Improving Link Specifications using Context-Aware
Information

Andrea Cimmino
University of Seville, Spain
cimmino@us.es

Carlos R. Rivero
Rochester Institute of
Technology, USA

David Ruiz
University of Seville, Spain
druiz@us.es

crr@cs.rit.edu

ABSTRACT

There is an increasing interest in publishing data using the
Linked Open Data philosophy. To link the RDF datasets,
a link discovery task is performed to generate owl:sameAs
links. There are two ways to perform this task: by means
of a classifier or a link specification; we focus in the lat-
ter approach. Current link specification techniques only use
the data properties of the instances that they are linking,
and they do not take the context information into account.
In this paper, we present a proposal that aims to gener-
ate context-aware link specifications to improve the regular
link specifications, increasing the effectiveness of the results
in several real-world scenarios where the context is crucial.
Our context-aware link specifications are independent from
similarity functions, transformations or aggregations. We
have evaluated our proposal using two real-world scenarios
in which we improve precision and recall with respect to
regular link specifications in 23% and 58%, respectively.

Keywords

Linked Data, Link Discovery, Link Specification, Contex-
Aware Link Specification

1. INTRODUCTION

In recent years, we have witnessed an increasing interest in
the Linked Open Data [9]. As a matter of fact, the number
of datasets in 2011 were 452 and in 2014 that number raised
to 2,289 [6]. Publicly-available datasets have to fulfill the
Linked Data principles, which manly consist in using IRIs
as names of things, using HTTP IRIs so that people can
look up those names, when someone looks up a IRI provide
useful information using the standards (RDF or SPARQL),
and finally, include links to other IRIs so that they can dis-
cover more things [2]. Since the number of datasets has
increased in the recent years and these principles establishes
that the datasets must be linked with others and published
in RDF formats [1], a huge effort has been done to link
these RDF datasets automatically [14]. There are different

Copyright is held by the author/owner(s).
WWW2016 Workshop: Linked Data on the Web (LDOW2016).

types of links between datasets, but the most common one is
owl:sameAs [7]. To generate the links, a link discovery task
must be performed, which aims to find all pair of instances
that are describing the same concept [13, 15].

Link discovery can be performed in two different ways:
by means of a classifier [22], which links instances with
owl:sameAs if it considers them as the same; or generat-
ing a link specification, which is a set of restrictions over
the data properties of two instances [17, 11]. Each pair of
data properties is associated to a similarity function and a
threshold, if the similarity function returns a value higher
than the threshold, then the restriction is satisfied and the
two instances are linked using owl:sameAs. For example, a
link specification defines that two instances of Person are the
same if both have a data property describing their names,
and their literals are exactly the same.

Unfortunately, in some scenarios, this definition is not
suitable to generate owl:sameAs links. Under some circum-
stances, taking only the literals of the data properties of
two instances into account may lead to mix up instances
that are very similar but actually different, e.g. if two peo-
ple are different but have the same name. In these cases,
a link specification should include conditions over the con-
text information, data properties of other instances that are
related with the main two to have more information and
improve the effectiveness.

In this paper, we focus on improving current link spec-
ifications making them context aware. We aim to extend
the definition used by actual techniques [17, 11], and add
restrictions over the instances in the context of the pair that
we are linking. To achieve this, we introduce the concept
of overlap factor. If we define different link specifications
over the instances in both contexts, we can handle them as
sets potentially overlapped by means of an equity criteria
defined by the link specifications. The overlap factor is a
function that measures the overlapping between contexts.
Thanks to this, we are able to define restrictions over this
value. In this paper, we restrict ourselves to two different
types of overlap factors, namely: exists or for all. The for-
mer means that there is a pair of instances in the context
considered the same by means of a link specification. The
latter, means that all the instances in both contexts are the
same.

Figure 1 depicts a sample scenario where the context is
crucial to obtain a good precision. Figure 1(a) shows a part
of the data model of DBLP and the National Science Foun-
dation (NSF), both were built using authors that have pub-
lished in the International Conference of Very Large Data

CALSar: forall LSar and exists LSap

dblp:Author nsf:Researcher
dblpiname 0 LS Jaro > 098 ¢——nsfname |
nsf:email
nsf:position
dblp:writes nsf:name
nsf:sponsor
dblp:Article nsfstartDate
- nsf:amountToDate
@__4; LSap: Levenshtein > 0.90 $_<>nsf;m|e
dblp:date nsf.date
dblp:numberOfPages nsf:pages
dblp:recordedAt nsf.conference

(a) Data model and context-aware link specification

s AR
dblpU:Wang0011:Wei

dblp:writts———— gblp:name : "Wei Wang" $

rdf:type : dblp:Author
-

s ; ~
dblpU:confividb/JiangWL03

dblp:titie : "Holistic Twig ..."
rdf:type : dblp:Article

[dblpUiconfivdbYuanL LWYZ05)
dblp:titie : "Efficient Computation ..."
rdf:type : dblp:Article)

nsfU:WeiWang0007

’nsf:name : "Wei Wang"
rdf:type : nsf:Researcher

nsfU:WeiWang0012

nsf:name : "Wei Wang"

rdftype : nsf.Researcher
NN

nsfU:YangWang0023

nsf:name : "Yang Wang"

rdf:type : nsf:Researcher
(LS babht

nsf:lead:

nsfU:AN-0423336
rdf.type: nsf:Award

nsfleads

nsfU:AN-1043034
rdf:type: nsf:Award

(b) Sample instances and links generated to relate them

nsf:suppo nﬁ

(nstuAno423336m13)

t'nsf:tiﬂe : "Efficient Computation J

rdf:type : nsf.Paper

nsf:supponsﬁ

(nsfU:AN-104303442

)

nsfititle : "Necessary and sufficient ..."
rdf:type : nsf:Paper

)

Figure 1: Scenario DBLP-NSF: Improving precision using context-aware link specification

