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Abstract. A generalized of conjuncterms simplification rules in polynomial set-

theoretical format has been considered. These rules are based on the proposed

theorems for different initial conditions transform of pair conjuncterms, Ham-

ming distance between them can be arbitrary. These rules may be useful to min-

imize in polynomial set-theoretical format of arbitrary logic functions with n

variables. Advantages of the proposed rules of simplification are illustrated by

several examples.
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1 Introduction

Investigations [1–8] have shown that it is economically profitable to build digital de-

vices such as arithmetic units, coding-error detectors as well as devices with pro-

grammed logic, etc. on logical elements AND-EXOR, which realize polynomial basis

{&,⊕,1}, that is AND, EXCLUSIVE OR (EXOR) logical operations and constant 1.

It is easier to test and diagnose [9–11] digital devices on AND-EXOR if compared to

the devices built on AND-OR. However, in spite of the mentioned advantages it is

more difficult to minimize a function in polynomial format, i. e. in ESOP (EXOR Sum-

Of-Product), than in disjunctive format, i. e. in SOP (Sum-Of-Product). If the merge

operation of adjacent conjuncterms (conjunction of literals) is only applied in the SOP

minimization, than, in addition, the same operations can be applied in the ESOP mini-

mization [1, 2].

A precise solutions of a minimization problem in ESOP generally are based on an-

alytical [2] or on visual transformations [1–3]. Respectively, such methods are suitable

only for functions from small amount of variables [5, 7, 10–13] and only for special

classes for functions with up to 10 variables [14]. Heuristic methods have compara-

tively wider practical application [1, 8, 16–23]. Among them there are minimization

method based on a coefficient of generalized canonical Reed-Muller forms using of

matrix transformations [1, 8, 11, 16] and the method based on iterative execution of op-

erations with conjuncterms of different ranks of the given function. To the last belongs

the algorithm [17], which after transformation of the given function in Positive Polarity

Reed-Muller expression minimizes it on the basis of three operations with conjunc-

terms. Better results have been shown by algorithm based on the procedure of so-called
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linked product terms [18, 19]. Later, on the basis of this procedure, the algorithms have

been developed and completed with more perfect operations (that is primary xlink, sec-

ondary xlink, unlink, exorlink), which can be used for minimization of a system of

complete and incomplete functions [20, 21].

However, the mentioned above algorithms have one drawback in common. They

involve the procedure of linking in pairs only conjuncterms of the same rank r ∈
{1, 2, . . . , n}, which differs between each other by binary positions. Correspondingly,

this limits the use of such algorithms to functions given in SOP or ESOP, which can

have triple conjuncterms in the different part. In these cases to conjuncterms that dif-

fer in ranks certain procedures of transformation are applied leading to an increase of

procedural steps and processing time. Besides, the above mentioned operations of con-

juncterms linking and other rules of simplification [24–26] do not have generalized

character as to Hamming distance between any two conjuncterms of different ranks of

a given function that does not guarantee the final minimized result.

In this paper we consider a new method of minimization of Boolean functions with

n variables in polynomial set-theoretical format (PSTF), based on a procedure of split-

ting of conjuncterms [27–29] and on usage of generalized set-theoretical rules of con-

juncterms simplification [30]. The suggested rules guarantee better (as to costs of re-

alization and number of procedure steps) results of minimization of logic functions

proved by the numerous examples that are borrowed from publications of other authors

for comparison purposes.

2 Problem Formulation

Boolean function f(x1, x2, . . . , xn) that undergoes minimization, will be given

by a set of binary minterms or in perfect set-theoretical form (STF) as a

Y 1 = {m1, m2, . . . ,mk}
1, or in perfect polynomial set-theoretical form (PSTF) as

a Y ⊕ = {m1, m2, . . . ,mk}
⊕ [30, 31].

The generalized set-theoretical rules of simplification [30] of a conjuncterm set

of any function f , given in PSTF Y ⊕, are based on iterative process of simpli-

fication of two conjuncterms θr1

1 = (σ1σ2 · · · σn) and θr2

2 = (σ1σ2 · · · σn),
σi∈{0, 1, –}, r1, r2∈{1, 2, . . ., n}, which differ in Hamming difference d = 1, 2, . . ., n
it is number of different in value α, β, γ, δ, . . .∈{0, 1,−} of onename positions. Here

the different part α, β, γ, δ, . . . of these conjuncterms may have a different total number

of literals kl. For example, two pairs of conjuncterms

(

11–01
01–10

)

and

(

11––1
01–10

)

have

d = 3, but the first has kl = 6, and the second kl = 5. Therefore, different initial

conditions of transformation of two conjuncterms are possible.

We will consider the following conditions:

• when kl = 2d, here two conjuncterms are of the same r-rank θr
1 and θr

2 but differ in

d onename binary positions α, β, γ, δ, . . . ∈ {0, 1};

• when kl = 2d−1, here one conjuncterm of (r−1)-rank θr−1
1 and the second of r-rank

θr
2 differ in d onename positions α, β, γ, δ, . . . ∈ {0, 1, –}, where dash (–) belongs to

θr−1
1 ;



132

• when kl = 2(d − 1), here two conjuncterms are of the same (r−1)-rank θr−1
1 and

θr−1
2 differ in d onename positions α, β, γ, δ, . . . ∈ {0, 1, –} and each of them has

one dash (–).

As a result of transformation of two conjuncterms in PSTF a transformed PSTF Y ⊕

will be formed, where power kY will depend on distance d. Efficiency of simplification

of two different conjuncterms for the mentioned above initial conditions will be esti-

mated on the basis of comparison of interrelation k∗

θ/k∗

l , obtained on the ground of data

of transformed PSTF Y ⊕, where k∗

θ is number of transformed conjuncterms and k∗

l is

number of their literals, with initial interrelation kθ/kl, where in this case kθ = 2.

