Integrating Matching Services into the Web of Needs

Heiko Friedrich, Florian Kleedorfer,

Soheil Human

Studio Smart Agent Technologies

Research Studios Austria FG
Thurngasse 8/2/16, 1090 Vienna
heiko.friedrich, florian.kleedorfer,
soheil.human
@researchstudio.at

ABSTRACT

Many platforms or marketplaces on the web offer services that de-
scribe supply in certain domains. Users have to search actively and
often multiple times in different closed platforms to find what they
want. This approach produces a lot of overhead for users which can
only to some extend be reduced by recommendations and filtering
for relevant information. The Web of Needs is an open infrastruc-
ture that aims to address this situation. Instead of users searching
actively, they express and publish their needs (supply and demand)
as linked data documents and get notified when suitable matches
have been found. For this approach to work, need documents must
be matched with each other by so-called matching services running
in the background. The system allows multiple matching services
to run in parallel that may be tuned for certain domains of needs. In
this paper we describe a prototypical matching service architecture
and explain how it can be extended to integrate custom matching
algorithms into the Web of Needs.

CCS Concepts

eInformation systems — World Wide Web; E-commerce infras-
tructure; eHuman-centered computing — Collaborative and so-
cial computing systems and tools; eComputer systems organi-
zation — Distributed architectures;

Keywords

linked data, semantic web, electronic marketplaces, matching, in-
stance matching, matchmaking

1. INTRODUCTION

The Web of Needs [7] is an open source system [5] which can
be used to create distributed and decentralized marketplace-like ap-
plications that are based on common protocols and linked data de-
scriptions for basic entities.

The central notion of the system, in contrast to many current ser-
vices on the web, is not only to represent supply, but also demand of
agents taking part in any kind of marketplace. This explicit repre-
sentation of supply and demand as well as other forms of intended
interaction, like engaging in activities with others or taking action
based on shared criticism, is subsumed under the very general con-
cept of need objects.

Needs are represented as RDF [8] documents that describe their

(©) 2016 Copyright held by the author/owner(s).
SEMANTICS 2016: Posters and Demos Track
September 13-14, 2016, Leipzig, Germany

Christian Huemer
Institute for Software Technology and Interactive
Systems
Vienna University of Technology
Favoritenstrasse 9-11, 1040 Vienna
huemer@big.tuwien.ac.at

semantic content in a standardized but flexible way since arbitrary
ontologies depending on the domain of application can be used. To
create and manage needs, domain-specific applications are required
that interact with the users or other agents. When needs are created,
they are published at so called nodes on the Web where they are
stored and are publicly (but anonymously) available to be matched
with other needs.

Matching of needs is done in order to connect agents with com-
patible needs. Therefore, matching services crawl multiple nodes
to collect the needs, analyze the data, and propose matches between
them. This process happens asynchronously with respect to need
creation, so agents do not have to search actively. Rather, they are
notified if fitting counterpart needs are found. Due to the distributed
and open nature of the system, needs can be matched if they do
not reside on the same node. Likewise, the architecture supports
the integration of multiple mutually independent matching services
that may specialize in different content domains or geographical
regions.

Different people, companies or other parties can take part in this
open setting by providing their own user interface applications (e.g.
websites or apps) to describe needs in suitable domains. Other par-
ties could provide node services to host these needs or matching
services to connect them.

For instance, a user describes a need to organize a business trip
with certain constraints (e.g. price, date, location) to another city.
Matching services provide hints to offers from different domains
like transportation (e.g. plane, train, car renting or sharing), accom-
modations (e.g. hotels or private flat offers) and events happening
in the evening, for example. This way the user could organize a
trip with only one tool, but still have the flexibility to choose from
a variety of offers. We provide components to set up a basic im-
plementation of a Web of Needs application [5, 4] including a user
interface, nodes and matching services that can be customized and
deployed on the Internet.

One of the main benefits of this solution is that all supply and
demand, even from different domains, is explicitly represented and
accessible in a standardized and open way. Thus, spontaneous and
flexible collaboration between all agents in the market could be-
come much easier. Furthermore, matching services could be ap-
plied to search for compatible needs automatically taking away a
lot of effort from human users who mostly have to search every
closed marketplace actively to fulfill their needs.



2. MATCHING DEFINITION

As described in an earlier publication, needs are represented as
RDF documents that can be linked to each other and exchange mes-
sages [6]. General attributes used to describe the content of needs
are title, description, tags, date, price or location for instance. How-
ever, depending on the domain of interest the content of needs can
be described in a flexible way using any kind of ontology.

In this context, matching is defined as the problem of finding
meaningful matches or links between each pair of two needs in the
system. Such a function is sometimes referred to as matchmak-
ing [10] and it is also linked to the term ontology matching and
instance matching [11]. This finding of matches is a dynamic pro-
cess since needs can be created at any time. The matches are ranked
per need based on their score that describes the fit between the two
matched needs on a scale from 0 (bad) to 1 (good). Users can give
feedback about the quality of matches so that the system can im-
prove matching.

