
Exploiters-Based Knowledge Extraction in

Object-Oriented Knowledge Representation

Dmytro Terletskyi

Taras Shevchenko National University of Kyiv, Kyiv, 03680, Ukraine

dmytro.terletskyi@gmail.com,

http://cyb.univ.kiev.ua/en/departments.is.terletskyi.html

Abstract. This paper contains the consideration of knowledge extraction mech-

anisms of such object-oriented knowledge representation models as frames,

object-oriented programming and object-oriented dynamic networks. In addition,

conception of universal exploiters within object-oriented dynamic networks is

also discussed. The main result of the paper is introduction of new exploiters-

based knowledge extraction approach, which provides generation of a finite set

of new classes of objects, based on the basic set of classes. The methods for

calculation of quantity of new classes, which can be obtained using proposed

approach, and of quantity of types, which each of them describes, are proposed.

Proof that basic set of classes, extended according to proposed approach, together

with union exploiter create upper semilattice is given. The approach always al-

lows generating of finitely defined set of new classes of objects for any object-

oriented dynamic network. A quantity of these classes can be precisely calculated

before the generation. It allows saving of only basic set of classes in the knowl-

edge base.

Key words: knowledge extracting, object-oriented dynamic networks, inhomo-

geneous class, universal exploiters, upper semilattice

1 Introduction

Nowadays methods of knowledge extracting and reasoning about knowledge are signif-

icant constituent part of majority of knowledge-based systems. It gives an opportunity

to extract or to obtain new knowledge, based on such called, basic knowledge. Such

abilities make knowledge-based systems intelligent and applicable ones at least in such

areas of artificial intelligence as information search, problem solving, planning, patterns

recognition, decision making, etc.

Currently there is variety of knowledge representation models (KRMs), which im-

plement different approaches to knowledge representation. One of them is an object-

oriented knowledge representation, the main idea of which is representation of knowl-

edge in terms of objects, classes of objects and relationships among them. Nowadays

the most famous KRMs within this approach are frames and object-oriented program-

ming (OOP). Both of them have their own knowledge extraction methods, which give

some abilities for new knowledge obtaining. Let us consider these mechanisms and

their main features in more detail.

212

2 Knowledge Extraction in Frames and OOP

Frames as a KRM provide representation of knowledge in terms of hierarchies of frames

(system of frames), where particular frame is a class-frame or instance-frame [3], [6].

Each frame is connected with others via relations of generalization (is-a, a-kind-of, an-

instance-of, etc.), aggregation (a-part-of, part-whole, etc.) and association (owns, plays,

creates, etc.). Relation of generalization provides implementation of inheritance mech-

anism that allows more specific frames, that situated lower in the hierarchy, inherit all

slots from more general frames. Such structure of the system allows efficient knowl-

edge representation, because it is based on the idea of representation of new knowledge

via previously represented ones.

In addition, each frame can have definite procedural attachments, which allow ex-

ecution of actions on it. Some procedures execute only when they are in need (when-

procedures), other ones execute in particular situations. Thus, extracting of new knowl-

edge in the frame system can be done by dint of the reasoning in inheritance hierarchy

or by means of procedural attachments executing [10]. However, frames support two

kinds of inheritance – single and multiple ones [6]. Inheritance can cause such prob-

lems as problem of exceptions, problem of redundancy and problem of ambiguity [1],

[9]. Frames also allow overriding of values of slots in the instance-frames [6], that leads

to the situation when the subclass or instance goes beyond its superclass.

In contrast to frames, OOP is divided on two styles – class-based and prototype

based ones [5]. Similarly to frames, first approach provides knowledge representation

in terms of hierarchies of classes, using inheritance. Second one gives an opportunity

for knowledge representation in terms of prototypes. Despite that both styles are object-

oriented ones, they have significant differences.

Class-based approach provides ability to work only with instantiated objects, to

change values of their properties, to execute their methods and in such a way to obtain

new knowledge. We cannot change the description of a class, type of object or hierarchy

of classes during program execution. It means that we can obtain only objects of the

same type with changed values of the properties. In addition, inheritance in OOP causes

the same problems as in frames [5].