3 Three Theorems about Conjuncterms Transformation

Theorem 1. Two conjuncterms of r-rank θr
1 and θr

2, r ∈ {1, 2, . . ., n}, of the function

f(x1, x2, . . ., xn), that differ in values d of onename binary positions α, β, γ, δ, . . . ∈
{0, 1}, in polynomial set-theoretical format form a set of transformed PSTF Y ⊕ of

power kY = d!, each of them consists of k∗

θ = d conjuncterms of (r−1)-rank and has

in different part the total number of literals k∗

l = d(d − 1).

Proof. To determine k∗

θ/k∗

l and kY let us consider the transformation of conjuncterms

θr
1 and θr

2 for d = 0, 1, 2, 3, 4. Here it should be mentioned that initial interrelation

kθ/kl = 2/2d.

• If d = 0, than θr
1 = θr

2. So, transformed PSTF Y ⊕ = {θr
1, θ

r
2}

⊕ = ∅, that corre-

sponds to analytical expression a ⊕ a = 0. In this case k∗

θ/k∗

l = 0/0; kY = 1.

• Let d = 1. Then θr
1 = (σ1 · · · ᾱi · · · σn) and θr

2 = (σ1 · · · αi · · · σn), αi ∈ {0, 1}.

Respectively, for analytical expression ā ⊕ a = 1 we can write:

Y ⊕ = {(σ1 ··· ᾱi ··· σn), (σ1 ··· αi ··· σn)}⊕ = (σ1 ··· −i ··· σn), (1)

where the transformed PSTF Y ⊕ = {(σ1 ···−i ···σn)}⊕ = θr−1 is a triple conjuncterm

of (r−1)-rank.

For (1) interrelation k∗

θ/k∗

l = 1/0, and as initial interrelation kθ/kl = 2/2, then

it indicates on a result of transformation (1) the simplification took place due to the

replacement of two conjuncterms of r-rank by one conjuncterm of (r−1)-rank; kY = 1.

To simplify the writing of the conjuncterms of the given and transformed PSTF

Y ⊕ will be considered only for their different positions which will be written down in

a column. In (1) such position is αi, so, simplified writing down (1) with taking into

account αi ≡ α∈{0, 1}, will look like:
(

ᾱ
α

)

⊕
⇒ (–), (2)

where
⊕
⇒ – operator of transftrmation of the conjuncterms θr

1 and θr
2 in polyno-

mial format of the function f . In examples of transformation, the same in mean-

ing onename positions of conjuncterms will be rewritten without any change. For

example,

(

1–01
1–11

)

⊕
⇒ (1––1), that in decimal format corresponds to

(

9, 13
11, 15

)

⊕
⇒

⊕
⇒ (9, 11, 13, 15) and in analytical form is x1x̄3x4 ⊕ x1x3x4 = x1x4.
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• Let d=2. Then θr
1 =(σ1 ···ᾱi ···β̄j ···σn), θr

2 =(σ1 ···αi ···βj ···σn), αi, βj ∈{0, 1},

and respectively to analytical expressions āb̄⊕ ab=

{

ā ⊕ b

a ⊕ b̄
(if αi = βi) and āb⊕ ab̄=

{

ā ⊕ b̄

a ⊕ b
(if αi 6= βi), in simplified way (for αi ≡ α, βi ≡ β, α, β ∈ {0, 1}) we will

obtain
(

ᾱβ̄
αβ

)

⊕
⇒

{(

ᾱ–

–β

)

,

(

α–

–β̄

)}

. (3)

For (3) we have k∗

θ/k∗

l = 2/2, that is indicative of simplification of the given

conjuncterms due to reduction of their rank from r to (r−1), as initial interrelation

kθ/kl = 2/4; kY = 2.

• Let d=3. Then θr
1 =(σ1 ···ᾱi ···β̄j ···γ̄k ···σn) and θr

2 =(σ1 ···αi ···βj ···γk ···σn),
αi, βj , γk∈{0, 1}. For αi ≡ α, βi ≡ β, γi ≡ γ, α, β, γ∈{0, 1} we have

(

ᾱβ̄γ̄
αβγ

)

⊕
⇒











ᾱβ̄–

ᾱ–γ
–βγ



,





ᾱβ̄–

–β̄γ
α–γ



,





ᾱ–γ̄
–βγ̄
αβ–



,





ᾱ–γ̄
ᾱβ–

–βγ



,





–β̄γ̄
αβ̄–

α–γ



,





–β̄γ̄
α–γ̄
αβ–











. (4)

For (4) k∗

θ/k∗

l = 3/6 indicates on an increase of power of each transformed PSTF

Y ⊕ and unchangeability of number of literals of their conjuncterms as initial interrela-

tion kθ/kl = 2/6; kY = 6.

• Let d=4. Then θr
1 =(σ1···ᾱi···β̄j ···γ̄k···δ̄l···σn) and θr

2 =(σ1···αi···βj ···γk···δl···σn),
αi, βj , γk, δl∈{0, 1}. For αi≡α, βi≡β, γi≡γ, δi≡δ, α, β, γ, δ∈{0, 1} we have:

(

ᾱβ̄γ̄δ̄
αβγδ

)

