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Abstract. Taxonomies are becoming essential in several fields, play-
ing an important role in a large number of applications, particularly for
specific domains. Taxonomies provide efficient tools to people by orga-
nizing a huge amount of information into a small hierarchical structure.
Taxonomies were originally built by hand, but nowadays the technology
permits to produce a vast amount of information. Consequently, recent
research activities have been focused on automated taxonomy genera-
tion. In this paper, we propose a novel approach for automatically build
a taxonomy, starting from a set of categories. We deem that, in a hierar-
chical structure, each node should intuitively be represented with proper
meaningful and discriminant features, instead of considering a fixed fea-
ture space. Our proposal relies on two metrics able to identify the most
meaningful features. Our conjecture is that a feature could significantly
change its discriminant power (hence, its role) along the taxonomy lev-
els. Hence, we devise a greedy algorithm able to build a taxonomy by
identifying the meaningful terms for each level. We perform preliminary
experiments that give rise to the usefulness of the proposed approach.

1 Introduction

Taxonomies play an important role in a growing number of application, par-
ticularly for specific domains. Originally built by hand, taxonomies have been
recently focused on their automatic building. In particular, a crucial issue of
taxonomy building is the choice of the most suitable features (e.g., meaningful
terms in textual documents). We deem that, in a hierarchical structure, a node
should intuitively be identified by proper discriminant terms, rather than defin-
ing a sole feature space for the entire taxonomy.

In this paper, we define a novel approach for automatically build a taxonomy,
starting from a set of categories. We adopt two novel metrics, i.e., the discrim-
inant capability and the characteristic capability [1], the former growing in ac-
cordance with the ability to distinguish a given category against others, whereas
the latter grows in accordance to how the feature is frequent and common over
all categories. Our conjecture is that a feature could change its role, depending
on its discriminant power, along the taxonomy levels. We assert that this be-
havior can be exploited for devising an automatic taxonomy building approach.
In so doing, we propose an algorithm able to build taxonomies by identifying



the meaningful terms for each level. In this work, the underlying scenario is text
categorization, where source items are textual documents (e.g., webpages, on-
line news, scientific papers, or e-books), and the features are the terms in the
documents.

The rest of the paper is organized as follows: Section 2 presents the back-
ground and the related work on taxonomy generation; Section 3 describes the
discriminant and characteristic capabilities, whereas in Section 4 the proposed
algorithm is described and detailed; experiments are reported in Section 5, while
Section 6 ends the paper with the conclusions and the future work.

2 Background

Nowadays, taxonomies are indispensable to a huge number of applications. For
example, in web search, organizing domain-specific queries into a hierarchy can
help to better understand the queries and improve search result [13], or to im-
prove query refinement [11]. Taxonomies, originally built by hand, have been
recently focused on their automatic generation. Several works have been devoted
to taxonomy induction, in particular with respect to automatically creating a
domain-specific ontology or taxonomy [7-9]. Several works have been based on
hierarchical clustering algorithms. In particular, there are two main approaches
of hierarchical clustering: agglomerative (bottom-up) and divisive (top-down).
The former regards each data item as a cluster, and clusters are recursively
merged; the latter considers the entire dataset as a cluster, and then clusters are
recursively split. Both approaches end when a stop criterion is yielded.

The hierarchical agglomerative clustering (HAC, hereinafter) has been widely
adopted for building hierarchies, e.g., in the work of Li et al. [6], that proposes
an algorithm able to build a dendrogram (basically, a binary tree). On the other
hand, further works proposes divisive approaches, as in the work of Punera et al.
[10]. Chuang et al. proposed a hybrid approach, in which, essentially, the binary
tree obtained from HAC is modified by a divisive task in order to obtain a wide
tree with multiple children [5].

An important task for taxonomy building is to recognize the most meaning-
ful features. Our insight is that, due to the hierarchical structure, each node
intuitively should be represented with proper meaningful terms, instead of con-
sidering a fixed vocabulary for the entire structure. we deem that each document
collection is unique, making useful to devise methods and algorithms able to au-
tomatically build a distinct list of meaningful features for each collection.