Prototype-based style gives an opportunity to operate with prototypes. Each new

prototype is a modified clone of another one. It means that such approach is more flexi-

ble for description of new concepts, because it allows creating of new prototypes during

program execution and implements the idea of partial inheritance. However, it requires

much more computer memory and leads to redundancy in representation of particular

prototypes.

3 Object-Oriented Dynamic Networks

Besides mentioned object-oriented KRMs, there is one more KRM, such as object-

oriented dynamic networks (OODNs), that was proposed in [8]. This KRM has simi-

larity with all mentioned KRMs, however it also has some specific features, which give

new opportunities in knowledge representation within object-oriented approach. Let us

consider structure of this model.

213

Definition 1 Object-Oriented Dynamic Network is a 5-tuple

OODN = (O,C, R,E, M),

where:

• O – a set of objects;

• C – a set of classes of objects, which describe objects from the set O;

• R – a set of relations, which are defined on the set O and C;

• E – a set of exploiters, which are defined on the set O and C;

• M – a set of modifiers, which are defined on the set O and C.

Definitions of all elements from the tuple OODN = (O,C, R,E, M) were introduced

and considered in detail in [8]. Each object from the set O has some properties, which

define it as an essence. There are two kinds of object’s properties – quantitative and

qualitative ones, which definitions were introduced in [7]. However, we need to con-

sider the properties of a class of objects. Let us define them.

Definition 2 Quantitative property of class of objects T is a tuple

p(T) = (v(p(T)), u(p(T))),

where v(p(T)) is an quantitative value of p(T) and u(p(T)) are units of its measure.

Definition 3 Qualitative property of class of objects T is a verification function p(T) =
vf(T), which is defined as a mapping vf(T) : p(T) → [0, 1] and reflects the degree

(measure) of truth (presence) of a property p(T) for the class T .

Let us define the conception of equivalence of these kinds of properties.

Definition 4 Two quantitative properties p(T1) and p(T2) of arbitrary classes of ob-

jects T1 and T2 are equivalent, i.e. Eq(p(T1), p(T2)) = 1, if and only if (u(p(T1)) =
u(p(T2))) ∧ (v(p(T1)) = v(p(T2))).

Definition 5 Two qualitative properties p1(T1) and p2(T2) of arbitrary classes of ob-

jects T1 and T2 are equivalent, i.e. Eq(p1(T1), p2(T2)) = 1, if and only if (vf1(T1) =
vf2(T1)) ∧ (vf1(T2) = vf2(T2)).

For every object of a class we can define methods, which can be applied to them and

allow definition of their behaviour and manipulating on them.

Definition 6 Method of class of objects T is a function f(T), which can be applied to

the class T , considering the features of its specification (vector of properties).

From the previous definition, we can see that method is a function, which is defined

under the properties. To define the equivalence of methods we should define the equiv-

alence of two arbitrary functions, but in general case such problem is unsolvable one.

So, we are going to introduce the equivalence of methods via following definition.

Definition 7 Two methods f1(T1) and f2(T2) of arbitrary classes of objects T1 and

T2 are equivalent, i.e. Eq(f1(T1), f2(T2)) = 1, if and only if (f1(T1) = f1(T2)) ∧
(f2(T1) = f2(T2)).

214

It introduces the equivalence of two methods on the same argument. It means that two

methods f1(T1) and f2(T2) can be different as functions, however they can return the

same results on the same objects.

Concepts of objects, classes and relations among them have different implementa-

tions in various KRMs. One of the main differences is the definition of the class. Within

frames and OOP, concept of class is defined as abstract description of some quantity

of objects, which have the same nature [3], [5]. That is why, it is possible to conclude,

that such class is a homogeneous one, because it contains only objects of the same type.

Nevertheless, there are classes, which are inhomogeneous ones [7]. Within OODNs,

there are two definitions for both types of classes. Let us consider them in more details.