⊕
⇒























ᾱβ̄γ̄–

ᾱβ̄–δ
ᾱ–γδ
–βγδ









,









ᾱβ̄γ̄–

ᾱβ̄–δ
–β̄γδ
α–γδ









,









ᾱβ̄γ̄–

ᾱ–γ̄δ
–βγ̄δ
αβ–δ









,









ᾱβ̄γ̄–

ᾱ–γ̄δ
ᾱβ–δ
–βγδ









,









ᾱβ̄γ̄–

–β̄γ̄δ
αβ̄–δ
α–γδ









,









ᾱβ̄γ̄–

–β̄γ̄δ
α–γ̄δ
αβ–δ









,









ᾱβ̄–δ̄
ᾱ–γδ̄
–βγδ̄
αβγ–









,









ᾱβ̄–δ̄
ᾱ–γδ̄
ᾱβγ–

–βγδ









,









ᾱβ̄–δ̄
–β̄γδ̄
αβ̄γ–

α–γδ









,









ᾱβ̄–δ̄
–β̄γδ̄
α–γδ̄
αβγ–









,









ᾱβ̄–δ̄
ᾱβ̄γ–

ᾱ–γδ
–βγδ









,









ᾱβ̄–δ̄
ᾱβ̄γ–

–β̄γδ
α–γδ









,









ᾱ–γ̄δ̄
–βγ̄δ̄
αβγ̄–

αβ–δ









,









ᾱ–γ̄δ̄
–βγ̄δ̄
αβ–δ̄
αβγ–









,









ᾱ–γ̄δ̄
ᾱβγ̄–

ᾱβ–δ
–βγδ









,









ᾱ–γ̄δ̄
ᾱβγ̄–

–βγ̄δ
αβ–δ









,









ᾱ–γ̄δ̄
ᾱβ–δ̄
–βγδ̄
αβγ–









,









ᾱ–γ̄δ̄
ᾱβ–δ̄
ᾱβγ–

–βγδ









,









–β̄γ̄δ̄
αβ̄γ̄–

αβ̄–δ
α–γδ









,









–β̄γ̄δ̄
αβ̄γ̄–

α–γ̄δ
αβ–δ









,









–β̄γ̄δ̄
αβ̄–δ̄
α–γδ̄
αβγ–









,









–β̄γ̄δ̄
αβ̄–δ̄
αβ̄γ–

α–γδ









,









–β̄γ̄δ̄
α–γ̄δ̄
αβγ̄–

αβ–δ









,









–β̄γ̄δ̄
α–γ̄δ̄
αβ–δ̄
αβγ–























. (5)

So, for (5) k∗

θ/k∗

l = 4/12 indicates on an increase of power of transformed PSTF Y ⊕

and the number of literals, as the initial interrelation kθ/kl = 2/8; kY = 24.

In the case of necessity for any pair of conjuncterms of r-rank of a function f , that

have distance d > 4, one can in similar way form a set of d! of transformed PSTF Y ⊕;

d = 1, 2, . . ., n.

Based on the considered above, one can state that two conjuncterms of r-rank θr
1

and θr
2 function f , that differ d = 1, 2,. . ., n in different by values onename binary po-

sitions α, β, γ, δ, . . . ∈ {0, 1}, form in polynomial format a set with kY =d! of trans-
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formed PSTF Y ⊕, each of them consisting of different conjuncterms of (r−1)-rank with

k∗

θ/k∗

l =d/d(d−1), that is the proof of Theorem 1. ⊓⊔

Theorem 2. Two conjuncterms of the function f(x1, x2, . . ., xn), one of which of (r−1)-
rank θr−1

1 differs from another r-rank θr
2 in the number of d different in values one-

name positions α, β, γ, δ, . . . ∈ {0, 1, –}, among which the dash (–) belongs to θr−1
1 ,

r ∈ {1, 2, . . ., n}, in polynomial set-theoretical format create kY = (d − 1)! of sets of

transformed PSTF Y ⊕, each of them has power k∗

θ = d and the total number of literals

in different part k∗

l = d(d − 1) − (d − 2), here:

• if d = 1, then

(

–

α̃

)

⊕
⇒ ( ¯̃α); (6)

• if d = 2, then

(

ᾱ–

αβ̃

)

⊕
⇒

(

––

α
¯̃
β

)

,

(

–β̄
α̃β

)

⊕
⇒

(

––
¯̃αβ

)

; (7)

• if d = 3, then

(

ᾱβ̄–

αβγ̃

)

⊕
⇒











ᾱ––

–β–

αβ ¯̃γ



,





–β̄–

α––

αβ ¯̃γ











, (8)

(

ᾱ–γ̄

αβ̃γ

)

⊕
⇒











ᾱ––

––γ

α
¯̃
βγ



,





––γ̄
α––

α
¯̃
βγ











,

(

–β̄γ̄
α̃βγ

)

⊕
⇒











–β̄–

––γ
¯̃αβγ



,





––γ̄
–β–
¯̃αβγ











, (9),(10)

• if d = 4, then

(

ᾱβ̄γ̄–

αβγδ̃

)

⊕
⇒























ᾱβ̄––

ᾱ–γ–

–βγ–

αβγ
¯̃
δ









,









ᾱβ̄––

–β̄γ–

α–γ–

αβγ
¯̃
δ









,









ᾱ–γ̄–

ᾱβ––

–βγ–

αβγ
¯̃
δ









,









ᾱ–γ̄–

–βγ̄–

αβ––

αβγ
¯̃
δ









,









–β̄γ̄–

αβ̄––

α–γ–

αβγ
¯̃
δ









,









–β̄γ̄–

α–γ̄–

αβ––

αβγ
¯̃
δ























, (11)

(

ᾱβ̄–δ̄
αβγ̃δ

)

⊕
⇒























ᾱβ̄––

ᾱ––δ
–β–δ
αβ ¯̃γδ









,









ᾱβ̄––

–β̄–δ
α––δ
αβ ¯̃γδ









,









ᾱ––δ̄
ᾱβ––

–β–δ
αβ ¯̃γδ









,









ᾱ––δ̄
–β–δ̄
αβ––

αβ ¯̃γδ









,









–β̄–δ̄
αβ̄––

α––δ
αβ ¯̃γδ









,









–β̄–δ̄
α––δ̄
αβ––

αβ ¯̃γδ























, (12)

(

ᾱ–γ̄δ̄

αβ̃γδ

)