Bases (PVLDB) of 2013. DBLP contains these authors and
their articles, the NSF researchers from its portal, with the
same name of these authors, that leads awards which sup-
ports papers. We wish to identify authors in DBLP that
have been awarded with NSF grants using their names and
publications. We include two link specifications: LSarg,
which links the dblp:Author and nsf:Researcher instances if
their literals of dblp:name and nsf:name obtain a score over
0.98 using Jaro; LS 4 p, which links dblp:Article and nsf:Paper
instances if their literals dblp:title and nsf:title obtain a score
over 0.90 using Levenshtein. We rely on these link specifica-
tions and add overlap factors to them, each of which states
how many instances should be linked. The overlap factors
for LSar and LSap are for all and exists, respectively. The
resulting context-aware link specification is interpreted as
follows: a pair of dblp:Author and nsf:Researcher instances
are the same by means of the context-aware link specifica-
tion if all the instances covered by LS 4 r, pairs of dblp:Author
and nsf:Researcher instances, are the same, and if at least one
pair covered by LS4p, dblp:Article and nsf:Paper instances,
are the same.

Actual link specification techniques can generate LSar
or LSap (notice that LSap would not link instances of db-
Ip:Author and nsf:Researcher), but they are not able to use
LSap to link instances of dblp:Author and nsf:Researcher.
Additionally, they are not able to generate and apply overlap
factors over them.

Figure 1(b) depicts a set of sample instances, the link
specifications LSar and LSap and the context-aware link
specification CALSar. We focus on “Wei Wang”, who is an

author in DBLP, dblpU:Wang0011:Wei. We see that there
are two researchers whose name is “Wei Wang” that lead
two different NSF grants (nsf:AN-1043034, nsf:AN-0423336).
Using LS4 r alone, we link the three instances (dblpU:Wang-
0011:Wei and nsfU:WeiWang0012, and dblpU:Wang0011:Wei
and nsfU:WeiWang0007). However, using LSap we are able
to identify one paper in DBLP written by “Wei Wang” that
also appears in NSF. If we use both links at the same time
as part of the context information of the authors, we discard
one of the previous links (dblpU:Wang0011:Wei and nsfU:We-
iWang0012), which is not correct since it is actually linking
another researcher in NSF whose name is “Wei Wang”. As
a result, we improve precision using context information.
Figure 2 depicts another sample scenario, in which DBLP
acts both as source and target, where the context is cru-
cial to obtain a good recall. Figure 2(a) shows a part of
the data model, this scenario has several authors and their
aliases (different names that refer to the same person); both
datasets contains the same authors and their articles but
they have different aliases in each dataset. We include a
link specification, LS4, that links dblp:Article instances if
the literals of their dblp:title obtain a score over 0.99 using
Jaccard. We rely on LS44 and we add to it a for all as over-
lap factor. The resulting context-aware link specification is
interpreted as follows: two instances of dblp:Author are the
same by means of the contex-aware link specification if all
their dblp:Article instances are the same by means of LS4 4.
Figure 2(b) depicts a set of sample instances, the link
specification LS44 and the context-aware link specification
CALS44. We focus on link "Hosagrahar V. Jagadish” and

dblp:Author

dblp:Author

(depU:JagadisthOOZ:Hosagrahar.VW

blp:name : "Hosagrahar V. Jagadish" 7%
rdf:type : dblp:Author

dblpU:Jagadish_0001:H.V.

“Ydblp:name : "H. V. Jagadish"
rdf:type : dblp:Author

&-

(depU:journaIs/vadb/LabrinidisJ1ﬂ (dblpU:journals/pvidb/LabrinidisJ12 | dblp:writes

dblp:tite : "Challenges and ..."
ddf:twe : dblp:Article rdf:type : dblp:Article

dblpU:conf/sigmod/QianCJ12 dblpU:conf/sigmod/QianCJ12

J tjblp:tiﬁe "Challenges and ..
J

dblp:name dblp:name —tj
i dblp:writes
dblpwrites dblp:writes
dblp:Article dblp:Article
dblp:title LSaa: Jaccard > 0.99 dblpititle
dblp:date dblp:date
dblp:numberOfPages dblp:numberOfPages
dblp:recordedAt dblp:recordedAt
- J

(a) Data model and context-aware link specifica-
tion

dblp:title : "Sample-driven ..." dblp:title : "Sample-driven .." [*
Krdf:type : dblp:Article rdf.type : dblp:Article)

(b) Sample instances and links generated to relate them

Figure 2: Scenario DBLP-DBLP: Improving recall using context-aware link specification

"H. V. Jagadish” (dblpU:Jagadish_0002:Hosagrahar.V. and d-
blpU:Jagadish_0001:H.V.), which are different names of the
same person. A regular link specification would compare
these literals, instead we rely on their publications. Using
LSar as part of the context information of the authors, we
are able to link all their dblp:Article instances and, hence,
link the instances dblpU:Jagadish_0002:Hosagrahar.V. and d-
blpU:Jagadish_0001:H.V. through their publications. We im-
prove the recall because we do not rely on the names of au-
thors, which differs from both datasets, instead we use their
publications, which titles do not differ from both datasets.
As result, we improve the recall using the context informa-
tion.

We performed several experiments using the datasets in-
troduced in the Figure 1 and 2, in which we improved 23%
in precision and 58% in recall, respectively.

The rest of the article is organized as follows: in Section
2, we report on several related proposals and their features;
Section 3 introduces our conceptual framework; Section 4
presents our proposal to generate context-aware link specifi-
cations; Section 5 reports the results obtained in our experi-
ments; and, finally, Section 6 recaps on our main conclusions
and future work.

2. RELATED WORK

Over the last years, several approaches have been devel-
oped to address the link discovery task. There are two ways
to face link discovery. The first approach is building different
kind of classifiers to establish if two instances are the same
[22]. The second approach is through the discovery of accu-
rate link specifications, which specify conditions that must
hold true for two entities to be interlinked [11, 12, 17, 18,
19, 21]. The main difference between these two approaches
is that the former does not specify why two instances are the
same, i.e., it works like a black box that receives as input two
instances and outputs whether or not they are the same; the
latter generates a specification of why two instances should
be the same, describing which data properties have to fulfil
the conditions.

