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Abstract: We propose a genetic algorithm for generating
adversarial examples for machine learning models. Such
approach is able to find adversarial examples without the
access to model’s parameters. Different models are tested,
including both deep and shallow neural networks archi-
tectures. We show that RBF networks and SVMs with
Gaussian kernels tend to be rather robust and not prone
to misclassification of adversarial examples.

1 Introduction

Deep networks and convolutional neural networks enjoy
high interest nowadays. They have become the state-of-
art methods in many fields of machine learning, and have
been applied to various problems, including image recog-
nition, speech recognition, and natural language process-
ing [5].

In [12] a counter-intuitive property of deep networks is
described. It relates to the stability of a neural network
with respect to small perturbation of their inputs. The
paper shows that applying an imperceptible non-random
perturbation to an input image, it is possible to arbitrar-
ily change the network prediction. These perturbations are
found by optimizing the input to maximize the prediction
error. Such perturbed examples are known as adversarial
examples. On some datasets, such as ImageNet, the adver-
sarial examples were so close to the original examples that
the differences were indistinguishable to the human eye.

Paper [4] suggests that it is the linear behaviour in high-
dimensional spaces what is sufficient to cause adversarial
examples (for example, a linear classifier exhibits this be-
haviour too). They designed a fast method of generating
adversarial examples (adding small vector in the direction
of the sign of the derivation) and showed that adding these
examples to the training set further improves the general-
ization of the model. In [4], in addition, the authors state
that adversarial examples are relatively robust, and they
generalize between neural networks with varied number
of layers, activations, or trained on different subsets of the
training data. In other words, if we use one neural net-
work to generate a set of adversarial examples, these ex-
amples are also misclassified by another neural network
even when it was trained with different hyperparameters,
or when it was trained on a different set of examples. An-
other results of fooling deep and convolutional networks
can be found in [10].

This paper examines a vulnerability to adversarial ex-
amples throughout variety of machine learning methods.

We propose a genetic algorithm for generating adversarial
examples. Though the evolution is slower than techniques
described in [12, 4], it enables us to obtain adversarial ex-
amples even without the access to model’s weights. The
only thing we need is to be able to query the network to
classify a given example. From this point of view, the mis-
classification of adversarial examples represent a security
flaw.

This paper is organized as follows. Section 2 brings a
brief overview of machine learning models considered in
this paper. Section 3 describes the proposed genetic algo-
rithm. Section 4 describes the results of our experiments.
Finally, Section 5 concludes our paper.

2 Deep and Shallow Architectures

2.1 Deep and Convolutional Networks

Deep neural networks are feedforward neural networks
with multiple hidden layers between the input and output
layer. The layers typically have different units depend-
ing on the task at hand. Among the units, there are tra-
ditional perceptrons, where each unit (neuron) realizes a
nonlinear function, such as the sigmoid function: y(z) =
tanh(z) or y(z) = 1

1+e−z . Another alternative to the percep-
tron is the rectified linear unit (ReLU): y(z) = max(0,z).
Like the sigmoid neurons, rectified linear units can be used
to compute any function, and they can be trained using al-
gorithms such as back-propagation and stochastic gradient
descent.

Convolutional layers contain the so called convolutional
units that take advantage of the grid-like structure of the in-
puts, such as in the case of 2-D bitmap images, time series,
etc. Convolutional units perform a simple discrete convo-
lution operation, which – for 2-D data – can be represented
by a matrix multiplication. Usually, to deal with large data
(such as large images), the convolution is applied multiple
times by sliding a small window over the data. The con-
volutional units are typically used to extract some features
from the data, and they are often used together with the so-
called max pooling layers that perform an input reduction
by selecting one of many inputs, typically the one with
maximal value. Thus, the overall architecture of a deep
network for image classification tasks resembles a pyra-
mid with smaller number of units in higher layers of the
networks.

For the output layer, mainly for classification tasks, the
softmax function: y(z) j =

ez j

∑K
k=1 ezk

is often used. It has
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the advantage that the output values can be interpreted as
probabilities of individual classes.

Networks with at least one convolutional layer are
called convolutional neural networks (CNN), while net-
works with all hidden layers consisting of perceptrons are
called multi-layer perceptrons (MLP).