⊕
⇒























ᾱ–γ̄–

ᾱ––δ
––γδ

α
¯̃
βγδ









,









ᾱ–γ̄–

––γ̄δ
α––δ

α
¯̃
βγδ









,









ᾱ––δ̄
––γδ̄
α–γ–

α
¯̃
βγδ









,









ᾱ––δ̄
ᾱ–γ–

––γδ

α
¯̃
βγδ









,









––γ̄δ̄
α–γ̄–

α––δ

α
¯̃
βγδ









,









––γ̄δ̄
α––δ̄
α–γ–

α
¯̃
βγδ























, (13)

(

–β̄γ̄δ̄
α̃βγδ

)

⊕
⇒























–β̄γ̄–

–β̄–δ̄
––γ̄δ̄
¯̃αβγδ









,









–β̄γ̄–

––γ̄δ
–β–δ
¯̃αβγδ









,









–β̄–δ̄
–β̄γ–

––γδ
¯̃αβγδ









,









–β̄–δ̄
––γδ̄
–βγ–
¯̃αβγδ









,









––γ̄δ̄
–βγ̄–

–β–δ
¯̃αβγδ









,









––γ̄δ̄
–β–δ̄
–βγ–
¯̃αβγδ























, (14)

where α̃, β̃, γ̃, δ̃ are binary positions of any value 0 or 1.

Proof. In this case the given PSTF Y ⊕ has interrelation kθ/kl = 2/(2d − 1).
• Let d = 1. Then θr−1

1 = (σ1 ··· −i ··· σn), θr
2 = (σ1 ··· α̃i ··· σn), α̃i ∈{0, 1}, and

respectively for the expression 1 ⊕ ã = ¯̃a, ã ∈ {a, ā}, we can write down such PSTF
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Y ⊕:

Y ⊕ = {(σ1 ··· –i ··· σn), (σ1 ··· α̃i ··· σn)}⊕ = {(σ1 ··· ¯̃αi ··· σn)}⊕.

As interrelation k∗

θ/k∗

l = 1/1, then compared with kθ/kl = 2/1 we have simplifi-

cation of the given PSTF Y ⊕ due to removal of one conjuncterm; kY = 1.

• Let d=2. Then for θr−1
1 =(σ1 ··· ᾱi ··· –j ··· σn) and θr

2 =(σ1 ···αi ··· β̃j ··· σn) and

θr−1
1 =(σ1 ··· –i ···β̄j ···σn) and θr

2 =(σ1 ···α̃i ···βj ···σn), αi, βj∈{0, 1}, we will obtain

Y ⊕={(σ1···ᾱi···–j···σn),(σ1···αi···β̃j···σn)}⊕={(σ1···–i···–j···σn),(σ1···αi···
¯̃
βj···σn)}⊕

and Y ⊕={(σ1···–i···β̄j···σn),(σ1···α̃i···βj···σn)}⊕={(σ1···–i···–j···σn),(σ1···¯̃αi···βj···σn)}⊕.

Comparing the obtained interrelation k∗

θ/k∗

l = 2/2 with kθ/kl = 2/3, we see that

transformed PSTF Y ⊕ is simpler than the given PSTF Y ⊕ for one literal. It should be

noted, that a number of transformed PSTF Y ⊕ is determined by a number of binary

positions in different part θr−1
1 and θr

2, that conforms to Theorem 1. Therefore, for

d = 2 we have kY = 1.

• Let d=3. Then for θr−1
1 =(σ1···ᾱi···β̄j ···–k ···σn) and θr

2=(σ1···αi···βj ···γ̃k ···σn),

θr−1
1 =(σ1···ᾱi···–j···γ̄k···σn) and θr

2=(σ1···αi···β̃j···γk···σn), θr−1
1 =(σ1···–i···β̄j···γ̄k···σn)

and θr
2=(σ1 ···α̃i ···βj ···γk ···σn), we have:

Y ⊕={(σ1 ···ᾱi ···β̄j ···–k ··· σn),(σ1 ··· αi ··· βj ···γ̃k ···σn)}⊕=

=

{

(σ1 ···ᾱi ···–j ···–k ···σn),(σ1 ···–i ··· βj ··· –k ···σn),(σ1 ···αi ···βj ··· ¯̃γk ···σn)
(σ1 ···–i ···β̄j ···–k ···σn),(σ1 ···αi ···–j ···–k ···σn),(σ1 ···αi ···βj ··· ¯̃γk ···σn)

}⊕

,

Y ⊕={(σ1 ···ᾱi ···–j ···γ̄k ···σn),(σ1 ···αi ···β̃j ···γk ···σn)}⊕=

=

{

(σ1 ···ᾱi ···–j ···–k ···σn),(σ1 ···–i ···–j ···γk ···σn),(σ1 ···αi ···
¯̃
βj ···γk ···σn)

(σ1 ···–i ···–j ···γ̄k ···σn),(σ1 ···αi ···–j ···–k ···σn),(σ1 ···αi ···
¯̃
βj ···γk ···σn)

}⊕

,

Y ⊕={(σ1 ···–i ···β̄j ···γ̄k ···σn),(σ1 ···α̃i ···βj ···γk ···σn)}⊕=

=

{

(σ1 ···–i ···β̄j ···–k ···σn),(σ1 ···–i ···–j ···γk ···σn),(σ1 ··· ¯̃αi ···βj ···γk ···σn)
(σ1 ···–i ···–j ···γ̄k ···σn),(σ1 ···–i ···βj ···k ···σn),(σ1 ··· ¯̃αi ···βj ···γk ···σn)

}⊕

.

The obtained k∗

θ/k∗

l = 3/5 indicates on an increase by one conjuncterm, since

kθ/kl = 2/5; kY = 2.