We focus only in the link specification approach, although,
we have also analyzed some classifiers since they exploit the
context information [8, 10, 23]. Holub et al. [10] proposed
a technique that works with a fixed formula that takes the
instances related directly to the pair that is been linked into
account. PARIS [23] is an unsupervised technique developed

to exploit the information contained in instances related to
the pair that is been analyzed by it. It takes two data mod-
els as input and generates a probabilistic model. In the first
place, the technique computes the probabilities of equiva-
lences of instances, then, the probabilities for relationships
with other instances and, finally, it creates the equivalences
between the classes. Hassanzadeh et al. [8] proposed a semi-
supervised technique that receives two datasets as input.
This technique works as follows: having all the data proper-
ties of all the classes in each dataset, the technique iterates
over one set and searches in the other set, according to a
string distance, the most similar data properties. The tech-
nique returns the ranked set of pairs according to the string
distance.

Regarding the link specification approaches, Isele and Bi-
zer [11] proposed GenLink, which is a supervised genetic
programming technique that generates link specifications as
trees. It starts with a population made of random link spec-
ifications and some recurrent link specification predefined
by the authors. Then, using genetic operations (reproduc-
tion, crossover and mutation), the population is evolved and
its quality evaluated by means of a fitness function, which
uses training data provided by the user. The technique stops
when a configured maximum number of iterations is reached,
or a link specification obtains a value in the fitness function
over a threshold given by the user. Based on GenLink, the
same authors proposed ActiveGenLink [12], which aims to
reduce the number of labelled examples using active learn-
ing. ActiveGenLink selects link candidates to be labelled
by the user from a pool of unlabelled instances through a
query strategy. Then, once the user labels a given example,
it adds the example to the training data and evolves the pop-
ulation using GenLink. Another semi-supervised technique
is EAGLE [17], which is based in a genetic programming
technique with active learning, and it aims to generate link
specifications as trees. It starts detecting similar classes and
data properties using RAVEN [16]. Then, EAGLE evolves
an initial random population of link specifications according
to genetic operators. After that, the technique computes the
most informative links and asks the user to label them. This
process is repeated until the stop condition is fulfilled, i.e., a
maximal number of iterations is reached, or the fitness value
of a link specification is over a given threshold. An unsuper-
vised learning technique was proposed by Nikolov et al. [19],
which starts with a random population and keeps iterating

over it, applying genetic operators, until a maximal num-
ber of iterations is reached, or the fitness of the population
does not improve for several iterations. Since this technique
does not work with labelled data, the fitness function uses
two criteria defined by the authors to evaluate link specifica-
tions, namely: pseudo-F-measure and neighborhood growth.
When a stop condition is reached, it returns the link speci-
fication with the highest fitness value from the population.
EUCLID [18] is an unsupervised technique that, using differ-
ent similarity functions, evaluates the data properties of the
instances and generates a space of similarity values. Then,
depending on different heuristics, it iterates over that space
updating the scores and pruning them until a solution is
found or a stop condition is reached. The unsupervised tech-
nique proposed by Song and Heflin [21] focuses on metrics
to improve the candidate selection to be as more scalable
as possible. Candidate selection is a process to pick pairs
of instances, each of which has a high probability to be the
same. The process is performed by selecting and compar-
ing only part of the data properties of each instance in the
pair. It then extracts a set of data properties very useful in
disambiguation, which identify why the pair of instances are
the same.

As far as we know, none of the previous link specification
techniques is able to exploit context information. Holub et
al. [10] proposed a technique that takes into account only
the instances of the context one-hop related to the pair that
is been linked. PARIS [23] takes as input all the datasets and
generates a probabilistic model to classify input instances.
The technique by Hassanzadeh et al. [8] returns a ranking of
most similar data properties using several string distances.
None of the previous techniques is able to apply transforma-
tions on data properties and only [8] is able to use different
string similarity measures, however it only returns a ranked
list of data property and not why two instances should be
linked. Additionally, [10] only takes one-hop connected in-
stances into account, although, many real-world scenarios
require to take more than one-hop related instances into ac-
count [20].

Table 1 summarizes all the techniques and their different
features. Those that generate link specifications are classi-
fied as LS; if they take into account the context, been LS or
not, then we classify them as context-aware (C-A). Finally, if
the technique is independent of any specific function (aggre-
gations, transformations, string distance measures or string
similarities), we classify it as function independent (FI).

Technique LS C-A | FI

10] Holub et al. (2015) No | Yes | No
23] Suchanek et al. (2011) No | Yes | No
8] Hassanzadeh et al. (2013) No | Yes | No
5, 12] Isele and Bizer (2011, 2012) Yes | No Yes
17, 18] Ngonga and Lyko (2012,2013) Yes | No Yes
19] Nikolov et al. (2012) Yes | No Yes
21] Song and Heflin (2011) Yes | No No

Table 1: Comparison of current techniques

3. PRELIMINARIES

In the following, we present the formalization of several
concepts that we use to describe our proposal. We define its
foundations, what a link specification is and what we mean
by context-aware link specification.

3.1 Foundations

We are focusing on RDF datasets, which are triple stores
that contain literals and IRls. Our proposal focuses on the
analysis of different instances, each of which entails several
concepts as follows:

e IRI: it uniquely identifies a web location. Note that
we use expressions like dblp:name to refer to IRls, in
which dblp: is a prefix. Table 2 summarizes all of our
prefixes. For example, some sample IRIs in Figure 1
are dblpU:Wang0011:Wei and nsfU:YangWang0023.

e BlankNode: are placeholders for IRIs whose actual value
is unknown. They have only local scope and are purely
an artifact of the serialization. Blank nodes are disjoint
from IRIs and Literals.

e Instance: an instance is an IRl or a BlankNode that we
are interested in linking.