3 The Adopted Metrics

In this Section we describe the adopted metrics and their properties.

3.1 Discriminant and Characteristic Capabilities

The metrics have been devised for both classifiers performance assessment and
feature selection [1]. We apply these metrics for feature selection, as they are



able to evaluate the discriminant (§) and characteristic () capabilities of each
feature.

In the underlying scenario of text categorization, é measures the ability of a
term to distinguish a given category C' against others, whereas ¢ measures to
which extent a term is pervasive in the given set of documents. in formula:
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where a generic term ¢ contained in a document represents the binary feature
under analysis, meaning that it can be assume two values, depending on the
presence or absence in the document. The meaning of each component in the
formulas are the following: #(¢, C') is the number of documents of C' containing ¢;
#(t, C) is the number of documents of C' containing t; #(C) is the total number
of documents of C; #(C') is the total number of documents of C.

Let us recall that in [1] definitions are given for a binary problem, meaning that,
for a given class C, the alternate category C is the union of all the categories
except C.
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Fig. 1: The regions of the space.

3.2 Terms Roles

Assuming both ranging from -1 to +1, the metrics described by formulas 2 and
1 show an orthogonal behavior; furthermore, it has been proved that the ¢ — ¢
space is constrained by a rhomboidal shape [1]. In this context, a term plays a



distinct role in each category, depending on the rhombus region in which the
term falls.

Important terms for text classification appear in upper and lower corner of the
rhombus in Figure 1, as they have high values of |§]. In particular, a high pos-
itive value of ¢ (the region marked as 1 in the Figure 1) means that the term
frequently occurs in C' and is rare in C; ideally, § is +1 when the term occurs
in all documents of C' and no documents of C' contain it. Conversely, a high
negative value of J (the 5~ region) means that the term frequently occurs in C
and is rare in C; ideally, § = —1 means that all documents of C' contain the
term, and no documents of C contain it. As for the characteristic capability,
terms that occur barely on the entire domain are expected to appear in the left
corner of the rhombus (¢7), while stopwords are expected to appear in the right
handed corner (¢™). Ideally, ¢ = +1 when the term occurs in each document of
the entire domain, whereas ¢ = —1 when the term is completely absent in the
domain. Figure 1 outlines the expected behavior for all cases.

Terms falling in ¢ do not necessarily represent typical stopwords only (i.e.,
common articles, nouns, conjunctions, verbs, and adverbs). Rather, also domain-
dependent stopwords are located in that area [3].

Moreover, theoretically, if a term has a zero value for both § and ¢ in a
given category C| it is equally distributed in the domain in this way: half of C
documents contain the term, and also half of documents of the alternate category
C contain the term. If a term is projected close to the origin of the space, there
is uncertainty in considering the term as stopword, irrelevant, or discriminant’.

In a previous work a preliminary analysis on how each feature changes its
role along taxonomy nodes has been performed [2], showing that a discriminant
term tends to become irrelevant when moving up in the taxonomy path.

Furthermore, a domain-dependent stopword becomes discriminant in the up-
per levels, giving rise to the relevance of such terms.

4 Methodology

The algorithm proposed in this work is based on a bottom-up approach for build-
ing a hierarchy tree, starting from a set of leaf categories over a corpus of docu-
ments. The information needed to initialize the algorithm is, for each category:
a) the number of documents falling into the category and b) for each term ¢ in
the corpus, the number of documents containing ¢.

In the previous work about the term roles in a taxonomy [2] the metrics are
computed by considering a binary problem, in which the alternate category has
been considered as the union of all siblings of the positive node. The devised al-
gorithm adopts a generalization to a multi-category case. After these preliminary
insights, we present our algorithm for taxonomy building.

! An analysis of this region is a part of future work.



4.1 Identifying Characteristic and Discriminant Terms

As discussed in the previous section, the properties of a term depend on which
region of the ¢ — ¢ rhombus it falls. Let us define two regions: the characteristic
(A,) and the discriminant (Aj) areas. In this preliminary study, we simply
identify the areas by the following schema:

Fig.2: The A, and A; areas.