• Let d = 4. Based on the considered above and taking into account the rule (4) of

Theorem 1 for d=3 (three positions are common), one can state that for

θr−1
1 = (σ1 ··· ᾱi ··· β̄j ···γ̄k ···–l ···σn) and θr

2 = (σ1 ···αi ···βj ···γk ···δ̃l ···σn),

θr−1
1 = (σ1 ···ᾱi ···β̄j ···–k ···δ̄l ···σn) and θr

2 = (σ1 ···αi ···βj ···γ̃k ···δl ···σn),

θr−1
1 = (σ1 ···ᾱi ···–j ···γ̄k ···δ̄l ···σn) and θr

2 = (σ1 ···αi ···β̃j ···γk ···δl ···σn),

θr−1
1 = (σ1 ···–i ···β̄j ···γ̄k ···δ̄ ···σn) and θr

2 = (σ1 ···α̃i ···βj ···γk ···δk ···σn),

the interrelation k∗

θ/k∗

l = 4/10 which, compared with kθ/kl = 2/7, indicates on an

increase of a number of conjuncterms as well as their literals; kY = 6.

Thus, if a conjuncterm of (r−1)-rank θr−1
1 differs from a conjuncterm of r-rank

θr
2 in the number d of different by value onename positions α, β, γ, δ, . . .∈{0, 1, –},

here dash (–) belongs to θr−1
1 , r ∈ {1, 2, . . ., n}, then (d − 1)! of sets

transformed PSTF Y ⊕ will be formed, each of which having the interrelation

k∗

θ/k∗

l = d/(d(d − 1) − (d − 2)), that is the proof of Theorem 2. ⊓⊔

Theorem 3. Two conjuncterms of (r − 1)-rank θr−1
1 and θr−1

2 , r ∈ {1, 2, . . ., n},

of the function f(x1, x2, . . ., xn) differ in d onename binary positions
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α, β, γ, δ, . . . ∈ {0, 1, –}, where each conjuncterm has one (–), in polynomial set-

theoretical format starting with d = 2, create kY = (d − 2)! of sets transformed PSTF

Y ⊕, each of which has power k∗

θ = d and the total number of literals in the different

part k∗

l = d(d − 1) − 2(d − 2) and :

• if d=2, then

(

α̃–

–β̃

)

⊕
⇒

( ¯̃α–

–
¯̃
β

)

, (15)

• if d=3, then

(

α̃β̄–

–βγ̃

)

⊕
⇒





–––
¯̃αβ̄–

–β ¯̃γ



,

(

ᾱβ̃–

α–γ̃

)

⊕
⇒





–––

ᾱ
¯̃
β–

α–¯̃γ



,

(

α̃–γ̄

–β̃γ

)

⊕
⇒





–––
¯̃α–γ̄

–
¯̃
βγ



,

(16),(17),(18)

• if d=4, then

(

α̃β̄γ̄–

–βγδ̃

)

⊕
⇒























–β̄––

––γ–
¯̃αβ̄γ̄–

–βγ
¯̃
δ









,









–β––

––γ̄–
¯̃αβ̄γ̄–

–βγ
¯̃
δ























,

(

ᾱβ̃γ̄–

α–γδ̃

)

⊕
⇒























ᾱ–––

––γ–

ᾱ
¯̃
βγ̄–

α–γ
¯̃
δ









,









α–––

––γ̄–

ᾱ
¯̃
βγ̄–

α–γ
¯̃
δ























,

(19),(20)

(

ᾱβ̄γ̃–

αβ–δ̃

)

⊕
⇒























ᾱ–––

–β––

ᾱβ̄ ¯̃γ–

αβ–
¯̃
δ









,









α–––

–β̄––

ᾱβ̄ ¯̃γ–

αβ–
¯̃
δ























,

(

α̃β̄–δ̄
–β ¯̃γδ

)

⊕
⇒























–β̄––

–––δ
¯̃αβ̄–δ̄
–β ¯̃γδ









,









–β––

–––δ̄
¯̃αβ̄–δ̄
–β ¯̃γδ























, (21),(22)

(

ᾱβ̃–δ̄
α–γ̃δ

)

⊕
⇒























ᾱ–––

–––δ

ᾱ
¯̃
β–δ̄

α–¯̃γδ









,









α–––

–––δ̄

ᾱ
¯̃
β–δ̄

α–¯̃γδ























,

(

α̃–γ̄δ̄

–β̃γδ

)

⊕
⇒























––γ̄–

–––δ
¯̃α–γ̄δ̄

–
¯̃
βγδ









,









––γ–

–––δ̄
¯̃α–γ̄δ̄

–
¯̃
βγδ























, (23),(24)

where α̃, β̃, γ̃, δ̃ are binary positions of any value 0 or 1.

Proof. Given PSTF Y ⊕ has the initial interrelation kθ/kl = 2/2(d − 1).
• Let d = 2. Then θr

1 = (σ1· · ·α̃i · · · –j · · · σn) and θr
2 = (σ1 · · · –i · · · β̃j · · · σn),

α̃i, β̃j ∈ {0, 1}. For f(a, b) respectively to (15) we have ã ⊕ b̃ = (¯̃a ⊕ 1) ⊕ (
¯̃
b ⊕ 1) =

= ¯̃a ⊕
¯̃
b, that corresponds to PSTF

Y ⊕={(σ1···α̃i···–j···σn),(σ1···–i···β̃j···σn)}⊕={(σ1···¯̃αi···–j···σn),(σ1···–i···
¯̃
βj···σn)}⊕.

Here the interrelation kθ/kl = k∗

θ/k∗

l = 2/2 that indicates on unchangeability of

parameters of the transformed PSTF Y ⊕, in which only inversion of different positions

took place; kY = 1.

•Let d = 3. Then θr
1 = (σ1 ··· α̃i ··· β̄j ··· –k ···σn) and θr

2 = (σ1 ··· –i ···βj ··· γ̃k ···σn),

θr
1 = (σ1 · · · ᾱi · · · β̃j · · · –k · · · σn) and θr

2 = (σ1 · · · αi · · · –j · · · γ̃k · · · σn), and

θr
1 = (σ1 ··· α̃i ···–j ··· γ̄k ···σn) and θr

2 = (σ1 ···–i ··· β̃j ···γk ···σn), α̃i, β̃j , γ̃k∈{0, 1}.

