Inductive Verification and Validation of Multi-Agent
Systems

Nico Jacobs, Kurt Driessens, Luc De Raedt,
Dept. of Computer Science, K.U.Leuven,
Celestijnenlaan 200A, B-3001 Heverlee, Belgium

{nico, kurtd, lucdr}@cs.kuleuven.ac.be

Abstract

Most verification and validation (V&V) methods employ deductive reason-
ing to verify whether an implementation is in agreement with a specification.
We present a novel approach to verification and validation of complex systems
that is based on inductive reasoning. Induction allows to derive general rules
from specific behaviours of the software (e.g. the inputs and outputs). Using
inductive logic programming, partial declarative specifications of the software
can be induced. These rules can be readily interpreted by the designers or users
of the software, and can in turn result in changes to the software. The approach
outlined was tested in the domain of multi-agent systems, more in particular,
the RoboCup domain.

1 Introduction

Most approaches to V&V of knowledge based systems employ deductive reasoning
techniques in order to check whether a knowledge based system is conform with
some (possibly partial) specifications. There is however some inherent limitation
of the deductive approach. Indeed, the deductive approach relies on the ability to
specify the intended behaviour of the knowledge base. For complex systems, such
as multi-agent systems operating in complex environments, this is a very hard task;
one might even argue that for certain applications (such as RoboCup) designing the
specifications of the overall multi-agent system is almost as hard as implementing
the individual agents.

Inductive V&V methods take a different approach. Rather than starting from the
specification and testing whether it is consistent with an implementation, inductive
reasoning methods start from an implementation, or more precisely, from examples of
the behaviour of the implementation, and produce a (partial) specification. Provided
that the specification is declarative, it can be interpreted by the human expert. This
machine generated specification is likely to give the expert new insights into the
behaviour of the complex system he wants to verify. If the induced behaviour is
conform with the expert’s wishes, this will (partly) validate the system. Otherwise,
if the expert is not satisfied with the induced specification, he or she may want to
modify the knowledge based system and repeat the verification or validation process.

This paper addresses the use of inductive reasoning for knowledge base V&V.
The employed techniques come from the domain of inductive logic programming,

as these methods produce declarative specifications in the form of logic programs.
Furthermore, the sketched techniques are tested in a multi-agent setting, i.e. that
of RoboCup. In such complex multi-agent systems, it is very hard to see the impact
of changes in one agent on the overall behaviour of the environment.

This paper is organised as follows: in section 2, we introduce inductive learning
through inductive logic programming; in section 4 we show how this technique can
be used in verification; in section 5 we give an example of a multi-agent system and
how we used our technique to verify this, after which we conclude. For the remainder
of this article we assume the reader is familiar with Prolog.

2 Inductive Logic Programming

Inductive logic programming [14] lies at the intersection of machine learning and
computational logic. It combines inductive machine learning with the representa-
tions of computational logic. Computational logic (a subset of first order logic) is a
more powerful representation language than the classical attribute-value represen-
tation used in machine learning. This representational power is necessary for V&V
of contemporary knowledge based systems, because such knowledge based systems
are in turn written in expressive programming languages or expert system shells.
Another advantage of inductive logic programming is that it enables the use of
background knowledge (in the form of Prolog programs) in the induction process.

An ILP system takes as input examples and background knowledge and produces
hypotheses as output. There are two common used ILP settings which differ in
the representation of these data: learning from entailment ([8] compares different
settings) and learning from interpretation [11]. In this paper we will use the second
setting. In learning from interpretations, an example or observation can be viewed
as a small relational database, consisting of a number of facts that describe the
specific properties of the example. In the rest of the paper, we will refer to such
an example as a model. Such a model may contain multiple facts about multiple
relations. This contrasts with the attribute value representations where an example
always corresponds to a single tuple for a single relation.

The background knowledge takes the form of a Prolog program. Using this
Prolog program, it is possible to derive addition properties (through the use of
Prolog queries) about the examples. If for instance we are working in a domain
where family-data is processed, possible background knowledge would be:

parent(X,Y) < mother(X,Y).
parent(X,Y) « father(X,Y).
grandmother(X,Y) < mother(X,Z), parent(Z,Y).