2.2 RBF networks and Kernel Methods

The history of radial basis function (RBF) networks can be
traced back to the 1980s, particularly to the study of inter-
polation problems in numerical analysis [8]. The RBF net-
work [3] is a feedforward network with one hidden layer
realizing the basis functions and linear output layer. It rep-
resents an alternative to classical models, such as multi-
layer perceptrons. There is variety of learning methods for
RBF networks [9].

In 1990s, a family of machine learning algorithms,
known as kernel methods, became very popular. They
have been applied to a number of real-world problems, and
they are still considered to be state-of-the-art methods in
various domains [14].

Based on theoretical results on kernel approximation,
the popular support vector machine (SVM) [2, 13] algo-
rithm was developed. Its architecture is similar to RBF –
one hidden layer of kernel units and a linear output layer.
The learning algorithm is different, based on search for a
separating hyperplane with the highest margin. Common
kernel functions used for SVM learning are linear 〈x,x′〉,
polynomial (γ〈x,x′〉+ r)d , Gaussian exp(−γ |x−x′|2), and
sigmoid tanh(γ〈x,x′〉+ r).

Recently, due to popularity of deep architectures, such
models with only one hidden layer are often referred to as
shallow models.

3 Genetic Algorithms

To obtain an adversarial example for the trained machine
learning model (such as a neural network), we need to
optimize the input image with respect to network out-
put. For this task we employ genetic algorithms (GA).
GA represent a robust optimization method working with
the whole population of feasible solutions [7]. The popu-
lation evolves using operators of selection, mutation, and
crossover. Both the machine learning model and the target
output are fixed during the optimization.

Each individual represents one possible input vector, i.e.
one image encoded as a vector of pixel values:

I = {i1, i2, . . . , iN},

where ii ∈< 0,1 > are levels of grey, and N is the size of
a flatten image. (For the sake of simplicity, we consider
only greyscale images in this paper, but it can be seen that
the same principle can be used for RGB images as well.)

The crossover operator performs a classical two-point
crossover. The mutation introduces a small change to

some pixels. With the probability pmutate_pixel each pixel
is changed:

ii = ii + r,

where r is drawn from Gaussian distribution. As a selec-
tion, the tournament selection with tournament size 3 is
used.

The fitness function should reflect the following two cri-
teria:

1. the individual should resemble the target image

2. if we evaluate the individual by our machine learning
model, we aim to obtain a prescribed target output
(i.e., misclassify it).

Thus, in our case, a fitness function is defined
as: f (I) = −(0.5 ∗ cdist(I, target_image) + 0.5 ∗
cdist(model(I), target_answer)), where cdist is a
Euclidean distance.

4 Experimental Results

The goal of our experiments is to test various machine
learning models and their vulnerability to adversarial ex-
amples.

4.1 Overview of models

As a representative of deep models we use two deep ar-
chitectures – an MLP network with rectified linear units
(ReLU), and a CNN. The MLP used in our experiments
consist of three fully connected layers. Two hidden layers
have 512 ReLUs each, using dropout; the output layer has
10 softmax units. The CNN has two convolutional lay-
ers with 32 filters and ReLUs each, a max pooling layer,
a fully connected layer of 128 ReLUs, and a fully con-
nected output softmax layer. In addition to these two mod-
els, we also used an ensemble of 10 MLPs. All models
were trained using the KERAS library [1].

Shallow networks in our experiments are represented by
an RBF network with 1000 Gaussian units, and SVM mod-
els with Gaussian kernel (SVM-gauss), polynomial kernel
of grade 2 and 4 (SVM-poly2 and SVM-poly4), sigmoidal
kernel (SVM-sigmoid), and linear kernel (SVM-linear).
SVMs were trained using the SCIKIT library [11], Grid
search and crossvalidation techniques were used to tune
hyper-parameters. For RBF networks, we used our own
implementation. Overview of train and test accuracies can
be found in Tab. 1.