So, transformed PSTF Y ⊕ will look like:

Y ⊕ = {(σ1 ··· α̃i ··· β̄j ··· –k ··· σn), (σ1 ··· –i ··· βj ··· γ̃k ··· σn)}⊕ =

= {(σ1 ··· –i ··· –j ··· –k ···σn), (σ1 ··· ¯̃αi ··· β̄j ··· –k ···σn), (σ1 ··· –i ···βj ··· ¯̃γk ···σn)}⊕,

Y ⊕ = {(σ1 ··· ᾱi ··· β̃j ··· –k ··· σn), (σ1 ··· αi ··· –j ··· γ̃k ··· σn)}⊕ =
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= {(σ1 ··· –i ··· –j ··· –k ···σn), (σ1 ··· ᾱi ···
¯̃
βj ··· –k ···σn), (σ1 ···αi ··· –j ··· ¯̃γk ···σn)}⊕,

Y ⊕ = {(σ1 ··· α̃i ··· –j ··· γ̄k ··· σn), (σ1 ··· –i ··· β̃j ··· γk ··· σn)}⊕ =

= {(σ1 ··· –i ··· –j ··· –k ···σn), (σ1 ··· ¯̃αi ··· –j ··· γ̄k ···σn), (σ1 ··· –i ···
¯̃
βj ··· γk ···σn)}⊕.

Compared with kθ/kl = 2/4 here k∗

θ/k∗

l = 3/4 means that the transformed PSTF

Y ⊕ has one more conjuncterm, here its rank is (r − 3); kY = 1.

• Let d = 4. Then θr
1 = (σ1 · · · α̃i · · · β̄j · · · γ̄k · · · –l · · · σn) and

θr
2=(σ1 ··· –i ··· βj ··· γk ··· δ̃l ··· σn),

θr
1=(σ1 ··· ᾱi ··· β̃j ··· γ̄k ··· –l ··· σn) and θr

2=(σ1 ··· αi ··· –j ··· γk ··· δ̃l ··· σn),

θr
1=(σ1 ··· ᾱi ··· β̄j ··· γ̃k ··· –l ··· σn) and θr

2=(σ1 ··· αi ··· βj ··· –k ··· δ̃l ··· σn),

θr
1=(σ1 ··· α̃i ··· β̄j ··· –k ··· δ̄l ··· σn) and θr

2=(σ1 ··· –i ··· βj ··· γ̃k ··· δl ··· σn),

θr
1=(σ1 ··· ᾱi ··· β̃j ··· –k ··· δ̄l ··· σn) and θr

2=(σ1 ··· αi ··· –j ··· γ̃k ··· δl ··· σn),

θr
1=(σ1 ··· α̃i ··· –j ··· γ̄k ··· δ̄l ··· σn) and θr

2=(σ1 ··· –i ··· β̃j ··· γk ··· δl ··· σn).

Here, for d = 4 the interrelation k∗

θ/k∗

l = 4/8 is greater than the initial one kθ/kl =
2/6; kY = 2.

So, if two conjuncterms of (r−1)-rank θr−1
1 and θr−1

2 , r∈{1, 2, . . ., n}, of the func-

tion f(x1, x2, . . ., xn) differ in d different by values onename positions α, β, γ, δ, . . .∈
{0, 1, –}, among which each of these conjuncterms has one dash (–), then in polyno-

mial set-theoretical format, starting with d = 2, they form kY = (d − 2)! of the sets

transformed PSTF Y ⊕, each of them has interrelation k∗

θ/k∗

l = d/(d(d−1)−2(d−2)),
that is the proof of Theorem 3. ⊓⊔

Example 1. To apply Theorems 1, 2 and 3 to the function f(x1, x2, x3, x4), that is

given by perfect STF Y 1 = {0, 3, 5, 6, 7, 8, 9, 10, 12, 15}1, which is minimized in

polynomial format by K-maps method to the expression f = x1 ⊕ x2x3 ⊕ x2x4⊕
⊕x3x4 ⊕ x1x2x3x4 ⊕ x̄1x̄2x̄3x̄4 [32, p. 97].

Solution. This function has PSTF Y ⊕ = {(1–––),(–11–),(–1–1),(––11),(1111),
(0000)}⊕. To the pair (1111) and (0000), that has d = 4, we will apply, for exam-

ple, the fourth PSTF from the rule (5):

Y ⊕=















(1–––), (–11–), (–1–1), (––11),









000–

0–01
01–1
–111























⊕

.

Applying the rule (6) of Theorem 2 to the underlined pairs that have d=1, namely
(

–1–1
01–1

)

⊕
⇒ (11–1),

(

––11
–111

)

⊕
⇒ (–011), and the rule (7), in the formed set namely

(

–011
–11–

)

⊕
⇒

(

––1–

–010

)

, we will obtain PSTF Y ⊕={(1–––),(––1–),(–010),(000–),(11–1),

(0–01)}
⊕

. Doing further transformations and according to the rules (16) and (17) of

Theorem 3, namely

(

–010
000–

)

⊕
⇒





–0––

100–

–011



,

(

100–

0–01

)

⊕
⇒





––0–

0–00
110–



, we’ll obtain the final

minimal PSTF Y ⊕ = {(1–––),(––1–),(–0––),(––0–),(–011),(0–00),(110–),(11–1)}
⊕
⇒
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⇒ {(1–––),(–1––),(–011),(0–00),(110–),(11–1)}⊕. Here the cost of realization of the

minimized function f =x1 ⊕ x2 ⊕ x̄2x3x4 ⊕ x̄1x̄3x̄4 ⊕ x1x2x̄3 ⊕ x1x2x4 is equal to

k∗

θ/k∗

l = 6/14 that is a better result if compared to [32], where kθ/kl =6/15.