There are also two forms of induction considered here: predictive and descriptive
induction. Predictive induction starts from a set of classified examples, a background
theory, and the aim is to induce a theory that will classify all the examples in the
appropriate class. On the other hand, descriptive induction starts from a set of
unclassified examples, and aims at finding a set of regularities that hold for the
examples. In this paper, we will use the Tilde system [3] for predictive induction,
and the Claudien system [10] for descriptive induction.

Tilde induces logical decision trees from classified examples and background the-
ory. For example consider this background knowledge:

replaceable(gear). replaceable(wheel). replaceable(chain).
not_replaceable(engine). not_replaceable(control_unit).

and a number of models describing worn parts and the resulting action:

begin(model(1)). begin(model(2)). begin(model(3)).
sendback. fix. keep.

worn(gear) . worn(gear) . end(model(3)).
worn(engine). end(model(2)).

end(model(1)).

Tilde will return this classification tree (there were 15 models in this example):
worn(4) 7

+--yes: not_replaceable(4) 7

| +--yes: sendback

| +--no: fix

+--no: keep

Claudien induces clausal regularities from examples and background theory. E.g.
consider the single example consisting of the following facts and empty background
theory :

human(an). human(paul). female(an). male(paul).
Induced theory is :

human(X) < female(X).

human(X) < male(X).

false <~ male(X) A female(X).
male(X) V female(X) < human(X).

Notice that this very simple example shows the power of inductive reasoning. From
a set of specific facts, a general theory containing variables is induced. It is not the
case that the induced theory deductively follows from the given examples.

Details of the Tilde and Claudien system can be found in [3] [10].

3 ILP for Verification and Validation

Given an inductive logic programming system, one can now verify or validate a
knowledge based or multi-agent system as follows. One starts constructing exam-
ples (and possibly background knowledge) of the behaviour of the system to be
verified. E.g. in a knowledge based system for diagnosis, one could start by gen-
erating examples of the inputs (symptoms) and outputs (diagnosis) of the system.
Alternatively, in a multi-agent system one could take a snapshot of the environment
at various points in time. These snapshots could then be checked individually and
also the relation between the state an agent is in and the action he takes could be
investigated.

Once examples and background knowledge are available one must then formulate
verification or validation as a predictive or descriptive inductive task. E.g. in the
multi-agent system, if the aim is to verify the properties of the states of the overall
system, this can be formulated as a descriptive learning task. One then starts from
examples and induces their properties. On the other hand, if the aim is to learn the

relation among the states and the actions of the agent, a predictive approach can
be taken.

After the formulation of the problem, it is time to run the inductive logic pro-
gramming engines. The results of the induction process can then be interpreted by
the human verifiers or validators. If the results are in agreement with the wishes of
the human experts, the knowledge based or multi-agent system can be considered
(partly) verified or validated. Otherwise, the human expert will get insight into the
situations where his expectations differ from the actual behaviour of the system. In
such cases, revision is necessary. Revision may be carried out manually or it could
also be carried out automatically using knowledge revision systems (see e.g. Craw’s
Krust system [6], or De Raedt’s Clint [7]). After revision, the validation and veri-
fication process can be repeated and this until the human expert is satisfied by the
results of the induction engines.

4 Multi-agent systems

4.1 Complexity of Multi Agent Systems

Recently a lot of attention has been devoted to intelligent agents and a number
of promising agent applications exists in domains such as information filtering and
electronic commerce (see for instance [1] for an overview of the current state of the
art in agent applications). Although the concept of an intelligent agent is not yet
clearly defined there are diverse aspects reoccuring in numerous agents. We briefly
mention some of these aspects and study their consequences for the V&V process.

A number of ‘agent features’ such as reactiveness (react to a changing environ-
ment) and pro-activeness (take the initiative to perform some action) will probably
become standard practice in future software agent development. These features are
intended to result in a more robust software product but at the same time make
it more complex to implement such an agent. As a result of reactiveness an agent
can change it’s behaviour based on observations. Some agents even learn and in-
crementally adapt their behaviour. Pro-activeness has as a consequence that the
functional view of software (transform a certain input into a desired output) does
not hold for agents. Agents can act even if there was no (explicit) input; agents can
act ‘spontaneously’.