Pref. IRI

rdf: http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type
owl: http://www.w3.0rg/2002/07 /owl#

dblp: http://example.org/voc/dblp#

nsf: http://example.org/voc/ /nsf#

db- http://example.org/urls/dblp#

IpU:

nsfU: http://example.org/urls/nsf#

Table 2: IRI prefixes used in the paper

e Class: we can assign classes to Instances, each of which
is an IRl that represents a real-world concept. When
we assign a Class to an Instance, we are explicitly saying
that the Instance belongs to the type of the Class. We
use rdf:type to represent this assignment. For exam-
ple, in Figure 1, Instances related to Classdblp:Author
represent authors in DBLP.

e DataProperty: Instances may comprise attributes that
describe features of the Instances, which are plain lit-
erals. To represent these features, we use data prop-
erties, which are IRIs that identify these literals. In
Figure 1, the names of the dblp:Author Instances are
identified using dblp:name.

e Literal: it denotes a value that a data property takes.
For example, in Figure 1 “Yang Wang” for nsfU:Yang-
Wang0023 or “Wei Wang” for nsfU:WeiWang0012 are
sample literals for the same data property. Depending
on the Instance, data properties have different literals.

e ObjectProperty: Instances can be related to other In-
stances by means of object properties, which are IRls;
a set of Instances related conform a graph. Note that,
in RDF, object properties are first-class citizens and
they are not subordinated to Instances. Figure 1 shows
a sample object property that relates dblp:Author and
dblp:Article using dblp:writes. Notice that we can add
multiple relations connecting the same Instance to mul-
tiple Instances; for example, in Figure 1, the object
property dblp:writes may relate one dblp:Author with
several dblp:Article Instances.

LinkSpecification

source: Set<Class>
target: Set<Class>

SameAsCondition
f: Function
threshold: Double

DataLeafNode
prop: DataProperty
dataset: {SRC, TRG}

[OperandComposite |
f. Transformation <>

(a) Link Specification

CALinkSpecification
source: Set<Class>
target: Set<Class>

CACondition
A

[CASameAsCondition | [ConditionComposite}>
[oF: OverlapFactor Hf: Aggregation ‘

2
LinkSpecification ObjectLeafNode
source: Set<Class> prop: ObjectProperty *
target: Set<Class>

dataset: {SRC, TRG}

(b) Context-Aware Link Specification

Figure 3: Models for link discovery

3.2 Link Specification

When performing link discovery, we have a source and
a target datasets that we wish to relate using owl:sameAs
links. To link the Instances of each dataset we generate a
link specification. A link specification has been defined in
multiple manners in the literature [3, 11, 12, 17]. We have
based our work in the definition given by Isele and Bizer
[11]. A link specification is a set of restrictions that define
the equality between a source and a target sets of classes
based on their data properties. For instance, a dblp:Author
and a nsf:Researcher are the same if they have very similar
literals for dblp:name and nsf:name.

Figure 3(a) depicts how we model link specifications using
an UML-like notation. Each DataleafNode represents a spe-
cific data property and the dataset it belongs. OperandCom-
posite specifies one Transformation function to be applied
over the literals; examples of these transformations are low-
ercase, tokenize, concatenate or remove prefiz. SameAsCon-
dition represents a threshold and a string distance measure,
or a string similarity, that defines when two Operands are
the same; some of the well-known string distance measures
are Levenshtein, Jaccard, Jaro and Jaro-Winkler. Condi-
tionComposite combines different SameAsConditions or other
ConditionComposites. Thanks to this, it is possible to define
restrictions over data properties and combine the results, for
example, using AND or OR Boolean conditions. LinkSpeci-
fication contains the sets of source and target classes of the
Instances that we are relating with owl:sameAs links.

Figure 1(a) shows two sample link specifications. One of
them between the Instances of dblp:Author and nsf:Resear-
cher (LSar). The Instances of both classes are the same
if literals of data properties dblp:name and nsf:name are the
same by means of a Jaro comparison and a threshold of 0.98.
The second link specification (LS 4p) relates dblp:Article and
nsf:Paper, which are the same if literals of data properties
dblp:title and nsf:title are the same by means of a Levenshtein
comparison and a threshold of 0.90.

3.3 Context-Aware Link Specification

A context-aware link specification extends the given def-
inition of link specification by defining when two Instances
are the same, like before, but the restrictions are not defined
only over their data properties, but also taking data proper-
ties of other Instances that belongs to a different set of classes
into account, which are connected by object properties.

Figure 3(b) specifies the structure of a context-aware link
specification using an UML-like notation. Each ObjectLeaf-
Node represents the object properties that connect the sets
of classes in CALinkSpecification with the other sets of classes
in the LinkSpecifications. A CASameAsCondition specifies an
OverlapFactor over a LinkSpecification. OverlapFactor takes
as values for all, if all the Instances are required to be con-
sidered the same by means of the LinkSpecification, or exists,
if just one pair of Instances is required. ConditionComposi-
te combines different CASameAsConditions or other Condi-
tionComposites, the Aggregation functions are: AND or OR
Boolean conditions. Finally, CALinkSpecification represents
the two main sets of classes, source and target, that the
Instances we wish to link with owl:sameAs belongs.

We present a sample context-aware link specification in
Figure 1(a) between dblp:Author and nsf:Researcher, that we
refer to as CALS 4r. The Instances of both classes are consid-
ered the same using some of their data properties, dblp:name
and nsf:name, but also taking the data properties of Instances
belonging to the context into account. It uses two link spec-
ifications to link the different kind of Instances, LSar and
LSap, and over them it defines two overlap factors, for all
and exists, respectively.

4. APPROACH

Our proposal aims to generate context-aware link specifi-
cations by means of Algorithm 1. The input is an example
composed by two Instances from different datasets represent-
ing the same concept. The output of the algorithm is a
context-aware link specification.

