSip 5,04 (9,) choosing angles ¢ in such way
as to product will be the matrix CAT, [, h,...,h; .] with the new set of coeffi-

cients, which gquantity less by two then in the source matrix. As an example we take
the atomic transform CAT,[hy,h,....,hy] above mentioned in (31).

CSE?((pO)CS?S(gaO)CS§3(¢O)CS§1(¢O)'OAT8[“) ----- ] =
9o G 9 G
h hh R

’ ’

Oo i 0 O, O
_ NoW R R
) o g o g |- AT K]
SRR o

9, : O 9o
b ih iR

(34)

Let us to iterate foregoing procedure on the just gotten new atomic matrix. As a result
we get a block-permutation matrix with the orthogonal (2x2) blocks:

CS5 () CS5 () CS (@) CSE (o) - AT, [, W, b, ] = CATT, Y] (35
If we will use appropriate rotation-reflection matrixes, we could transform this matrix
to permutation one:

ngl( (23 ) CSGR7( (23 ) CSZ;( (23 ) CSst((Pz) -CA Ts"[ hy, hl”] =
-1

-1

-1 36
_ Ll (36)




where C2 isthe matrix of cyclic modulo 8 shift on two positions. Thus,

Te(0:) To(0) Te(90 ) ATe [Fy ... ] = =C5, (37)

where T.,(¢,) is product of rotation-reflection matrixes CS}, (¢,):

T82(¢72) = CS(’?l (¢2)CSGR7 ((Pz)CSZs (@2)C82Ra ((92 )1
Tsl(("l):CS7R0 (¢1)CS5RG ((01)0354 (¢1)CSJF; (¢1)' (38)
TBO((/’O) = CSS? (¢0)CS4RS ((po)CSZRs ((DO)CS; (‘/’o)-

Since  matrixes T;n(goi) are both symmetric and orthogonal, then
[T;((p,)] =T.,(¢ ). Therefore

QAT [y, h.o K] = QAT [0, 01,0 ] = (-1) o) To(@a) Te(0)- G5, (39)
so the atomic wavelet transform matrix can be represented as the following product:
AWT, [y, 0] = AWT, [0, 01,0, = (-1)- Py [ To(25) Ta( ) Ta(2) |- C3- (40)
Let usto construct the multiparametric form of wavelet transform WT [hy,h,...,h] .

Since WT[h,...h J5 AWT[h,...h ]I, JAWT[h,...h], then

WT.

5[00 2001 ()P T 2) i) Ti ) | C20, |

(41)
) |:(’1)' P16'|:T1?3( ?) Tlle((/’l ) Tle((oz )]'Clze :| .

Thisresult is general and valid for any (2"x2") atomic matrix:
AWT, [ e P = AWT, [P0 P 051 ] = ( |:HT (#) :| Canil =

{H H Cs], |0 2K @(2k+1) (¢’| ):|'C2Dnl- (42)

i=0 k=0

Taking into account (18), we get the following multiparametric presentation of cyclic
orthogonal wavelet transform, which we call the fourth canonical form:

n-Jlog, L[+1
WDT [y ueso] = (4 T1 [[ AT o }c}@u} @)

r=1

Similarly, we get the expression for MPWP, substituting (42) into (24):



n-Jiog, L[+1 2r
WDPZn[goO’wl""’q)D—l]: H t@( - 2nrl|:HTlnr1 :|C; }1] . (44)

r=1

3.2 Theinverse multiparametric wavelet transform

The matrix AWT ,[@,,¢,....¢,_] is the orthogonal matrix and its inverse matrix

coincides with its transpose one. Therefore, in order to get expression for inverse mul-
tiparamteric atomic wavel et transform, we should transpose the left and the right sides
of the equation (42):

D-1 t
AWngl[%,gpl,...,(prl] =AWT [0 Py 05 1| = { ( Tn ] C;l} =
i=0

(o e T{TTmo] 2= fe T FIme o] |

i=0 i=0

(45)

Since T)""*(¢_;,,) is the product of symmetric and orthogonal rotation-reflection
matrixes CS}, (¢5.1) , then equation [ T2 (¢y .4 ] =Ty, ) isvalid. Hence
t D D17t 2 D-i+1, t
AWT, [05. 01,004 =(-1) '[Czn ] HTzn (@5-ia1) [P (46)
i=0
Substituting (45) into (26) we get the expression for inverse MPWT:
- - a1 D-is1
WDTznl[%,gpl,...,goD_l] = (—1)D- ]1|_[ [{[C; 1} '[I_OITz’ ((%44)}"3; el , } (47)
r=Jlog, L| i=
In much the same manner we get the expression for inverse wavel et packets:

WDPZ:L[(/)O’@D""(DD—J :(*1)D’ ﬁ @[[C; 1:' |:HTD Hl Po-in :|P;rj - (48)

t=1
r=Jlog, L[

4  MPWT compression propertiesestimation

In order to estimate compression properties of multiparametric orthogonal wavelet
transform we have conducted experiments for revealing dependency of spectra’s coef-
ficients entropy E® (¢, ¢....,¢,) on quantity of angle-parameters D and values of

angle-parameters ¢ . We use the entropy of spectra’s coefficients, quantized to inte-



ger values, as the cost function. The form of the dependency E?(¢,,¢,) (case of two-
parametric transform) is shown on figure 1.

Fig. 1. Entropy of spectra E? relativeto parameters ¢, and ¢, for WDT,, [¢,, 9] . Test

image is “Lena”.

Figure 1 show that researched dependency has local and global minimums that cor-
respond the best from the point of view of compression the wavel et transforms.

5 Conclusion

In this paper we defined the new representation of orthogonal wavelet transform,
named multiparametric form of cyclic orthogona wavelet transform. This form is the
product of sparse rotation matrixes and it describes fast algorithm for cyclic wavelet
transforms. Defined representation of wavelet transform depends on finite set of free
parameters, which could be changed independently of one another. For each set of
parameters values we get the unique cyclic orthogonal wavelet transform. All of that
makes the base for uniform presentation of all same transforms.
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