An other aspect in which agents differ from regular software applications is that
they often have incomplete and/or incorrect information concerning the environment
in which they operate. This is due to the fact that agents most of the time operate
in complex and dynamic environments like the Internet or environments with real
world interaction. Because we are never certain of the exact result of an action, we
can never get an 100% accurate system. With agents, one should cope with systems
that perform well most of the time.

Finally agents also act and by this influence their environment. Take for instance
an agent who schedules the factory work flow. If at a certain point the agent notices
that certain decisions were bad it can’t roll back the environment; it has to live up
to the effects of the actions it did or proposed. An agent continuously produces
possible side-effects which irreversibly change the agent’s environment.

A number of agent applications is based on multiple agents cooperating to achieve
a common goal. In this case, the changes made to the environment are not a result
of the behaviour of a single agent, but of the interaction of the agents with each
other and the world they act upon. As a consequence, the emergent behaviour
of the system is hard to understand. Furthermore, the system is very hard to
specify (or verify) at the overall level. The global behaviour is not the sum of
the local behaviours of the agents. Also, agent implementations are designed and
implemented at this local level. It is then hoped that this will work as desired at
the global level. This is e.g. the case in RoboCup. Further complications arise
because the agent designer may not exercise total control over the environment, e.g.
in Robocup one only controls one team. Because of this situation, a global V & V
approach can benefit from using induction.

5 Experiments in RoboCup

5.1 RoboCup

We now perform experiments with the sketched approach to V & V in order to
demonstrate the promise of the technique. As a test-bed we choose RoboCup [13],
which is a standard problem for many fields of Al and Robotics research of which
multi agent systems is only one. The challenge consists of various competitions such
as the real robot league, the simulator league and the special skills competition.
Most of the multi agent research is done in the simulator league.

In the simulator league, the object of the challenge is to build eleven software
agents that together form a soccer playing team. The agents’ environment is defined
by the soccer-server supplied by the RoboCup competition. It creates the world
in which the agents act and artificially supplies the researchers with real world
problems such as uncertainties, noise, an obstructive environment — consisting of
the simulated field and the opposing team —, limited communication and a high
degree of dynamics, all in a controlled environment. The various uncertainties —
e.g. a well kicked ball can still not be guaranteed to reach it’s destiny, but can
be intercepted by another player or simply deviate from it’s course — result in a
complex environment with complex, hard to verify behaviour of the agents. This
forms an ideal test-bed for our ideas.

For the experiments, a reactive agent was used. FEach time new sensory in-
formation was processed, the agent evaluated the believed state of the world and
returned the appropriate action. There was no internal reference to prior actions of
the agent or to long term plans. Two threads were used in the agent. One to process
the sensory information and one to analyse the believed information and select the
appropriate actions.

5.2 Modelling the Information

The first tests were run to study the behaviour of a single agent. We supplied the
agents with the possibility to log their actions and the momentary state of the world
as perceived by them. This way we were able to study the behaviour of the agents
starting from their beliefs about the world. Because all the agents of one team were

identical except for their location on the playing field, the log files were joined to
form the knowledge base used in the experiments. A sample description of one state
from the log-files looks as follows :

begin(model(e647)).
player(my,1,-43.91466,5.173167,3352).
player(my,2,-30.020395,7.7821097,3352) .

player(other,10,14.235199,15.192206,2748) .
player(other,11,0.0,0.0,0).
ball(-33.730022,10.014952,3352).
mynumber (5) .
bucket (1).
rctime(3352).
moveto(-33.730022,10.014952).
actiontime(3352).

end(model (e647)).