The algorithm takes each input Instance and explores the
Instances related with them by means of their object prop-
erties, retrieving all the new Instances from both contexts
(lines 10-11 in Algorithm 1). Then, the algorithm generates
a set of link specifications for the Instances in each context,
line 12 in Algorithm 1. For example, receiving as input the
Instances dblpU:Wang0011:Wei and nsfU:WeiWang0007 from
Figure 1(b), the algorithm firstly retrieves all the Instances
that are related with them, dblpU:conf/vldb/JiangWL03 and
dblpU:conf/vldb/YuanLLWYZ05 for the first one, nsfU:AN-
0423336 and nsfU:AN-0423336/#13 for the second one. It is
important to notice that not only the Instances one-hop away
are retrieved but also those that are more distant. Then,
the algorithm generates two link link specifications, LSar

Algorithm 1 generateCALinkSpecification

1: input

2 i1, i2: Instance

3: output

4: cals: CALinkSpecification
5: variables

6: Cyq, Co: P Instance

7 LS: P LinkSpecification

8 SO: P CASameAsCondition

10: C; « expand (i1)

11: Cy « expand (i2)

12: LS < generateLinkSpecifications (Cy, C2)

13: SO < assignOverlapFactor (LS, Cq, Cq, i1, i2)
14: cals < createCALinkSpecification (SO, i1, i2)

and LSap, relating the Instances in both contexts. Actual
link specification techniques are able to generate LSar and
LSap, so, in this paper, we do not focus on generating them.
We assume that generateLinkSpecifications returns the best
link specifications for the Instances in the context.

The algorithm assigns to each link specification an overlap
factor. In addition, we store the set of object properties
that connect the class of the input Instance with the class
of the Instances covered by the link specification (line 13 in
Algorithm 1 and Algorithm 2). Finally, it combines with
different aggregation functions the results obtained in the
previous step, creating the context-aware link specification
(line 14 in Algorithm 1).

Algorithm 2 assignOverlapFactor

2), it firstly applies the current link specification to the In-
stances, and then, it measures the ratio of Instances linked
by a owl:sameAs generated with the current link specification
(line 16 in Algorithm2). In our technique, if all the Instances
in both contexts covered by the link specification are linked
by owl:sameAs, then a for all overlap factor is assigned to
the current link specification (lines 19-20 in Algorithm 2).
If only one owl:sameAs is generated between the Instances in
the context, covered by the current link specification, then
an exists overlap factor is assigned to it (lines 21-22 in Al-
gorithm 2); otherwise, the link specification is discarded.
In Figure 1(b), the algorithm assigns for all to LSar, since
there is only a pair of Instances covered by it and both ful-
fill the restrictions of LSar. The algorithm assigns exists
to LSap since only one pair of dblp:Article and nsf:Paper In-
stances fulfill the conditions of LSap. Additionally, we also
store the sets of object properties that connect the class of
the input Instance with the class of the Instances covered by
the link specification (lines 17-18 in Algorithm 2). In Fig-
ure 1(b), the algorithm relates LSar with an empty set of
object properties because the Instances covered by it are the
same that the input. Then the algorithm assigns to LSap
two sets of object properties, {dblp:writes } and {nsf:leads,
nsf:supports }, that connect the main Instancesdblp:Author
and nsf:Researcher with the class of the Instances covered
by LSap, dblp:Article and nsf:Paper. Finally, for each link
specification, its related overlap factor and the sets of ob-
ject properties, the algorithm creates a CASameAsCondition
(line 24 in Algorithm 2). Every CASameAsCondition is added
to a set, which is the output of the algorithm when there are
no more link specifications to compute.

1: input

2: LS: P LinkSpecification
3 i1, i2 : Instance

4 C1, Co : P Instance

5: output

6: SO: P CASameAsCondition
7: variables

8: Is: LinkSpecification

9: 01, 02 : Double

10: oF: OverlapFactor

11: opsre, Optrg: P ObjectLeafNode

13: SO <+ @

14: oF «+ {}

15: for each Is in LS

16: (01,02) < measureOverlap (Is, C1, C2)
17: opsrc + objectPropertiesPath (Is, Cy, i1)
18: opirg + objectPropertiesPath (Is, Ca, i2)
19: if oy = 1.0 and o2 = 1.0 then

20: oF « {for all }

21: if oy > 0.0 and o2 > 0.0 then

22: oF « {exists }

23: if oF = {for all } or oF = {exists } then

24: SO U createCASameAsCond (oF, Is, opsrc, Optrg)

Algorithm 2 receives as input a set of link specifications,
two Instances to be linked, and two sets of Instance that
are the contexts; the output of the algorithm is a set of
CASameAsCondition. The algorithm starts iterating over the
link specifications and, for each of them (line 15 in Algorithm

Algorithm 3 createCALinkSpecification

1: input

2 i1, iz : Instance

3 SO: P CASameAsCondition

4: output

5: cals: CALinkSpecification

6: variables

7 classgrc, classirg: P Class

8 aggrAND: ConditionComposite

10: aggrAND < combineWithAndAggregations (SO)
11: classsre « extractRDFClass (i1)
12: classtrg < extractRDFClass (i2)
13: cals + createCALS (aggrAND, classs,c, classirg)

Algorithm 3 receives as input a set of CASameAsCondi-
tion and the input Instances, the output of the algorithm
is a CALinkSpecification. The algorithm starts combining
all the different CASameAsConditions of the input set with
and aggregations (line 10 in Algorithm 3). Finally the algo-
rithm extracts the class of each input Instance (lines 11-12
in Algorithm 3) and creates a CALinkSpecification (line 13
in Algorithm 3). In Figure 1(b), the classes of the input In-
stances are dblp:Author for Wang0011:Wei and nsf:Researcher
for WeiWang0007, the final context-aware link specification
with the aggregation functions is depicted in this figure. It
links dblp:Author and nsf:Researcher Instances if they have
similar names (for all LSar) and some of their publications
have similar titles (exists LSap).