4.2 Experimental setup

The well known MNIST data set [6] was used. It contains
70 000 images of hand written digits, 28× 28 pixel each.
60 000 are used for training, 10 000 for testing. The ge-
netic algorithm was run with 50 individuals, for 10 000

188 P. Vidnerová, R. Neruda



RBF
M

LP
CNN

SVM
-g

au
ss

SVM
-p

oly
2

SVM
-p

oly
4

SVM
-si

gm
oid

SVM
-li

ne
ar

Train 0.96 1.00 1.00 0.99 1.00 0.99 0.87 0.95
Test 0.96 0.98 0.99 0.98 0.98 0.98 0.88 0.94

Table 1: Overview of accuracies on train and test sets.

generations, with crossover probability set to 0.6, and mu-
tation probability set to 0.1. The GA was run 9 times for
each model to find adversarial examples that resemble 9
different images (training samples from the beginning of
training set). All images were optimized to be classified
as zero.

4.3 Results

Figures 1 and 2 show two selected cases from our set of
experiments. For example, the first set of images shows a
particular image of digit five from the training set, and best
evolved individuals from the corresponding runs of GA for
individual models.

In Tables 2–5, the outputs of individual models are
listed. In Tab. 2 and 4, we show output vectors for train-
ing sample of digit five and four, respectively. In Tab. 3
and 5, we show output vectors for adversarial examples
from Fig. 1 and 2, respectively.

For this case, the adversarial examples were found for
MLP, CNN, ensemble of MLPs, SVM-poly2, and SVM-
sigmoid. For RBF network, SVM-gauss, SVM-poly4, and
SVM-linear, the GA was not able to find image that re-
sembles the digit 5 and at the same time it is classified as
zero.

If we look on a vulnerability of individual models over
all 9 GA runs we can conclude the following:

• MLP, CNN, ensemble of MLPs, and SVM-sigmoid
were always misclassifying the best individuals;

• RBF network, SVM-gauss, and SVM-linear; never
misclassified, i.e. the genetic algorithm was not able
to find adversarial example for these models;

• SVM-poly2 and SVM-poly4 were resistant to finding
adversarial examples in 2 and 5 cases, respectively.

Fig. 3 and 4 deal with the generalization of adversar-
ial examples over different models. For each adversarial
example the figure lists the output vectors of all models.
In the case of a digit 3, the adversarial example evolved
for MLP is also misclassified by an ensemble of MLPs,
and vice versa. Both examples are misclassified by SVM-
sigmoid. However, adversarial example for the SVM-
sigmoid is misclassified only by the SVM-linear model.
Adversarial example for SVM-poly2 is misclassified also
with other SVMs, except the SVM-gauss model.

In general, it often happens that adversarial example
evolved for one model is misclassified by some of the other
models (see Tab. 6 and 7). There are some general trends:

• adversarial example evolved for CNN was never mis-
classified by other models, and CNN never misclas-
sified other adversarial examples than those evolved
for the CNN;

• adversarial examples evolved for MLP are misclas-
sified also by ensemble of MLPs (all cases except
two) and adversarial examples evolved for ensemble
of MLPs are misclassified by MLP (all cases);

• adversarial examples evolved for the SVM-sigmoid
model are misclassified by SVM-linear (all cases ex-
cept two);

• adversarial examples for the SVM-poly2 model are
often (6 cases) misclassified by other SVMs (SVM-
poly4, SVM-sigmoid, SVM-linear), and in 4 cases
also by the SVM-gauss. In three cases it was also
misclassified by MLP and ensemble of MLPs, in one
case, the adversarial example for SVM-poly2 is mis-
classified by all models but CNN (however, this ex-
ample is quite noisy);

• adversarial example for the SVM-poly4 model is in
two cases misclassified by all models but CNN, in
different case it is misclassified by all but the CNN
and RBF models, and in one case by all but CNN,
RBF, and SVM-gauss models;

• RBF network, SVM-gauss, and SVM-linear were re-
sistant to adversarial examples by genetic algorithm,
however they sometimes misclassify adversarial ex-
amples of other models. These examples are already
quite noisy, however by human they would still be
classified correctly.

5 Conclusion

We proposed a genetic algorithm for generating adversar-
ial examples for machine learning models. Our experi-
ment show that many machine models suffer from vulnera-
bility to adversarial examples, i.e. examples designed to be
misclassified. Some models are quite resistant to such be-
haviour, namely models with local units – RBF networks
and SVMs with Gaussian kernels. It seems that it is the lo-
cal behaviour of units that prevents the models from being
fooled.