The different predicates have the following meaning :

player(T, N, X,Y,C) the agent has last seen the player with number N from team
T at location (X,Y) at time C.

ball(X,Y,C) the agent has last seen the ball at location (X,Y) at time C.

mynumber(N) this state was written by the agent with number N. It thus corre-
sponds to the observation of agent V.

bucket(N) the bucket used for bringing the agent back to his home position. The
bucket-value was lowered every input/output cycle and forced the agent to his
home-location and reset when it reached zero.

retime(C') the time the state was written.
actiontime(C') the time the action listed was choosen.

moveto(X,Y), shoottogoal, passto(X,Y), turn(X), none the action the agent per-
formed.

The retime(C') predicate was used to judge the age of the information in the model
as well as to be able to decide how recent the action mentioned in the model or
the information about the other players or the ball is. This was done by comparing
the retime(C') with actiontime(C') or the time specified in the ball/3 and player/3
predicates. Logging was done at regular time intervals instead of each time an action
was performed, to be able to use the inactivity of the agent, or his passed actions
as information also.

Some of the actions that were used while logging were already higher level actions
than the ones that are sent to the soccer-server. However these actions, such as
shoottogoal for example, were trivial to implement.

To make the results of the tests easier to interpret an even higher level of ab-
straction was introduced in the background knowledge used during the experiments.
Actions that are known to have a special meaning were renamed. For instance a
soccer-player that was looking for the ball always used the turn(85) command, so
this command was renamed to search_ball. An other example of information defined
in the background knowledge is the following rule :

action(movetoball):— validtime, moveto(X1,Y1), ball(X2,Y2),
distance(X1,Y1,X2,Y2,Dist), Dist =< 5 .
in which the moveto(X,Y) command was merged with other information in the
model to give it more meaning. For instance, moveto(—33.730022, 10.014952) and
ball(—33.730022,10.014952,3352) in the model shown above, would be merged into
movetoball by this rule. Often a little deviation was permitted to take the dynamics
and noise of the environment into account. The actions used to classify the be-
haviour of the agent were : search_ball, watch_ball, moveto, movetoball, moveback,
shoottogoal, passto, passtobuddy and none. Some of these actions were not used
in the implementation of the agent but were included anyway for verification pur-
poses. For instance, although — according to specifications — an agent should
always “move to the ball” or “move back”, the possible classification “moveto” was
included in the experiments anyway.

Other background knowledge included the playing area’s of the soccer-agents and
other high level predicates such as haveball, ball near_othergoal, ball in_penaltyarea,
etc. Again, not all of these concepts were used when implementing the agent. This
illustrates the power of using background knowledge. Using background knowledge,
it is possible for the verifier to focus on high-level features instead of low-level ones.

5.3 Verifying Single Agents

The first tests were performed with Tilde, which allowed the behaviour of the agent
to be classified by the different actions of the agent.

The knowledge base used was the union of the eleven log-files of the agents of an
entire team. The agents used in the team all had the same behaviour, except for the
area of the playing field. The area the agent acted in depended on the number of
the agent and also was specified in the used background knowledge. The resulting
knowledge base consisted of about 17000 models, collected during one test-game of
ten minutes.

The first run of Tilde resulted in the following decision tree
seeball 7
+--yes: ball_in_my_area 7
| +--yes: haveball 7
| | +--yes: ball_near_othergoal 7
| | | +--yes: action(shoottogoal) [15 / 15]

[| | +--no: action(passtobuddy) [122 / 124]
| | +--no: action(movetoball) [1007 / 1015]

| +--no: bucket_was_empty 7

| +--yes: action(moveback) [342 / 347]

| +--no: action(watch_ball) [2541 / 3460]

+--no: action(search_ball) [7770 / 7771]

Most of the classifications made by Tilde were very accurate for the domain. How-
ever, the prediction of the action(watch_ball) only reached an accuracy of 73,4%.
To get a better view on the behaviour of the agent in the given circumstances
Claudien was used to describe the behaviour of the agent in case “seeball, not(ball in_my_area),

not(bucket_was_empty).”
Claudien found two rules that describe these circumstances. The first rule was
the one Tilde used to predict the watch_ball action.

action(watch_ball) if not(action(none)), seeball,
not(ball_in_my_area), not(bucket_was_empty).