LS: Jaro(dblp : name, nsf : name) > threshold. CALS:
1 & & & & &
0.9 AABDAMA
0.8 | oo
a 0.7 p
2 06 c
(0] (]
Z 051 2
(S} 9]
& 041 &
w w
0.3 -
—=— Precision
0.2 5 —&— Recall
Olé g —a— F-Measure [
= | | | I I
0.7 075 08 085 09 095 1
Threshold

(a) Link specification

for all LS and exists Jaro(dblp : title, nsf : title) > threshold.

e

0.3 . N
—3— Precision
0.2 —&— Recall
0.1} —a— F-Measure [
! ! ! I I
0.7 075 08 08 09 0.9 1
Threshold

(b) Context-Aware link specfication

Figure 4: Effectiveness results when specifications are given by an expert in DBLP-NSF

5. EVALUATION

We use two scenarios in which we study the effectiveness
using link specifications and context-aware link specifica-
tions. Both scenarios were built with real data using re-
searchers that have published in PVLDB of 2013 extracted
from DBLP. Furthermore, there are real-world situations in
which taking the context into account is crucial to perform
the optimal link discovery task. For each scenario, we did
two evaluations: in the first one, an expert defined a link
specification, to the best of his/her knowledge, and then,
the same expert defined a context-aware link specification.
Since link specifications are very sensitive to their accep-
tance threshold, for each defined specification, we tuned the
acceptance threshold value of their string similarity from 0.7
to 1.00 and analyzed for which values the best effectiveness
was achieved. In the second evaluation, we used GenLink
[11] to generate link specifications between the same classes
of the previous experiments, whose goal is to analyze the
impact of adding context to a regular link specification gen-
erated by a technique.

We make our data, algorithms, and scripts, publicly avail-
able [4]. Therefore, our results can be reproduced and tested
by third parties and researchers can extend our results to
cope with future requirements.

We have implemented our technique in Java 1.8, and Jena
3.0.0. Our experiments were run on a computer that was
equipped with a Intel Core i7 2.8 GHz CPU and 16 GB
RAM, running on Mac OS 10.9.5 (64-bits).

In section 5.1, we present our first scenario, DBLP-NSF,
we describe its characteristics, the relationships between the
datasets and how we built them. Section 5.2 follows the
same structure, in which we present our second scenario
DBLP-DBLP.

5.1 NSF-DBLP scenario

In this scenario, we have 188 owl:sameAs links between db-
Ip:Author and nsf:Researcher instances, which we consider our
gold standard. All of them relate authors and researchers
with the same name and publications in common. Between
the datasets, we have 57 pair of dblp:Author and nsf:Resear-

cher instances that have the same name but are different
authors, therefore, taking some context information into ac-
count, like their publications, is crucial to perform a suitable
link discovery task.

To build this scenario, firstly, we extracted from DBLP all
the articles and authors that have been published in PVLDB
of 2013. Then, we looked up their names in the NSF portal
and we extracted all their related information. Finally, we
created two RDF datasets, whose data models are depicted
in Figures 1(b) and 2(b), respectively. The resulting DBLP
dataset comprises 764 instances of dblp:Author and 47,225 in-
stances of dblp:Article. The resulting NSF dataset comprises
235 instances of nsf:Researcher, 235 instances of nsf:Award,
and 6,877 instances of nsf:Paper. Since NSF has information
about different disciplines, in this dataset we have several re-
searchers that have the same name but are different people.
For example, in Figure 1, instances WeiWang0012 and Wei-
Wang0007 have the same literal for nsf:name, although they
are describing different researchers. In the whole dataset,
only 74 instances of nsf:Researcher have different literals for
nsf:name.

Figure 4(a) depicts the effectiveness obtained with the link
specification provided by the expert, a Jaro comparison over
dblp:name and nsf:name, and using all possible acceptance
thresholds values from 0.7 to 1.0. Figure 4(b) depicts the
effectiveness obtained using the context-aware link specifi-
cation that extends the previous link specification, adding
a link specification composed by Jaro over dblp:title and
nsf:title, and using the best threshold for the dblp:Author
and nsf:Researcher link specification. The overlap factor for
the link specifications between the publications is exists and
for the link specification between persons is for all.

The results in Figure 4(a) shows how the effectiveness of
the link specification is better if the threshold acceptance
is higher, although it never reaches the best precision or
F-Measure of 1.0, it always obtains a recall of 1.00. Re-
call never changes because every dblp:Author that should
be linked with a nsf:Researcher has exactly the same name,
hence, if the threshold is low, the string metric generates
false positives but always recognizes pairs of instances with

LS: Jaro(dblp : name, dblp : name) > threshold.

Effectiveness
o
ot

—3— Precision
—.— Recall
—a— F-Measure |

! | |
0.7 075 0.8 08 09 095 1

Threshold
(a) Link specification

Effectiveness

CALS: for all Jaro(dblp:title, dblp:title) > threshold.

1 -vuuuuwuuuuwuuuuwuuuuwuuuuwuuu
0.9 <
0.8
0.7
0.6
0.5)
0.47 .‘AAAAAA' H
0.3} yaa
021
0.1

4 —=— Precision
—&— Recall

—a— F-Measure |

! | | I I
0.7 075 0.8 08 09 095 1

Thresholds
(b) Context-Aware link specfication

Figure 5: Effectiveness results when specifications are given by an expert in DBLP-DBLP

the same name (covering all the correct links). If the thresh-
old is high, the precision improves by pruning these false
positives.

In Figure 4(b), the context-aware link specification ob-
tains a precision that improves when the acceptance thresh-
old is higher, however, the recall decreases for values higher
than 0.83 of acceptance threshold. The context-aware link
specification reaches 1.00 in precision and recall for thresh-
olds in the range of 0.80-0.83. Recall drops when the thresh-
old is higher because this time we are comparing the names
of the authors, and also the titles of their publications, which
are written slightly different, e.g., SmartSaver turning flash
drive into a disk energy saver for mobile computers and
“SmartSaver: turning flash drive into a disk energy saver
for mobilecomputers”. As result, an exact string matching
would not recognize them as the same. Due to this issue, re-
call drops for higher thresholds. On the contrary, precision
improves when the threshold is higher, it mainly generates
false negatives but the instances linked are always correct.