Definition 8 Homogeneous class of objects T is a tuple T = (P (T), F (T)), where

P (T) is specification (a vector of properties) of some quantity of objects, and F (T) is

their signature (a vector of methods).

According to this definition, all objects of such class have the same type, i.e. they have

the same properties and methods as their class. Let us consider the definition of inho-

mogeneous class of objects.

Definition 9 Inhomogeneous (heterogeneous) class of objects T is a tuple

T = (Core(T), pr1(A1), . . . , prn(An)),

where Core(T) = (P (T), F (T)) is the core of class of objects T , which includes

only properties and methods similar to corresponding properties of specifications

P (A1), . . . , P (An) and corresponding methods of signatures F (A1), . . . , F (An) re-

spectively, and where pri(Ai) = (P (Ai), F (Ai)) , i = 1, n are projections of objects

A1, . . . , An, which consist of properties and methods typical only for these objects.

According to this definition, it is possible to represent certain amount of any types by

dint of one class within object-oriented approach. While representation of each type of

objects in OOP always requires definition of new class.

Analyzing definitions 8 and 9, we can conclude that a homogeneous class of objects

defines a type of objects. In this case the type and the class of objects mean the same.

However, an inhomogeneous class of objects defines at least two different types of

objects within one class of objects that is why in this case the type and the class are

not equivalent. In other words inhomogeneous class of objects includes a few types of

objects. Let us define a type of inhomogeneous class of objects.

Definition 10 Type of arbitrary inhomogeneous class of objects

T = (Core(T), pr1(T), . . . , prn(T))

is a homogeneous class of objects Ti = (Core(T), pri(T)), where i = 1, n.

Now, let us define the following tree kinds of subclass relations for classes of ob-

jects: homogeneous ⊆ homogeneous, inhomogeneous ⊆ inhomogeneous and homoge-

neous ⊆ inhomogeneous.

215

Definition 11 Homogeneous class of objects T1 = (P (T1), F (T1)) is a subclass of

homogeneous class of objects T2 = (P (T2), F (T2)), i.e. T1 ⊆ T2 if and only if

(∀pi ∈ P1 ∃pj ∈ P2 | Eq(pi, pj) = 1) ∧ (∀fk ∈ F1 ∃fw ∈ F2 | Eq(fk, fw) = 1),

where P1, P2, F1, F2 are sets, which contain elements of vectors P (T1), P (T2), F (T1),
F (T2) respectively and i = 1, |P1|, j = 1, |P2|, k = 1, |F1|, w = 1, |F2|.

Definition 12 Inhomogeneous class of objects

T1 = (Core(T1), pr1(T1), . . . , prn(T1))

is a subclass of inhomogeneous class of objects

T2 = (Core(T2), pr1(T2), . . . , prm(T2)),

i.e. T1 ⊆ T2 if and only if

(∀ai ∈ C1 ∃aj ∈ C2 | Eq(ai, aj) = 1)∧

∧(∀bhk
∈ prh ∃!bvw

, prv ∧ bvw
∈ prv | Eq(bhk

, bvw
) = 1),

where C1, C2, prh, prv are sets, which contain elements of vectors from the sets

Core(T1), Core(T2), prh(T1), prv(T2) respectively and i = 1, |C1|, j = 1, |C2|,
k = 1, |prh|, w = 1, |prv|, h = 1, n, v = 1, m.

Definition 13 Homogeneous class of objects T1 = (P (T1), F (T1)) is a subclass of

inhomogeneous class of objects T2 = (Core(T2), pr1(T2), . . . , prn(T2)), i.e. T1 ⊆ T2

if and only if

(∀pi ∈ P1 ∃pj ∈ C2 ∨ prv | Eq(pi, pj) = 1)∧

∧(∀fk ∈ F1 ∃fw ∈ C2 ∨ prv | Eq(fk, fw) = 1),

where P1, F1 are sets, which contain elements of vectors P (T1), F (T1) and C2, prv

are sets, which contain elements of vectors from the sets Core(T2) and prv(T2) respec-

tively, i = 1, |P1|, j = 1, |C2| + |prv|, k = 1, |F1|, w = 1, |C2| + |prv|, v = 1, n.