Claudien discovered the rule had an accuracy of 73%.
The other rule that was found by Claudien was the following :

action(moveback) if not(action(none)), seeball ,

not(ball_in_my_area), not(bucket_was_empty).
which reached an accuracy of 26%. It states that the agent would move back to
his home location at times he was not supposed to. Being forced to go back to its
home-location every time the bucket was emptied, this behaviour was a result of the
bucket getting empty while the player was involved in the game and therefore not

paying immediate attention to the contents of the bucket.

To gain more consistency in the agents behaviour, the bucket mechanism was
removed and replaced by a new behaviour where the agent would move back when
it noticed that it was to far from its home location. The new behaviour, after being
logged and used in a Tilde-run resulted in the following tree :
seeball 7
+--yes: ball_in_my_area 7
+--yes: haveball 7
| +--yes: ball_near_othergoal 7
| | +--yes: action(shoottogoal) [48 / 48]
| | +--no: action(passtobuddy) [85 / 85]
| +--no: action(movetoball) [796 / 810]
+--no: at_place 7

+--yes: action(watch_ball) [3826 / 3840]
+--no: action(moveback) [384 / 394]
+--no: action(search_ball) [7180 / 7318]

in which the action(watch_ball) was predicted with an accuracy of 99,6 %. The
increase in consistency in the behaviour in the agent, improved its performance in
the RoboCup environment. Because the agent did not move back to his home-
location at moments it wasn’t necessary he could spend more time tracking the
movement of the ball and fellow agents.

5.4 Verifying Multiple Agents

In agent applications it is often important that not only all agents individually work
properly, the agents also have to cooperate correctly. One important point in this is
to check if the beliefs of the different agents more or less match. In the case of our
RoboCup agents we want to know for instance if there is much difference between
the position where player A sees player B and the position where player B thinks it
is!. So first we used Claudien to find out how often agents have different believes

about there positions, and how much their beliefs differ.

To do these tests, we transformed the data-file so that one model contains the
believes of multiple agents at the same moment in time. To accomlish this, an extra
argument was added to the predicates which indicated the ownership of the belief.
For instance, in the vplayer/5 predicate, the first argument refered to the owner of
the belief. Claudien found multiple rules like the one below:

Lt is impossible to know what the real position of a player is, so we can only compare the
different believes the agents have

Dist < 2 if mynumber(4A,Nr), vplayer(4,my,Nr,X1,Y1),

vplayer(B,my,Nr,X2,Y2), mynumber(B,Nr2),

vplayer(B,my,Nr2,X3,Y3), not(A=B),

distance(X1,Y1,X2,Y2,Dist),

distance(X2,Y2,X3,Y3,Dist2), Dist2 < 10.
This rule, which has an accuracy of 78% states that if two players are less then 10
units apart, the difference in the believes of the position of one of those two players
is less then 2 units. From all the rules we could conclude useful information, for
instance, we found out that our agents can best estimate a team-mate’s position
from distance 10. All rules found were ‘acceptable’ rules (e.g. for distances larger
than 10, the error is positively correlated with the distance between the players), so
we can conclude from the observed behaviour that the beliefs of the different agents
do not differ much.

6 Related work

This work builds upon earlier ideas on combining V&V with inductive logic pro-
gramming [9]. Tt is also related to other approaches applying machine learning with
validation and verification. This includes the work of Susan Craw on her KRUST
system for knowledge refinement [6], the work by Bergadano et al. [2] and the work
by De Raedt et al. [12]. The approach taken in KRUST is complementary to ours.
Rather than starting from examples of the actual behaviour of the system, KRUST
starts from examples of the desired behaviour of the system. Whenever the two
behaviours do not match, KRUST will automatically revise the knowledge based
system. It is clear that the KRUST approach could also be applied within our
methodology, at the point where the human discovers inconsistencies between the
two behaviours. If the human then specifies examples of the intended behaviour,
KRUST might help revising the original knowledge base. The approach of Bergadano
et. al. and De Raedt et. al. uses inductive machine learning to automatically and
systematically generate a test set of examples that can be used for verification or
validation. Finally, our work is also related to the work by William Cohen [5] on
recovering software specifications from examples of the input-output behaviour of
the program.