Adversarial examples evolved for one model are often
misclassified also by some of other models, as was elabo-
rated in the experiments.
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0 1 2 3 4 5 6 7 8 9
RBF 0.04 -0.07 0.08 0.24 -0.04 0.73 -0.04 0.21 0.03 -0.18
MLP 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00
CNN 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00
ENS 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00
SVM-gauss 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00
SVM-poly2 0.00 0.00 0.00 0.02 0.00 0.98 0.00 0.00 0.00 0.00
SVM-poly4 0.00 0.00 0.00 0.02 0.00 0.98 0.00 0.00 0.00 0.00
SVM-sigmoid 0.01 0.00 0.03 0.32 0.00 0.61 0.00 0.01 0.01 0.01
SVM-linear 0.00 0.00 0.01 0.10 0.00 0.89 0.00 0.00 0.00 0.00

Table 2: Evaluation of the target digit five (see Fig. 1) by individual models.

0 1 2 3 4 5 6 7 8 9
RBF 0.21 -0.05 0.09 0.23 -0.04 0.51 -0.05 0.17 0.07 -0.09
MLP 0.98 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00
CNN 0.95 0.00 0.01 0.01 0.00 0.02 0.00 0.00 0.01 0.00
ENS 0.98 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00
SVM-gauss 0.00 0.00 0.01 0.39 0.00 0.59 0.00 0.00 0.00 0.00
SVM-poly 0.88 0.00 0.02 0.02 0.00 0.07 0.00 0.00 0.00 0.00
SVM-poly4 0.01 0.01 0.14 0.29 0.01 0.50 0.01 0.01 0.02 0.01
SVM-sigmoid 0.82 0.00 0.03 0.05 0.00 0.08 0.00 0.01 0.01 0.01
SVM-linear 0.02 0.03 0.21 0.21 0.02 0.33 0.03 0.04 0.05 0.05

Table 3: Evaluation of adversarial digit five (from Fig. 1) by individual models.

Target RBF MLP CNN ENS

SVM-rbf SVM-poly SVM-poly4 SVM-sigmoid SVM-linear

Figure 1: Best individuals evolved for individual models and digit five. The first ’Target’ image is the digit from the
training set, than follows adversarial examples evolved for individual models.
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0 1 2 3 4 5 6 7 8 9
RBF -0.06 0.07 0.16 0.06 0.67 0.00 0.01 0.15 -0.01 -0.05
MLP 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00
CNN 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00
ENS 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00
SVM-gauss 0.00 0.00 0.00 0.00 0.99 0.00 0.00 0.00 0.00 0.00
SVM-poly2 0.00 0.00 0.00 0.00 0.97 0.00 0.00 0.01 0.00 0.00
SVM-poly4 0.00 0.00 0.00 0.01 0.96 0.00 0.00 0.01 0.00 0.00
SVM-sigmoid 0.00 0.00 0.01 0.02 0.94 0.00 0.00 0.01 0.00 0.01
SVM-linear 0.00 0.01 0.05 0.04 0.84 0.00 0.01 0.04 0.00 0.02

Table 4: Evaluation of the target digit four (see Fig. 2) by individual models.

0 1 2 3 4 5 6 7 8 9
RBF 0.06 0.08 0.14 0.08 0.49 -0.01 0.03 0.14 0.02 0.02
MLP 0.96 0.00 0.01 0.00 0.02 0.00 0.00 0.01 0.00 0.01
CNN 0.89 0.00 0.02 0.00 0.05 0.00 0.00 0.01 0.02 0.00
ENS 0.96 0.00 0.01 0.00 0.02 0.00 0.00 0.00 0.00 0.01
SVM-gauss 0.01 0.01 0.07 0.12 0.50 0.03 0.01 0.06 0.09 0.08
SVM-poly 0.75 0.00 0.03 0.01 0.09 0.00 0.01 0.04 0.03 0.04
SVM-poly4 0.71 0.01 0.04 0.01 0.11 0.02 0.02 0.04 0.02 0.02
SVM-sigmoid 0.84 0.00 0.02 0.03 0.03 0.02 0.01 0.01 0.00 0.03
SVM-linear 0.02 0.02 0.18 0.18 0.26 0.03 0.05 0.11 0.03 0.11

Table 5: Evaluation of adversarial digit four (from Fig. 2) by individual models.