We have defined four need types so far: SUPPLY, DEMAND,
DOTOGETHER, CRITIQUE.1 Need types indicate which needs are
suitable for a match. Needs of type SUPPLY represent an offer of
goods or services and should only be matched with needs of type
DEMAND which represent a need for goods or services. Needs of
type DOTOGETHER represent the wish for shared activities with
other people while CRITIQUE represents the need to change some-
thing (in the environment, in politics, etc). Both should only be
matched with needs of the same type.

Whether a match is meaningful depends on the description of
needs in a specific domain. Therefore domain-specific matching
services are needed for different application domains. But that does
not mean that needs should only be matched within one domain.
As described earlier for the business trip planning example, a com-
plex need can be matched with other needs from many different
domains. Since the Web of Needs is designed as an open system,
these domain-specific matching services can be easily integrated as
described in the following sections.

3. INTERFACES

Matching services gather information about needs and publish
hints about possible matches between these needs. A custom match-
ing service can be created by implementing three kinds of interfaces
to communicate with nodes:

e Subscribing to need life cycle events
e Crawling needs

e Publishing hints

A matching service can subscribe to different messaging topics
in order to be informed about need life cycle events and newly cre-
ated needs. A node describes the topics it offers (e.g. need creation,
need activation, need deactivation) for need information updates as
an RDF document that can be downloaded and used by matching
services. After a matching service is subscribed to these topics it
will be informed about all relevant need changes (including need
creation) on a node that happen from now on.

A matching service must be able to learn about needs that were
created before it subscribed to a node’s messaging topics to do a
comprehensive matching of all active needs of a node. Therefore
a node can always be crawled for all the needs it manages. This

Note that more need types can be defined as needed. For such
types to work, an interpretation of their meaning must be shared
between client applications and matching services, however.

crawling is done using HTTP(S) and downloading linked data RDF
need documents iteratively, starting at an index RDF document that
lists all needs managed by this node. Using the publish-subscribe
mechanism in combination with crawling, a matching service is
able to gather all past need information of a node and stay up to
date about newly created needs and need life cycle events.

The main functionality of a matching service consists of calcu-
lating matches between needs and report this information to the
nodes in the form of hint messages. Hint messages have a score
attribute that describes the quality or certainty of the match as a
number between 0 and 1. When nodes receive hint messages from
matching services, they can decide to add this information as RDF
documents linked to the corresponding need documents. This hint
information can be presented to the user who decides to open a
connection to the matched need if he or she is interested in further
communication and transaction.

4. IMPLEMENTATION

Any matching service for the Web of Needs can implement the
three said interfaces to communicate with nodes. In order to sup-
port development of such services, we provide a prototypical im-
plementation [5] of a matching service in Java that can be adapted
to create custom implementations.

A matching service in the Web of Needs will typically be used
in an open and distributed infrastructure and should be able to pro-
cess a lot of needs from different independent nodes. Therefore
the system architecture needs to provide failure tolerance as well
as high scalability by distribution and parallelization of tasks. An-
other architectural requirement is extensibility to allow for multiple
different matching algorithms to be applied in parallel by the sys-
tem.

To meet these requirements, the matching service prototype was
constructed out of loosely coupled components based on the ac-
tor framework Akka [1]. According to the actor architecture, com-
ponents are realized as actors that communicate by message ex-
change.

Send hints to nodes

Subscribe to
Need Topics (JMS)

Crawl Needs

Matching Service
(HTTPS)

(Akka Actor-System)

Hint
Senders

Need Need
Crawler Consumers

Notify about
new needs Hint
Constraint
@l —_— Filter
L Matcher

Save RDF
need data

Hint
Calculate Hints Database

Offline

RelFSiwre Bulk load needs Matcher

Figure 1: Matching service implementation with online and of-
fline matching algorithms

As shown in figure 1 there are actors like need consumers, hint
senders or need crawlers that implement the interfaces to the nodes.
The matching service uses a local RDF data store to hold need
data, received or crawled from nodes for matching. Currently, two
matching algorithms are implemented (online matcher and offline



matcher) that can be plugged into the system on demand to com-
pute matches in parallel and with different strategies. Both of these
matchers forward the computed matches as hint messages to an
internal hint database that keeps track of all the computed hints.
Using that database the hint constraint filter can filter out dupli-
cate hints or apply other constraints. Hints that pass the filter are
actually sent out to the nodes by the hint sender. All these actors
are connected through an event bus where they can subscribe and
publish events inside the matching service.

5. INTEGRATION OF MATCHERS

The first matching algorithm of our prototype implementation
is called an online matcher which means its goal is to compute
matches in real time when needs are created. The correspond-
ing actor subscribes to need events on the event bus and computes
matches for every new need event received. These matches are im-
mediately published on the event bus to be sent to the correspond-
ing node as hint messages. Information retrieval mechanisms, pro-
vided by Solr [2] servers, are used for the matching. Every RDF
need document is converted to JSON-LD [3] and saved to the Solr
index. Matches are computed by automatically generating and exe-
cuting Solr queries from incoming needs. These queries are specific
for the current need and find similar need documents (similar title,
description, tags, date, location etc.) of the appropriate need type
that are already in the Solr index.