LS for DBLP-NSF

LS P R F
LSN; 0.76 | 1.00 | 0.86
LSNs5 0.76 | 1.00 | 0.86
LSN1g 0.76 | 1.00 | 0.86

CALS for DBLP-NSF

LS and their overlap factors P R F
for all LSN; and exists LST; | 0.94 | 1.00 | 0.97
for all LSN5 and exists LSTs5 0.97 | 1.00 | 0.99
for all LSN1¢ and exists LST19 | 1.00 | 0.95 | 0.98

| CALS Best improvement | 024 | - [0.13]

Table 3: GenLink results for dblp:Author and nsf:Researcher
link specifications and context-aware link specification

Table 3 shows the results obtained using GenLink to gen-
erate several link specifications between the classes of pre-
vious experiments. We used different number of examples
to generate the links specifications. On one hand, for the
instances of dblp:Author and nsf:Researcher with 1 and 5 ex-

amples, Genlink generated LSN1 and LSN5; both have a Jac-
card distance < 0.37 over the literals of the data properties
dblp:name and nsf:name. Using 10 examples, GenLink gen-
erated LSN1g, which has a Jaccard distance < 0.21 for the
same data properties. On the other hand, the link specifi-
cations between dblp:Article and nsf:Paper using 1 example
was LST;, it has a Levenshtein distance < 29.48 over db-
Ip:title and nsf:title, using 5 examples GenLink generated
LSTs, which has a Jaccard distance < 0.59 over the same
data properties and, finally, using 10 examples GenLink gen-
erated LST1o, it has a Levenshtein distance < 7.05 over the
same data properties.

We analyzed the effectiveness of dblp:Author and nsf:Re-
searcher link specification, and the context-aware link spec-
ification for the same classes. The results in Table 3 shows
how, when we took context into account, precision improved
by 0.18 (1 example), 0.21 (examples) and 0.24 (10 examples).
However, recall dropped by 0.05 in the context-aware link
specification made by 10 examples because the acceptance
threshold was restrictive enough to not recognize titles writ-
ten slightly different, as we explained before.

5.2 DBLP-DBLP scenario

This scenario has 62 owl:sameAs links between the source
and target datasets. Both contains dblp:Author instances
with similar names and aliases, which are different enough
to produce false positives using comparators with low ac-
ceptance thresholds, and false negatives with high accep-
tance thresholds. This scenario was built using the same
authors and publications in the previous scenario. We took
the whole list filtered by authors with aliases (like “H. V.
Jagadish” and “Hosagrahar Visvesvaraya Jagadish”), then,
we split the instances in two datasets, each of which were
obtained by using a different alias for the same person. The
data model of the source and target datasets is depicted in
Figure 2(a). Both datasets contain 58 dblp:Author instances
and their publications, which are 5284 dblp:Article in total.
We conducted similar experiments in this scenario as previ-
ously.

Figure 5(a) shows the results obtained for the link spec-

ification given by the expert, which relates by means of a
Jaro distance the dblp:name of dblp:Author instances from
the source and target dataset, then, we obtain the precision,
recall and F-Measure for each possible threshold acceptance
value. Figure 5(b) shows the results for a context-aware link
specification that uses a link specification which, by means
of a Jaro distance, relates the dblp:title from the source and
target dblp:Article instances. The overlap factor for the link
specification is for all.

The results of Figure 5(a) shows that the best F-Measure
results are obtained for thresholds values between 0.72 and
0.77; however, it never obtains a F-Measure of 1.00. For
higher thresholds, recall decreases while precision increases,
this tendency is inverted for lower thresholds. Due to au-
thors’ aliases, recall behaves in the same way of Figure 4(b)
with publication titles; if the threshold is higher, the link
specification does not recognize as the same some aliases,
e.g., “H.V. Jagadish” and “Hosagrahar V. Jagadish”. On the
contrary, when the threshold is higher, precision improves
because the linked instances have similar names.

Figure 5(b) shows that the context-aware link specifica-
tions always obtain a precision of 1.00, recall and F-Measure
increases when the threshold is higher, achieving 1.00. This
situation is the same as Figure 4(a), the titles of the publica-
tions in each dataset have exactly the same literal, therefore,
when the threshold is higher, the recall improves. Precision
is always 1.00 because the CALS of this example only links
two instances of dblp:Author if all their publications are ex-
actly the same, due to the for all restriction. If just one
publication is not linked, then their authors are also not
linked; therefore, if a link is actually generated, it is always
correct.

LS for DBLP-DBLP

LS P R F
LSN; 1.00 | 0.26 | 0.45
LSN5 1.00 | 0.30 | 0.46
LSN1o 1.00 | 0.26 | 0.45

CALS for DBLP-DBLP

LS and their overlap factors P R F
for all LST; 1.00 | 0.84 | 0.91
for all LST5 1.00 | 0.84 | 0.91
for all LST1o 1.00 | 0.84 | 0.91

| CALS Best improvement | - | 0.58 | 0.46 |

Table 4: GenLink results for source and target dblp:Author
link specification and context-aware link specification

Table 4 shows the link specifications generated by Gen-
Link for the same classes of the previous experiments. On
one hand, for the source and target dblp:Author instances,
with 1 example, Genlink generated LSN; that relates source
and target dblp:name data properties by means of a Jaccard
distance < 0.15, with 5 examples generated LSNs that re-
lates the same data properties by means of a Levenshtein
distance < 1.48 and, finally, with 10 examples it generated
LSN;o, which relates the same data properties by means of
a Levenshtein distance < 1.15. On the other hand, for the
source and target dblp:Article instances, with 1 example Gen-
Link generated LST; that relates source and target dblp:title
by means of a Levenshtein distance < 1.76, with 5 examples
it generated LSTs that relates the same data properties by
means of a Levenshtein distance < 1.46, finally, with 10 ex-

amples it generated LST1o that relates the different dblp:title
by means of a Levenshtein distance < 1.76.