Target RBF MLP CNN ENS

SVM-rbf SVM-poly SVM-poly4 SVM-sigmoid SVM-linear

Figure 2: Best individuals evolved for individual models and digit four. The first ’Target’ image is the digit from the
training set, than follows adversarial examples evolved for individual models.
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0 1 2 3 4 5 6 7 8 9
RBF 0.16 0.06 0.12 0.79 0.01 -0.02 -0.06 -0.00 0.02 0.03
MLP 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
CNN 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
ENS 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
SVM-gauss 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
SVM-poly 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
SVM-poly4 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
SVM-sigmoid 0.04 0.00 0.02 0.79 0.00 0.06 0.00 0.01 0.05 0.02
SVM-linear 0.00 0.00 0.00 0.96 0.00 0.00 0.00 0.00 0.03 0.00
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0 1 2 3 4 5 6 7 8 9
RBF 0.30 0.04 0.17 0.75 0.02 -0.03 -0.04 -0.01 -0.07 -0.00
MLP 0.96 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.01 0.01
CNN 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
ENS 0.86 0.00 0.01 0.04 0.00 0.00 0.00 0.00 0.01 0.08
SVM-gauss 0.00 0.00 0.00 0.99 0.00 0.00 0.00 0.00 0.00 0.01
SVM-poly 0.04 0.00 0.01 0.91 0.00 0.00 0.00 0.00 0.02 0.02
SVM-poly4 0.03 0.00 0.01 0.93 0.00 0.00 0.00 0.00 0.01 0.01
SVM-sigmoid 0.49 0.00 0.03 0.30 0.00 0.04 0.00 0.01 0.10 0.02
SVM-linear 0.25 0.02 0.10 0.30 0.02 0.05 0.02 0.03 0.18 0.06
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Evolved against CNN

0 1 2 3 4 5 6 7 8 9
RBF 0.12 0.05 0.15 0.89 0.01 -0.18 -0.02 0.02 0.10 -0.03
MLP 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
CNN 0.94 0.00 0.02 0.01 0.00 0.00 0.00 0.00 0.03 0.00
ENS 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
SVM-gauss 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
SVM-poly 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
SVM-poly4 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
SVM-sigmoid 0.04 0.00 0.02 0.86 0.00 0.03 0.00 0.00 0.04 0.01
SVM-linear 0.00 0.00 0.00 0.99 0.00 0.00 0.00 0.00 0.00 0.00
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0 1 2 3 4 5 6 7 8 9
RBF 0.30 0.05 0.18 0.76 -0.01 -0.06 -0.04 -0.03 -0.05 -0.00
MLP 0.83 0.00 0.05 0.06 0.00 0.00 0.00 0.00 0.05 0.00
CNN 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
ENS 0.96 0.00 0.01 0.02 0.00 0.00 0.00 0.00 0.01 0.00
SVM-gauss 0.00 0.00 0.00 0.99 0.00 0.00 0.00 0.00 0.00 0.01
SVM-poly 0.02 0.00 0.01 0.94 0.00 0.00 0.00 0.00 0.01 0.02
SVM-poly4 0.01 0.00 0.00 0.96 0.00 0.00 0.00 0.00 0.01 0.01
SVM-sigmoid 0.40 0.00 0.03 0.35 0.01 0.06 0.00 0.01 0.11 0.02
SVM-linear 0.19 0.01 0.06 0.50 0.01 0.05 0.01 0.02 0.11 0.04

Figure 3: Model outputs for individual adversarial examples.
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0 1 2 3 4 5 6 7 8 9
RBF 0.06 0.01 0.15 0.74 -0.00 -0.03 -0.04 -0.01 0.26 0.05
MLP 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
CNN 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
ENS 0.00 0.00 0.00 0.99 0.00 0.00 0.00 0.00 0.01 0.00
SVM-gauss 0.00 0.00 0.00 0.90 0.00 0.00 0.00 0.00 0.10 0.00
SVM-poly 0.00 0.00 0.00 0.50 0.00 0.00 0.00 0.00 0.50 0.00
SVM-poly4 0.00 0.00 0.00 0.60 0.00 0.00 0.00 0.00 0.40 0.00
SVM-sigmoid 0.03 0.00 0.03 0.63 0.00 0.09 0.00 0.01 0.19 0.02
SVM-linear 0.00 0.00 0.00 0.36 0.00 0.00 0.00 0.00 0.63 0.00