We say that a term is characteristic (discriminant) of two categories C; and
C; if it falls in the characteristic (discriminant) area:

1 (p,6) € Ay
D(t; OZ,O = . 3
(% 3) {O otherwise (3)
1 (9075) € A5

At;Cy, C) = { (4)

0 otherwise

These equations need to be generalized for a hierarchy. We define a hierarchy
as a series of level represented by a layer of categories. Each layer contains
the categories belonging to the respective level of the hierarchy, grouped by
their parent category. For example, if a particular level contains the categories
A, B,C,D, E,and A, B, C have X as parent category and D, E have Y as parent
category, the layer for that level will be defined as: {A, B,C},{D, E}. We call
{A, B,C%} and {D, E} siblings groups. We can see a layer as the partition of the
categories in a level, defined by their sibling relations.

We define the indicator function @ for the characteristic terms of a sibling
group Sy, as follows:

-CL O > 2R
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0 otherwise



where C; is the alternate category of a given class Cj, i.e., the union of the
siblings of C;.

In a similar way we can define the indicator function A for the discriminant
terms of a sibling group in a layer L:

A(t; Sk, £) = A(t; P(Sk), P(Sk)) (6)

where S}, is the union of the rest of siblings groups, and P(S) indicates the
parent node for a siblings group S.

Using Eq. 5 and Eq. 6 we can now define the set of characteristic terms T,
and the set of discriminant terms Ts for each siblings group in a layer:

To(Sk) = {t - &(t;S) = 1} (7)
T5(Sk, £) = {t : A(t; i, £) = 1} (8)

4.2 Identifying the Optimal Layer

The proposed bottom-up algorithm is split into a series of optimal partition
problems. For the current set of categories at hand (starting from the leaves),
we strive for identifying the optimal layer, that is, the optimal set of siblings
groups. Once these groups are identified, the categories inside them are “col-
lapsed” together to generate the parent categories, and the algorithm goes on
recursively, layer by layer, until some stop condition is met.

To identify the optimal layer we use a target function that is derived from
Eq. 7 and Eq. 8. The rationale behind this function has already been discussed
in Sec. 3.2: the behavior we expect in a taxonomy is that a large number of
characteristic terms of a sibling group become determinant terms of the parent
category. We define the target function, that we call layer score (G), as following:

I£]
GO =) |To(Se) N T5(Sk, L) (9)
k=1
The optimization task that identifies the optimal layer £* can then be stated

as follows:
L* = arg max G(L) (10)

Solving exactly Eq. 10 is an NP-hard problem as the search space is defined
by the Bell number [4]. We propose a simple greedy algorithm, and we will show
in the Experimental section that the solutions it provides are good enough for a
wide range of taxonomies.

The algorithm starts from the trivial layer, in which each siblings group con-
tains exactly one category, and proceeds recursively. The layer under analysis is
the current candidate. At each step, the algorithm looks for all the layers reach-
able by moving exactly one category from its current sibling group to another
group. The algorithm then evaluates the layer score of each of these layers, and
if the maximum score exceeds the score of the starting layer, the associated layer



becomes the current candidate. If not, the current candidate is chosen as the one
satisfying (approximately) Eq. 10.

Once the optimal layer has been chosen, each sibling group is collapsed to
generate the parent categories (P):

|Sk|

Pso = (11)

In the rest of the discussion, it is implicit that some sort of mechanism is in
place to keep track of which categories (if any) are children of a given category.

4.3 Growing the Taxonomy

We are now able to describe the entire algorithm succinctly. It expects the fol-
lowing inputs:

— the set of leaf categories Cieaves;
— for each leaf category Cj, all the data needed to calculate ¢ and ¢, described
in Sec. 3.1.

The output is the generated taxonomy 7. The algorithm then proceeds itera-
tively, until the stop condition (Step 6) is met. There are two distinct loops: in
the outer one, we build the taxonomy one level at a time; in the inner loop, we
search for an approximation of the optimal layer.