7 Conclusions

We briefly sketched a novel approach to V&V that is based on inductive reasoning
rather than deductive reasoning. We also reported a number of experiments in the
domain of multi-agent systems (RoboCup) which prove the concept of the approach.

Further work on this topic could involve applying the verification and validation
technique also to other multi-agent systems (such as e.g. DESIRE [4]), and also
to extend the inductive method to other representations. For instance, it seems
very well possible to apply inductive techniques in order to automatically construct
decision tables starting from the knowledge base. Such decision tables are already
popular in V&V, but they are typically made by the human expert (in collaboration
with the machine), see e.g. [15].

Acknowledgements: the authors wish to thank Hendrik Blockeel and Luc Dehaspe
for their help with the Tilde and Claudien system. Nico Jacobs is financed by
a specialisation grant of the Flemish Institute for the promotion of scientific and
technological research in the industry (IWT). Luc De Raedt is supported by the
Fund for scientific research, Flanders. This work is supported by the European
Community Esprit project no. 20237 (ILP 2).

References

[1]
[2]
[3]

[12]

Proceedings of the Second International Conference on Practical Application of Intelli-
gent Agents and Multi-Agent Technology, 1997.

F. Bergadano and D. Gunetti. Testing by means of inductive program learning. ACM
Transactions on Software Engineering and Methodology, 5(2):119-145, 1996.

H. Blockeel and L. De Raedt. Lookahead and discretization in ILP. In Proceedings
of the 7th International Workshop on Inductive Logic Programming, volume 1297 of
Lecture Notes in Artificial Intelligence, pages T7-85. Springer-Verlag, 1997.

F. Brazier, B. Dunin-Keplicz, N. R. Jennings, and J. Treur. Desire: Modelling multi-
agent systems in a compositional formal framework. International Journal of Coopera-
tive Information Systems, 6:67-94, 1997. Special Issue on Formal Methods in Cooper-
ative, Information Systems.

W. Cohen. Recovering Software Specifications with ILP. In Proceedings of the 12th
National Conference on Artificial Intelligence (AAAI-94), pages 142-148, 1994.

S. Craw and D. Sleeman. Knowledge-based refinement of knowledge based systems.

Technical Report 95/2, The Robert Gordon University, Aberdeen, UK, 1995.

L. De Raedt. Interactive Theory Reuvision: an Inductive Logic Programming Approach.
Academic Press, 1992.

L. De Raedt. Logical settings for concept learning. Artificial Intelligence, 95:187-201,
1997.

L. De Raedt. Using ILP for verification, validation and testing of knowledge based
systems, 1997. invited talk at EUROVAV 1997.

I.. De Raedt and L. Dehaspe. Clausal discovery. Machine Learning, 26:99-146, 1997.

L. De Raedt and S. D7eroski. First order jk-clausal theories are PAC-learnable. Arti-
fictal Intelligence, 70:375-392, 1994.

L. De Raedt, G. Sablon, and M. Bruynooghe. Using interactive concept learning for
knowledge-base validation and verification. In Validation, Verification and Test of
Knowledge-based Systems, pages 177-190, 1991.

H. Kitano, M. Veloso, H. Matsubara, M. Tambe, S. Coradeschi, I. Noda, P. Stone,
E. Osawa, and M. Asada. The robocup synthetic agent challenge 97. In Proceedings of
the 15th International Joint Conference on Artificial Intelligence, pages 24-29. Morgan
Kaufmann, 1997.

S. Muggleton and C. D. Page. A learnability model for universal representations. In
S. Wrobel, editor, Proceedings of the jth International Workshop on Inductive Logic
Programming, pages 139-160, Sankt Augustin, Germany, 1994. GMD.

J. Vanthienen, C. Mues, and C. Wets. Inter-tabular verification in an interactive envi-
ronment. In Proceedings of the 97 European Symposium on the Validation and Verifi-
cation of Knowledge Based Systems (EUROVAV-97), pages 155-165, 1997.

10