According to the definitions of class of objects, it is possible to define the vector of

methods for each class of objects, concerning its specification. Such kind of methods are

internal ones, because they are defined under particular properties of the class. Besides

them, there are methods, which are called external ones and are defined under whole

specification of the class. Depending on the character of actions, all methods can be

divided on exploiters and modifiers. Exploiters do not change objects or classes, they

just use them as parameters for new knowledge obtaining. While, modifiers change

the basic knowledge and allow modelling of their changes or evolution over the time.

That is why F (T) contains internal, E and M contain external methods of the class of

objects.

Summarizing, OODN can be considered as two conceptual parts. First of them is

declarative, which includes sets O, C, R, and allows representation of knowledge about

particular domain. Second part is procedural one. It includes sets E, M and provides

the tools for obtaining new knowledge from basic ones. All following considerations are

connected with applications of procedural part of OODN, in particular exploiters-based

knowledge extraction.

216

4 Exploiters-Based Knowledge Extraction

As it was mentioned above, exploiters form significant constituent of procedural part of

OODN. Generally, we can define variety of exploiters for each class of objects, how-

ever majority of them are locally closed under their classes. That is why, such universal

exploiters as union, intersection, difference and symmetrical difference were introduced

in [7]. Their applications allow building of new classes of objects. This fact has signif-

icant value not only in knowledge extraction, but also in programming, because it is a

step toward the implementation of runtime class generation.

Let us define union exploiter for classes of objects, using definition 10.

Definition 14 Union ∪ of two arbitrary nonequivalent classes of objects T1 and T2

is an inhomogeneous class of objects T = (Core(T), pr1(T), . . . , prn(T)), where

Core(T) = (P (T), F (T)) is its core and includes only properties and methods, which

are similar for types T11
, . . . , T1m

, T21
, . . . , T2k

, and where prj(T) = (P (T), F (T))
is projection of type Tij

, i = 1, 2, j = 1, n, n = m + k which consist of properties and

methods typical only for this type.

Application of union exploiter to classes of objects has some important features besides

generation of new classes of objects. Let us formulate and prove a few theorems, which

illustrate these features.

Theorem 1 For any OODN = (O,C = {T1, . . . , Tn}, R, E = {∪}, M), where

classes T1, . . . , Tn are homogeneous ones and do not have any common properties

and methods, all possible applications of union exploiter ∪, including all possible its

superpositions, to classes of objects from the set C always generate finite quantity of

new classes of objects, which can be calculated by the following formula:

q(CE) = 2n − n − 1,

where n = |C|.

Proof. It is known that the number of all possible unique k-elements combinations from

the n-elements set can be calculated as Ck
n. Similarly, the number of all possible unique

classes of objects created from the basic set of classes C = {T1, . . . , Tn} using union

exploiter can be represented as a combination of k = 2, n different classes from the set

C. It is known that
k∑

n=0

Ck
n = 2n.

However, we cannot create classes of objects, which describe 1 and 0 different types,

applying union exploiter to the classes of objects from the set C, i.e. we do not count

C0
n and C1

n, we can conclude that

q(CE) =
n∑

k=0

Ck
n − C0

n − C1
n =

n∑

k=2

Ck
n = 2n − n − 1.

�

217

Using Theorem 1, we can formulate one more important theorem.

Theorem 2 Set of classes of objects

C = {T1, . . . , Tn, Tn+1, . . . , T2n
−1}

of any OODN, extended according to Theorem 1, with exploiter ∪ create the upper

semilattice, where class T1,...,n = T1 ∪ · · · ∪ Tn is its greatest upper bound.

Proof. According to the definition of upper semilattice, it should be a system SL =
(A, Ω), where A is a poset, Ω = {∨} and ∨ is binary, idempotent, commutative and

associative operation [2], [4].