The second matching algorithm implementation is called an of-
fline matcher, and is not supposed to compute matches in real time,
but for a bulk of needs in certain time intervals. The need informa-
tion is loaded from the local RDF store by the offline matcher. An
extension [12] of a tensor factorization algorithm called RESCAL [9]
is applied as a link prediction approach to learn from matches with
good feedback in the past and predict possible new matches be-
tween needs. Learning of good matches can be based on multiple
dimensions (e.g. content and date or location constraints). This
computation is more resource and time consuming, but can be a
valuable complement to the online matching, since matches can
be discovered that have been missed by more simple text retrieval
methods. Matches can be published to the event bus the same way
as for the online matcher.

The two described matcher implementations can be plugged into
the matching service dynamically as independent and distributed
components. They apply actors that listen to need changes and send
hint messages on the event bus of the matching service. Further-
more, they can access the common RDF need store of the matching
service. Following this principle, the matching service implemen-
tation can be extended by new custom matchers that apply any kind
of matching approach or focus on a specific domain of need ontol-

ogy.

6. FUTURE WORK

Even though there is already a working prototype implementa-
tion of the Web of Needs, there are still conceptual problems to be
solved when running multiple matching services in parallel in an
open setting. Here is a short overview of topics for future work.

Multiple matching services can generate matches for the same
needs independently of each other and propose them to the cor-
responding nodes. The score of the matches is between 0 and 1
and can be set by each matching service autonomously. Therefore,
comparing scores of different matching services is an open prob-
lem. That means currently there are no explicit common ranking
criteria for matches from different matching services. So either the
nodes or the user application (with the help of the user) would have

to find some kind of intelligent ranking and filtering of duplicates
to not flood the user with too many irrelevant matches.

In an open system everybody can provide matching services and
generate any number of matches including advertisement, spam or
(denial of service) attacks. This problem relates to the one above
because there is currently no way to compare the quality of matches
from different services automatically. Future research has to find
acceptable trade-offs between openness and quality of matches as
well as system performance.

Being able to assess quality of matches across different matching
services automatically, or coupled with user feedback, would also
be a central requirement for building a payment service model for
matching. Matching service providers that create useful hints could
automatically share some profit of successful transactions that their
matching services suggested. Such a model may be a powerful
incentive to build high quality matching services that not only fo-
cus on advertising certain products, but to generate more helpful
matches for users.

7. ACKNOWLEDGMENTS

This work was supported by the Austrian Research Promotion
Agency (FFG) in the COIN project USS WON — Usability, Scala-
bility and Security on the Web of Needs.

8. REFERENCES

[1] Akka. http://akka.io/. Retrieved June 22, 2016.

[2] Apache solr. http://lucene.apache.org/solr/. Retrieved June
22,2016.

[3] Json-1d. http://json-1d.org/. Retrieved August 10, 2016.

[4] Web of needs application image repository on docker hub.
https://hub.docker.com/r/webofneeds/. Retrieved June 22,
2016.

[S] Web of needs source code repository on github.
https://github.com/researchstudio-sat/webofneeds/. Retrieved
June 22, 2016.

[6] Florian Kleedorfer, Christina Maria Busch, Gabriel Grill,
Soheil Khosravipour, Fabian Salcher, Alan Tus, and Erich
Gstrein. Web of needs - a new paradigm for e-commerce. In
Business Informatics (CBI), 2013 IEEE 15th Conference on,
IEEE, volume 1, pages 94-101. IEEE, 2013.

[7] Florian Kleedorfer, Christina Maria Busch, Christian Pichler,
and Christian Huemer. The case for the web of needs. In
Business Informatics (CBI), 2014 IEEE 16th Conference on,
volume 1, pages 94-101. IEEE, 2014.

[8] Frank Manola and Eric Miller. Rdf primer.
http://www.w3.org/TR/rdf-primer/, 2004.

[9] Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel.
Factorizing yago: scalable machine learning for linked data.
In Proceedings of the 21st international conference on World
Wide Web, pages 271-280. ACM, 2012.

[10] Tommaso Di Noia, Eugenio Di Sciascio, Francesco M
Donini, and Marina Mongiello. A system for principled
matchmaking in an electronic marketplace. International
Journal of Electronic Commerce, 8(4):9-37, 2004.

[11] Pavel Shvaiko and Jérome Euzenat. Ontology matching:
state of the art and future challenges. Knowledge and Data
Engineering, IEEE Transactions on, 25(1):158-176, 2013.

[12] Nikita Zhiltsov and Eugene Agichtein. Improving entity
search over linked data by modeling latent semantics. In
Proceedings of the 22nd ACM international conference on
Information & Knowledge Management, pages 1253-1256.
ACM, 2013.