0 5 10 15 20 25

0

5

10

15

20

25

Evolved against SVM-poly

0 1 2 3 4 5 6 7 8 9
RBF 0.32 0.02 0.17 0.86 -0.01 -0.09 -0.09 -0.03 -0.12 0.01
MLP 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
CNN 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
ENS 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
SVM-gauss 0.00 0.00 0.00 0.99 0.00 0.00 0.00 0.00 0.00 0.00
SVM-poly 0.87 0.00 0.02 0.04 0.00 0.00 0.00 0.00 0.04 0.02
SVM-poly4 0.38 0.01 0.11 0.23 0.01 0.02 0.01 0.02 0.15 0.04
SVM-sigmoid 0.55 0.01 0.04 0.19 0.01 0.05 0.01 0.01 0.13 0.02
SVM-linear 0.71 0.01 0.02 0.06 0.01 0.02 0.01 0.01 0.15 0.01
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Evolved against SVM-poly4

0 1 2 3 4 5 6 7 8 9
RBF 0.07 0.02 0.12 0.84 0.04 -0.07 -0.07 -0.01 0.10 0.06
MLP 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
CNN 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
ENS 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
SVM-gauss 0.00 0.00 0.00 0.99 0.00 0.00 0.00 0.00 0.01 0.00
SVM-poly 0.00 0.00 0.00 0.57 0.00 0.00 0.00 0.00 0.41 0.03
SVM-poly4 0.00 0.00 0.00 0.67 0.00 0.00 0.00 0.00 0.31 0.03
SVM-sigmoid 0.04 0.00 0.02 0.73 0.01 0.07 0.00 0.01 0.08 0.02
SVM-linear 0.01 0.00 0.00 0.58 0.00 0.00 0.00 0.00 0.39 0.01
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Evolved against SVM-sigmoid

0 1 2 3 4 5 6 7 8 9
RBF 0.30 0.04 0.22 0.94 -0.01 -0.14 -0.10 0.02 -0.21 -0.02
MLP 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
CNN 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
ENS 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
SVM-gauss 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
SVM-poly 0.06 0.00 0.03 0.84 0.00 0.01 0.00 0.00 0.03 0.02
SVM-poly4 0.04 0.00 0.01 0.93 0.00 0.00 0.00 0.00 0.01 0.01
SVM-sigmoid 0.74 0.00 0.02 0.12 0.00 0.02 0.00 0.00 0.08 0.01
SVM-linear 0.41 0.02 0.06 0.18 0.02 0.05 0.02 0.03 0.17 0.05

Figure 4: Model outputs for individual adversarial examples.
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Evolved for Also misclassified by
Example 1: digit 5
MLP —
ensemble MLP
CNN —
SVM-poly2 SVM-poly4, SMV-sigmoid,

SVM-linear
SVM-sigmoid —
Example 3: digit 4
MLP ensemble
ensemble MLP
CNN —
SVM-poly2 ensemble, MLP, SVM-gauss, SVM-poly4,

SVM-sigmoid, SVM-linear
SVM-poly4 RBF, ensemble, MLP, SVM-gauss,

SVM-poly4, SVM-sigmoid, SVM-linear
SVM-sigmoid SVM-linear
Example 4: digit 1
MLP ensemble
ensemble MLP
CNN —
SVM-poly2 SVM-gauss, SVM-poly4, SVM-sigmoid,

SVM-linear
SVM-sigmoid SVM-linear
Example 5: digit 9
MLP ensemble
ensemble MLP
CNN —
SVM-poly2 ensemble, MLP, SVM-poly2

SVM-poly4, SVM-sigmoid, SVM-linear
SVM-poly4 all except CNN
SVM-sigmoid SVM-linear
Example 6: digit 2
MLP —
ensemble MLP
CNN —
SVM-poly4 MLP, ensemble, SVM-poly2,

SVM-sigmoid, SVM-linear
SVM-sigmoid SVM-linear
Example 7: digit 1
MLP ensemble
ensemble MLP
CNN —
SVM-sigmoid —

Table 6: Generalization of adversarial examples.
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