In our case, carrier of upper semilattice is the set of classes C, where we define

exploiter ∪, thus SL = (C, Ω), where Ω = {∪}. From the definition 14 it follows, that

mentioned properties of ∨ are true for ∪, i.e.

1. T1 ∪ T1 = T1;

2. T1 ∪ T2 = T2 ∪ T1;

3. T1 ∪ (T2 ∪ T3) = (T1 ∪ T2) ∪ T3.

Now, let us show that C is a poset. For this, we should define ∀T1, T2 ∈ C |T1 ⊆ T2 ⇔
T1 ∪ T2 = T2 and show that ⊆ is a relation of partial order under the set C. It means,

we should prove that relation ⊆ is reflexive, antisymmetric, and transitive one.

1. T1 ⊆ T1 ⇔ T1 ∪ T1 = T1 follows from idempotency of ∪;

2. T1 ⊆ T2 ⇔ T1 ∪ T2 = T2, T2 ⊆ T1 ⇔ T2 ∪ T1 = T1 and from commutativity of

∪, we can conclude that T1 = T2;

3. T1 ⊆ T2 ⇔ T1 ∪ T2 = T2, T2 ⊆ T3 ⇔ T2 ∪ T3 = T3 ⇒ (T1 ∪ T2) ∪ T3 =
T1 ∪ (T2 ∪ T3) = T1 ∪ T3 = T3 ⇒ T1 ∪ T3 = T3 ⇔ T1 ⊆ T3.

Thus, SL = (C = {T1, . . . , Tn, Tn+1, . . . , T2n
−1}, Ω = {∪}) is an upper semilattice,

where T1,...,n = T1 ∪ · · · ∪ Tn is its greatest upper bound. �

Using results of Theorem 2, we can formulate the following corollary.

Corollary 21 Set of classes of objects C of any OODN, extended according to The-

orem 1, and union exploiter ∪, which is defined under it, create a finitely-generated

universal algebra

G = (C = {T1, . . . , Tn, Tn+1, . . . , T2n
−1}, Ω = {∪}) ,

where Cb = {T1, . . . , Tn} is generative set for the set C.

Now let us consider an example, which illustrates specific of exploiters-based

knowledge extraction within OODN. Let us define the OODN

Salad = (O,C, R,E, M),

which describes some ingredients of a salad, for example cucumber, tomato, onion,

cabbage, salt and sunflower oil. For this purpose, we define following sets of objects O,

classes of objects C and set of relations R

O = {cuc, tom, on, cab, sal, soil},

218

C = {Cuc, Tom, Cab, On, Spi, Oil},

R = {cuc
an−inst.−of
−−−−−−−−→ Cuc, tom

an−inst.−of
−−−−−−−−→ Tom, cab

an−inst.−of
−−−−−−−−→ Cab,

on
an−inst.−of
−−−−−−−−→ On, sal

an−inst.−of
−−−−−−−−→ Spi, soil

an−inst.−of
−−−−−−−−→ Oil.}.

Suppose the set of exploiters is defined as E = {∪}. We do not define the set of modi-

fiers M , because it is not necessary within consideration of exploiters-based knowledge

extraction.

Let us define the specifications of classes from set C in the following way

P (Cuc) = (p1(Cuc), . . . , p4(Cuc)), P (Tom) = (p1(Tom), . . . , p4(Tom)),

P (Cab) = (p1(Cab), . . . , p4(Cab)), P (On) = (p1(On), . . . , p4(On)),

P (Spi) = (p1(Spi), . . . , p4(Spi)), P (Oil) = (p1(Oil), . . . , p4(Oil)),

where p1(Cuc), p1(Tom), p1(Cab), p1(On) – masses of vegetables, p1(Spi) – type

of spices, p1(Oil) – type of oil, p2(Cuc), p2(Tom), p2(Cab), p2(On) – colors of

vegetables, p2(Spi) – mass of spices, p2(Oil) – volume of oil, p3(Cuc), p3(Tom),
p3(Cab), p3(On) – freshness of vegetables, p3(Spi) – taste of spices, p3(Oil) – color

of oil, p4(Cuc), p4(Tom), p4(Cab), p4(On), p4(Spi), p4(Oil) – prices. Values of all

properties of these classes are defined in Table 1.