We analyzed the effectiveness for the source and target
dblp:Author instances using the link specification, and then,
the context-aware link specification. The results in Table
4 show how, when we take context into account, precision
does not change but recall improves by 0.58 (1 example),
0.54 (5 examples) and 0.58 (10 examples); which entails an
improvement in the F-Measure of 0.46 (1 example), 0.45 (5
examples) and 0.46 (10 examples).

6. CONCLUSION AND FUTURE WORK

In the literature, there are several techniques that gen-
erate link specifications to perform a link discovery task;
however, none of them is able to exploit context informa-
tion. In this paper, we present a proposal to extend the
definition of link specification by means of the concept of
overlap factor, which let us exploit context information and
define context-aware link specifications. Additionally, we
have identified two real-world scenarios where the context
is crucial and where, the current techniques, are not able to
obtain the best effectiveness without taking the context into
account.

Our experimental results prove how context-aware link
specifications obtain a better effectiveness in comparison
with regular link specifications in our scenarios. We ob-
tained an improvement of 23% in precision and 58% in recall,
respectively.

In future work, we plan to develop a technique to nav-
igate through context information of instances by not us-
ing all of their object properties, and selecting only those
more suitable to build effective context-aware link specifi-
cations. Additionally, we plan to add more metrics to cal-
culate the overlap factor extending our current for all and
exists restrictions. Finally, this paper is focused on gener-
ating owl:sameAs links, but an interesting extension of our
work is the generation of other kind of links in an automatic
way, depending on the results of the overlap factor.

Acknowledgements

Supported by the Spanish R&D&I program under grant
TIN2013-40848-R.

7. REFERENCES

[1] C. Bizer, T. Heath, and T. Berners-Lee. Linked Data:
Principles and state of the art. In WWW, pages 1-40,
2008.

[2] C. Bizer, T. Heath, and T. Berners-Lee. Linked
Data-the story so far. Int. J. Semantic Web Inf. Syst.
5(8), pages 205-227, 2009.

[3] M. G. Carvalho, A. H. Laender, M. A. Gongalves, and
A. S. da Silva. Replica identification using genetic
programming. In SAC, pages 1801-1806, 2008.

[4] A. Cimmino, C. R. Rivero, and D.Ruiz. Research
prototype, repositories and experimental results. URL
http://www.tdg-seville.info /acimmino/Cals, 2016.

[5] M. G. de Carvalho, A. H. F. Laender, M. A.
Gongalves, and A. S. da Silva. A genetic programming
approach to record deduplication. IEEE Trans.
Knowl. Data Eng., 24(3):399-412, 2012.

[6]

[7]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

I. Ermilov, M. Martin, J. Lehmann, and S. Auer.
Linked Open Data Statistics: Collection and
Exploitation. In KESW, pages 242-249. 2013.

H. Halpin, P. J. Hayes, J. P. McCusker, D. L.
McGuinness, and H. S. Thompson. When owl:sameAs
isn’t the same: An analysis of identity in Linked Data.
In ISWC, pages 305-320. 2010.

O. Hassanzadeh, K. Q. Pu, S. H. Yeganeh, R. J.
Miller, L. Popa, M. A. Hernéndez, and H. Ho.
Discovering linkage points over web data. PVLDB,
6(6):444-456, 2013.

T. Heath and C. Bizer. Linked Data: Evolving the
Web into a Global Data Space. Morgan & Claypool
Publishers, 2011.

M. Holub, O. Proksa, and M. Bielikova. Detecting
identical entities in the Semantic Web Data. In
SOFSEM, pages 519-530. 2015.

R. Isele and C. Bizer. Learning expressive linkage rules
using genetic programming. PVLDB, 5(11):1638-1649,
2012.

R. Isele and C. Bizer. Active learning of expressive
linkage rules using genetic programming. J. Web
Sem., 23:2-15, 2013.

R. Isele, A. Jentzsch, and C. Bizer. Efficient
multidimensional blocking for link discovery without
losing recall. In ACM SIGMOD workshops, 2011.

M. Nentwig, M. Hartung, A.-C. N. Ngomo, and

E. Rahm. A survey of current Link Discovery
frameworks. Web Sem. J., pages 1-18, 2015.

A.-C. N. Ngomo and S. Auer. LIMES: A time-efficient
approach for large-scale Link Discovery on the Web of
Data. In IJCAI, pages 2312-2317, 2011.

A.-C. N. Ngomo, J. Lehmann, S. Auer, and

K. Hoffner. RAVEN - Active learning of link
specifications. In ISWC workshops, pages 25-37, 2011.
A.-C. N. Ngomo and K. Lyko. EAGLE: Efficient
active learning of link specifications using genetic
programming. In ESWC, pages 149-163. 2012.

A.-C. N. Ngomo and K. Lyko. Unsupervised learning
of link specifications: deterministic vs.
non-deterministic. In ISWC workshops, pages 25-36,
2013.

A. Nikolov, M. d’Aquin, and E. Motta. Unsupervised
learning of Link Discovery configuration. In ESWC,
pages 119-133. 2012.

C. R. Rivero, I. Herndndez, D. Ruiz, and

R. Corchuelo. Exchanging data amongst linked data
applications. Knowl. Inf. Syst., 37(3):693-729, 2013.
D. Song and J. Heflin. Automatically generating data
linkages using a domain-independent candidate
selection approach. In ISWC, pages 649-664. 2011.

T. Soru and A.-C. N. Ngomo. A comparison of
supervised learning classifiers for Link Discovery. In
SEM, pages 41-44, 2014.

F. M. Suchanek, S. Abiteboul, and P. Senellart.
PARIS: Probabilistic alignment of relations, instances,
and schema. PVLDB, 5(3):157-168, 2011.