Add the current set of categories to the taxonomy T as a tazonomy level;
Put the current set of categories in a trivial layer;
Mark the trivial layer as the chosen layer L. and calculate its score G¢;

Mark the next layer L, = L., and next layer score G, = Go;

AR o

For each (unordered) pair of sibling groups in L.:

(a) Evaluate the score G}, of the layer obtained by merging the pair of groups, Lp;
(b) If G > Gn: set L, = L, and G, = Gp;

6. If £, is still the trivial layer: the stop condition is met: return 7T'.

7. It Ly # Le:set Lo = L, and G. = G,; go back to Step 5;

8. Otherwise: consider L. the optimal layer and collapse it to generate the set of
parent categories (use Eq. 11 on each of its sibling groups); go back to Step 1.

5 Experiments

Assessing an algorithm for the generation of taxonomies is an hard task. This is
due to the fact that existing taxonomies are far from being considered “golden
standards”, that is, they are not precise enough to guarantee that they can
be taken as absolute reference during the test phase. Moreover, many metrics
exist to measure the agreement between two taxonomies, and none of them is
universally accepted as a good one.



5.1 Assessing the Learned Taxonomy

Let T, be the reference tazonomy and T the learned taxonomy, that the algo-
rithm described in Sec. 4.3 generates. We need to assess the learned taxonomy
by comparing them with the reference.

To measure the agreement between T, and T}, we use the metric defined by
Navigli [12]. Let Cieaves be the leaves of both the reference taxonomy and the
learned one (the two sets are identical as the set of leaves is one of the inputs
of the taxonomy generation algorithm). Let k be the depth of the reference
taxonomy. If the depth of the learned taxonomy is at least k, then for each
t €0,...,k we have two unwrapped layers, Trt and Ti. An unwrapped layer is
the same as the layer defined in the previous section, but it is always defined in
terms of the leaf categories. That is, also the grouping defined by intermediate
layer is not defined in term of some parent category generated by collapsing its
children, but from the children themselves; we call them unwrapped layer as
we are effectively unwrapping each collapsed sibling group up to the leaves. By
definition, T9 = TY = {Cieaves}, that is, the root layer contain a single group
that has all the leaves.

To assess the agreement between the two taxonomies, we first measure the
agreement between two unwrapped layers:

Bt — : : 11 : : (12)
\/(nlu +nig) - (nfy +ngy)

Where nq; is the number of pair of leaves included in the same group in both
layers, ng1 is the number of pair of leaves included in the same group in the
learned layer but not in the reference layer, and viceversa for nig.

The overall metric is then defined as:

E
—

2 — i+ 1
B(TR,TL):m 3

K2

B! (13)

I
=)

It can easily be noticed that B takes into higher consideration the layer metric
of the deeper layers in the taxonomy. This is necessary to counterbalance the
fact that as less sibling groups are found in the first layers, the probability that
a pair of categories is found in the same group just by chance is increased; they
thus need to be given a lower weight in the overall metric.

If the depth of the learned taxonomy is different from the depth of the ref-
erence one, we have to slightly adjust the previous definition:

— if kp, > kg: the layers after kr are ignored: this way we give an higher score
to more structured learned taxonomies;

— if kp < kgr: the last layer in the learned taxonomy is repeated as many times
as needed to reach kr. This way less structured taxonomies get a lower score.



Table 1: Taxonomies for the experiments. They where built starting from the
DMOZ webpage taxonomy, and organized to have different degree of difficulty.