4 Minimization of Complete and Incomplete Functions

The proposed method of Boolean functions minimization in the polynomial set-

theoretical format is based on the idea of minterms splitting of a given function

f(x1, x2, . . ., xn) in the disjunctive format [27–29].

The algorithm of minimization of a function f in the polynomial set-theoretical

format is realized on two stages:

1-st stage: the procedure of splitting of minterms of a given function f and the

obtaining of a set of covering of a matrix of splitting;

2-nd stage: the procedure of iterative simplification of conjuncterms of a set of cov-

ering (obtained on the 1-st stage) on the basis of generalized rules of Theorems 1, 2 and

3 and formation of a minimal PSTF Y ⊕ of a given function f .

The 1-st stage is realized by sequence of such steps:

Step 1: the given binary minterms m1, m2, . . .mk of the perfect PSTF

Y ⊕ = {m1, m2, . . .mk}
⊕ of the function f are split (operator

S
⇒) by using the matrix-

column of the masks of literals of rank r ≥ n − log2 k, r = 1, 2, . . ., n, as a result of

this a matrix of splitting Mr
n of Cr

n × k dimension is formed, where Cr
n = n!

(n−r)!r! ;

for example, let n = 5; if the number k of minterms is 8 ≤ k < 16, then we use the

matrix of masks of rank r = 2, and as a result the matrix M2
5 of the dimension C2

5 × k
is formed;

Step 2: in the matrix Mr
n (in our example M2

5 ) for execution of the procedure

of covering (operator
C
⇒) the conjuncterms-copies of r-rank, the number of which

2n−r−1 < kr ≤ 2n−r (4 < kr ≤ 8) are highlighted by underlining; priority is given

to conjuncterms-copies and their number is kr = 2n−r (kr = 8); if k = kr, then the

matrix is covered with a conjuncterms-copy of r-rank; if kr < 2n−r (kr < 8), then the

covering of the matrix will be made of the conjuncterms-copies the number of which

2n−r−1 < kr < 2n−r, and if there are not enough of them, then together with gener-

ating minterms of the matrix Mr
n; if kr < 2n−r−1, then the transition to step 1 is done

for realization of similar procedures with application of the matrix of masks of the rank

r = 3 and etc. until to getting in the covering of the matrix Mr
n of the minterms split-

ting of which provides its covering, if such minterms > 2, then the transition to step 1

is done.

The 1-st stage of algorithm is completed when there are not only minterms in the

set of covering of the matrix Mr
n or when the split elements do not provide its covering.

The 2-nd stage of the minimization algorithm is the procedure of iterative simpli-

fication. It is done with the conjuncterms of the set of the covering in sequence of the

following steps:

Step 1: for every pair with d = 1 (pairs with d = 0 are not taken into account) either

the rule (2) of Theorem 1, or the rule (6) of Theorem 2; are applied; after respective

replacement the transition to the 1-st is done, if there are not such pairs, then go to the

step 2;
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Step 2: for every pair with d = 2 we apply either one from the sets of the rule (3) of

Theorem 1, or the rule (7) of Theorem 2; after respective replacement the transition to

the 1-st step is done and if there are not such pairs, then to the 3-rd step;

Step 3: for every pair with d = 3 we apply either one from the sets of the rule (4) of

Theorem 1, or one from the sets of the rules (8), (9) or (10) of Theorem 2, or one from

the rules (15), (16) or (17) of Theorem 3; after respective replacement the transition to

the 1-st step is done and if there are not such pairs, then go to the 4-th step;

Step 4: for every pair with d = 4 we apply one from the sets of the rule (5) of

Theorem 1, or one from the rules (8), (9) or (10) of Theorem 2, or one from the sets of

the rules (18)–(23) of Theorem 3; after respective replacement the transition to the 1-st

step is done and if there are not such pairs, then go to the 5-th step;

Step 5: if further transformation does not lead to the simplification of the set of

conjuncterms, then this set is the found minimal PSTF Y ⊕ of the function f , the cost

of realization of which is determined by the interrelation k∗

θ/k∗

l .

Example 2. To minimize the function f(x1, x2, x3, x4) in the polynomial format by

using the splitting method. This function has perfect STF Y 1 = {0, 6, 14, 15}1 (this

function is borrowed from [21, p. 28]).

Solution.

Y ⊕={(0000),(0110),(1110),(1111)}⊕
S
⇒

















ll––

l–l–
l––l
–ll–
–l–l
––ll

















=

















00–– 01–– 11–– 11––

0–0– 0–1– 1–1– 1–1–

0––0 0––0 1––0 1––1
–00– –11– –11– –11–

–0–0 –1–0 –1–0 –1–1
––00 ––10 ––10 ––11

















C
⇒

C
⇒ {–ll–} =

{(

(–11–),(0111)
)

,(0000)
}⊕

.

We apply the rule (4) of Theorem 1 to the minterms (0000) and (0111):

(

0000
0111

)

⇒















000–

00–1
0–11



,





000–

01–1
0–01



,





001–

00–0
0–11



,





011–

00–0
0–10



,





010–

01–1
0–00



,





011–

01–0
0–00















⊕

.

After replacement of minterms (0000) and (0111) by the underlined sets in the set of

covering, we obtain two equal as to the realization cost of solutions of minimization of

the given function which is reflected by the minimal PSTF:

Y ⊕ = {(–11–),(0000),(0111)}⊕⇒

{

(–11–),(011–),

{

1. (00–0),(0–10)

2. (01–0),(0–00)

}⊕

⇒

⇒

{

(111–),

{

1. (00–0),(0–10)

2. (01–0),(0–00)

}⊕

.