Let us define the specifications of objects from the set O, using specifications of

their classes (see Table 2).

Table 1. Specifications of classes Cuc, Tom, Cab, On, Spi, Oil

pi Cuc Tom Cab On Spi Oil

p1 [0.07, 0.18] kg [0.08, 0.2] kg [0.4, 1.3] kg [0.05, 0.1] kg undefined undefined

p2 green red green green-white [0.1, 1.0] kg [0.5, 1.0] l

p3 undefined undefined undefined undefined undefined yellow

p4 3 USD/kg 3.5 USD/kg 4 USD/kg 2 USD/kg 12 USD/kg 9 USD/l

Table 2. Specifications of objects cuc1, cuc2, tom1, tom2, cab, on, sal, soil

pi cuc1 cuc2 tom1 tom2 cab on sal soil

p1 0.09 kg 0.08 kg 0.12 kg 0.1 kg 0.5 kg 0.1 kg salt sunflower

p2 green green red red green green-white 0.5 kg 0.5 l

p3 1 1 1 1 1 1 salty yellow

p4 0.27 USD 0.24 USD 0.42 USD 0.35 USD 2 USD 0.2 USD 6 USD 4.5 USD

We have described the OODN for the salad. Clearly that all elements of sets O, C

and R are basic knowledge. Let us obtain all possible new knowledge from them using

219

exploiter ∪. According to Theorems 1-2 we obtain such 15 classes, that each of them

describes 2 different types of objects

CucTom, CucCab, CucOn, CucSpi, CucOil, TomCab, TomOn, TomSpi,

TomOil, CabOn, CabSpi, CabOil, OnSpi, OnOil, SpiOil;

such 20 classes, that each of them describes 3 different types of objects

CucTomCab, CucTomOn, CucTomSpi, CucTomOil, CucCabOn,

CucCabSpi, CucCabOil, CucOnSpi, CucOnOil, CucSpiOil,

TomCabOn, TomCabSpi, TomCabOil, TomOnSpi, TomOnOil,

TomSpiOil, CabOnSpi, CabOnOil, CabSpiOil, OnSpiOil;

such 15 classes, that each of them describes 4 different types of objects

CucTomCabOn, CucTomCabSpi, CucTomCabOil, CucTomOnSpi,

CucTomOnOil, CucTomSpiOil, CucCabOnSpi, CucCabOnOil,

CucCabSpiOil, CucOnSpiOil, TomCabOnSpi, TomCabOnOil,

TomCabSpiOil, TomOnSpiOil, CabOnSpiOil;

such 6 classes, that each of them describes 5 different types of objects

CucTomCabOnSpi, CucTomCabOnOil, CucTomCabSpiOil,

CucTomOnSpiOil, CucCabOnSpiOil, TomCabOnSpiOil;

and 1 class, which describes 6 different types of objects

CucTomCabOnSpiOil.

As we can see, we obtain 57 new classes of objects, or in other words, 57 different com-

binations of salad’s ingredients from the 6 basic ones. In such a way we extended the set

of classes C by adding new knowledge, extracted from basic ones. The most general

obtained class CucTomCabOnSpiOil is an inhomogeneous one and has following

structure

CucTomCabOnSpiOil = (pr1(CucTomCabOnSpiOil), . . . ,

pr6(CucTomCabOnSpiOil)),

where

pr1(CucTomCabOnSpiOil) = P (Cuc), pr2(CucTomCabOnSpiOil) = P (Tom),

pr3(CucTomCabOnSpiOil) = P (Cab), pr4(CucTomCabOnSpiOil) = P (On),

pr5(CucTomCabOnSpiOil) = P (Spi), pr6(CucTomCabOnSpiOil) = P (Oil).