Name Leaves Base Intermediate
easyl 10 2 1
easy?2 6 2 1
easy3 10 2 1
easy4 9 2 1

easy-mediuml1 12 3 1
easy-medium?2 10 3 1
easy-medium3 15 3 1
medium1 8 1 2
medium?2 9 1 2
medium3 4 1 2
medium4 8 1 2
mediumb 12 1 2
medium-hard1 12 2 4
medium-hard?2 15 2 4
medium-hard3 25 2 4
hard1 13 1 3
hard2 8 1 3
hard3 15 1 3
hard4 17 1 3

5.2 Reference Taxonomies

Experiments are performed using a collection of webpage documents. The dataset
is extracted from the DMOZ taxonomy?. Aside from the leaves, each node is
built with the union of the children’s documents. Textual information from each
page code is extracted, and each document is converted into a bag of words
representation, each word being weighted with two values: § and ¢, computed
by applying equations 1 and 2. We built 19 small sub-taxonomies of DMOZ.
We grouped them in terms of “difficulty”. Table 1 shows the main properties
of each taxonomy. “Easy” and “easy-medium” taxonomies have base categories
very different between them, so also the leaves will clearly be very different or
very similar between them, and the grouping task should be easier. “Medium”
taxonomies stem from the same root category, so the similarity between leaves
increases. Finally, “medium-hard” and “hard” taxonomies have a lot more leaves
and multiple root and intermediate categories. Fig. 3 and Fig. 4 are examples of
taxonomies used in the experiments.

5.3 Results

Tab. 2 contains a summary of the experimental results, and Fig. 5 shows an
example of taxonomy learned by the algorithm. Let us note that the generated

2 http://www.dmoz.org
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(Textiles] [Computer Science]

Fig.3: easy-medium1 taxonomy. You can notice how each group of leaves is
“distant” from the others. High cohesion of groups and high discriminant char-
acteristic let us suppose that this kind of hierarchy is easy to learn.

5 leaves

Recreation

Fig. 4: medium-hard2 taxonomy. In this case the taxonomy is far more complex
than that shown in Fig. 3. We expect that the algorithm will make more errors
on this kind of taxonomy.

Table 2: Summary of the experimental results. We show both the per-layer score
and the overall taxonomy score.

Name B! B2 B
easyl 0.400 - 0.600
easy?2 0.309 - 0.539
easy3 0.429 - 0.619
easy4 0.533 - 0.689

easy-medium1 0.636 - 0.757
easy-medium?2 0.787 - 0.858
easy-medium3 0.707 - 0.805
medium1 0.655 0.686 0.728
medium?2 0.667 0.553 0.666
medium3 0.577 0.0(1 0.359
medium4 0.655 0.577 0.674
mediumb 0.674 0.511 0.647
medium-hard1 0.438 0.735 0.680
medium-hard2 0.677 0.436 0.610
medium-hard3 0.589 0.229 0.477

hard1 0.734 0.446 0.634
hard2 0.756 0.500 0.669
hard3 0.931 0.0(1 0.477

hard4 0.697 0.295 0.546
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Computer Science Hardware-+Internet

Peripherals
Systems

On the Web
Web Design

Fig. 5: Learned taxonomy starting from the leaves in the “hard2” taxonomy. The
Computer Science category has been correctly split from the other categories in
the same levels, whereas the categories Hardware and Internet were first grouped
together and then sub-split in a wrong way: On the Web and Web Design should
be put along with E-mail and RFCs. The total score of the learned taxonomy is
B = 0.669.

taxonomy is very close to the original one even from a qualitative point of view.
The obtained scores confirm the quality in most of the cases.

6 Conclusions and Future Work

In this paper, a novel approach for automatically build a taxonomy has been
proposed. The proposal adopts two novel metrics, i.e., the discriminant capabil-
ity and the characteristic capability, able to measure the discriminant power of
a feature. The former grows in accordance with the ability to distinguish a given
category against others, the latter grows in accordance to how the feature is
frequent and common over all categories. Our conjecture is that a feature could
change its role, depending on its discriminant power, along the taxonomy levels.
This behavior has been exploited for devising the algorithm, that is based on
the identification of the meaningful terms for each level. In particular, we devise
a greedy bottom-up algorithm that recursively identifies the optimal layer for
each level.

The proposal, even if it is still in a preliminary stage, provides encouraging
results, as shown by the experiments. As for future work, we are currently im-
proving and refining the algorithm, with different strategies. Furthermore, a set
of comparing experiments with several state of the art approaches are planned,
in order to give rise to the usefulness of the proposed approach.
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