All other obtained classes have the similar structure.

220

According to Theorem 2, the extended set of classes C and exploiter ∪ create upper

semilattice. It means, that there is partial order relation ⊆, which is defined on the set

C. Furthermore, according to Corollary 21 they create a finitely-generated universal

algebra

G = (C = {Cuc, Tom, Cab, On, Spi, Oil, . . . , CucTomCabOnSpiOil}, E = {∪}),

where Cb = {Cuc, Tom, Cab, On, Spi, Oil} ⊆ C is generative or basic set for the set

C.

Summarizing, we obtained all possible unions of the basic classes from the set C.

All these classes can be viewed as schemas or recipes for which we can use objects

defined in Table 2. In means that in such a way we can create particular salad, moreover

we can create different salads using one scheme putting different proportions of ingre-

dients. Using chosen scheme, we can calculate different properties of the cooked salad,

for example its prise, mass, etc.

5 Conclusions

This paper contains consideration of main features of knowledge extraction mecha-

nisms of such object-oriented KRMs as frames, OOP and OODNs. Furthermore, con-

ception of universal exploiters within object-oriented dynamic networks is also dis-

cussed.

The main achievement of the paper is introduction of new exploiters-based knowl-

edge extraction method for OODNs, which always provides generating of finitely de-

fined set of new classes of objects, based on the basic set of classes. The main features

of the proposed method are:

• ability to calculate:

• quantity of new classes, which can be obtained, using proposed approach,

• quantity of different types, which each of obtained classes describes;

• the basic set of classes of any OODN, extended according to proposed approach,

together with union exploiter, create:

• upper semilattice,

• finitely generated universal algebra, for which the basic set of classes of OODN

is a generative set.

It allows us to extract new knowledge from the basic ones when we need them and to

save only basic set of classes in the knowledge base and database. Moreover, obtained

knowledge always have the defined structure, i.e. they form the upper semilattice. It

means that we can use the results of upper semilattice theory in such kind of knowledge

extraction and representation.

However, despite all advantages, proposed approach requires further research, at

least in the following directions:

• study of the case when the basic set of classes of OODN contains classes that has

some common properties or methods,

• study of the case when the OODN is a fuzzy one,

• adapting and usage of proposed approach in other known object-oriented KRMs.

221

References

1. Al-Asady, R.: Inheritance Theory: An Artificial Intelligence Approach. Ablex Publishing Cor-

poration, Norwood, New Jersey (1995)

2. Birkhoff, G.: Lattice theory. 3-rd Revised edition. American Mathematical Society Collo-

quium Publications, New York (1967)

3. Brachman, R.J., Levesque, H.J.: Knowledge Representation and Reasoning. Morgan Kauf-

mann Publishers, San Francisco, California (2004)

4. Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order. Second Edition. Cambridge

University Press, New York (2002)

5. Craig, I.D.: Object-Oriented Programming Languages: Interpretation. Springer, London

(2007)

6. Negnevitsky, M.: Artificial Intelligence: A Guide to Intelligent Systems: Second Edition.

Addison-Wesley, Herlow, Essex (2004)

7. Terletskyi, D.O., Provotar, O.I.: Mathematical Foundations for Designing and Development of

Intelligent Systems of Information Analysis. Scientific Journal “Problems in Programming”.

15, 233–241 (2014)

8. Terletskyi, D.O., Provotar, O.I.: Object-Oriented Dynamic Networks. In: Setlak, G.,

Markov, K. (eds.) Computational Models for Business and Engineering Domains. IBS ISC,

vol. 30, pp. 123–136. ITHEA (2014)

9. Touretzky, D.S.: The Mathematics of Inheritance Systems. Morgan Kaufmann Publishers, Los

Altos, California (1986)

10. Ueno, H., Koiama, T., Okamoto, T., Matsubi, B., Isidzuka, M.: Representation and Usage of

Knowledge (In Russian). Mir, Moscow (1987)