Answer. The cost of realization of the minimized function determines the interre-

lation k∗

θ/k∗

l = 3/9 that is a better result than in [21], where the PSTF Y ⊕ =
{(−11−), (0000), (0111)}⊕ that is equal to 3/10.

In [27, 28], the incomplete function f(x1, x2, . . ., xn) can be given by the perfect

STF {Y 1, Y ∼}, where Y 1 and Y ∼ there are subsets of the complete set E
n
2 , on which
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the function f takes the value respectively 1 and ∼ (so-called “don’t-care”). In the

polynomial set-theoretical format the sets Y ⊕ and Y ⊕̃ correspond to the sets Y 1 and

Y ∼, the elements of which are binary minterms. Thus, incomplete function f can be

given by the perfect PSTF {Y ⊕, Y ⊕̃}.

Similarly, [27, 29] the procedure of splitting of conjuncterms of incomplete function

f is realized by the matrix of splitting Mr
n, which is designated as Mr⊕

...Mr⊕̃, where

Mr⊕ that is basic submatrix, Mr⊕̃ that is additional submatrix, and
... that is a symbol

of separation of the matrix Mr
n. As a result of covering of the matrix Mr

n a set of the

splitting conjuncterms Y ⊕
...Y ⊕̃ is be obtained.

An algorithm of minimization of an incomplete function in the polynomial set-

theoretical format is realized in the same way as for a complete function in two stages.

On the 1-st stage the minterms of the perfect PSTF {Y ⊕, Y ⊕̃} are split by using of the

matrix Mr
n, where the main role in its cover is played by the conjuncterms-copies of

the basic submatrix Mr⊕. Whereas the 2-nd stage of the algorithm of minimization of

an incomplete function is realized in similar way as for a complete function.

Example 3. To minimize incomplete function f(x1, x2, x3, x4) in the polyno-

mial format by using splitting method. This function is has perfect STF
{

Y 1={3, 5, 6, 9, 12, 15}1

Y ∼={1, 2, 8, 11}∼
(this function is borrowed from [33, p. 460]).

Solution.
{

Y ⊕={(0011), (0101), (0110), (1001), (1100), (1111)}⊕

Y ⊕̃={(0001), (0010), (1000), (1011)}⊕̃
S
⇒

S
⇒

















l l – –

l – l –

l––l
–ll–
–l–l
––ll

















=

















00–– 01–– 01–– 10–– 11–– 11–– 00–– 00–– 10–– 10––

0–1– 0–0– 0–1– 1–0– 1–0– 1–1– 0–0– 0–1– 1–0– 1–1–

0––1 0––1 0––0 1––1 1––0 1––1 0––1 0––0 1––0 1––1
–01– –00– –11– –00– –10– –11– –00– –01– –00– –01–

–0–1 –1–1 –1–0 –0–1 –1–0 –1–1 –0–1 –0–0 –0–0 –0–1
––11 ––01 ––10 ––01 ––00 ––11 ––01 ––10 ––00 ––11

















C
⇒

C
⇒{l–l–}=

{

((0–1–),(0111)),
(

(1–0–),(1101)
)

,(0101),(1111)
...(0001),(1011)

}⊕

⇒

⇒{(0–1–),(–111),(1–0–),(–101)}⊕⇒{(0–1–),(–1–1),(1–0–)}⊕.

After the transformation of the pair of highlighted conjunñterms by the rule

(3) of the Theorem 1, i. e.

(

0–1–

1–0–

)

⊕
⇒

(

––1–

1–––

)

, we will obtain the final mini-

mal PSTF Y ⊕={(––1–), (1–––), (–1–1)}⊕, to which coresponds the minimal PSTF

Y ⊕ ={(2, 3, 6, 7, 10, 11, 14, 15),(8, 9, 10, 11, 12, 13, 14, 15),(5, 7, 13, 15)}⊕={2, 3, 5, 6,
8, 9, 12, 15}⊕, where the highlighted in bold font elements belong to set Y ∼.

Answer. The cost of realization of the given function is equal to k∗

θ/k∗

l = 3/4. If com-

pared with [33] it is a better result, where Y ⊕ = {(–11–), (11––), (–––1)}⊕ and the

cost of realization is equal to k∗

θ/k∗

l = 3/5.
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5 Minimization of System of Complete and Incomplete Functions

In general, the system F (X), X = {x1, x2, . . ., xn}, of Boolean functions, fi(X),
i = 1, 2, . . ., s can be represented in the polynomial set-theoretical format as a perfect

PSTF {Y ⊕

i , Y ⊕∗

i } [27, 29]:

F (X) =



















Y ⊕

1 ={m11, m12, . . .,m1k1
}
⊕

, Y ⊕∗

1 ={mk1+1, mk1+2, . . .,m2n−k1−ν1
}
⊕∗

,

Y ⊕

2 ={m21, m22, . . .,m2k2
}
⊕

, Y ⊕∗

2 ={mk2+1, mk2+2, . . .,m2n−k2−ν2
}
⊕∗

,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Y ⊕
s ={ms1, ms2, . . .,msks

}
⊕

, Y ⊕∗
s ={mks+1, mks+2, . . .,m2n−ks−νs

}
⊕∗

,

(25)

where νi <2n−ki; mij are binary minterms of functions fi(X), j = 1, 2, . . ., ki; while

if F (X) it is a system of the completely specified functions, then Y ⊕∗

i ≡ ∅ and we have

perfect PSTF
{

Y ⊕

i

}

, and if F (X) is a system of the incompletely specified functions,

then Y ⊕∗

i ≡ Y ⊕̃

i and we have perfect PSTF, where symbol ∼ represents incomplete

(“don’t care”) values of functions fi of system F (X).
Similarly as in SOP form [27, 29] compatible minimization of the system of

PSTF {Y ⊕

i , Y ⊕∗

i } (25) is performed by splitting method with the system minterms

(m)1,2,. . .,s′ , s′∈{1, 2, . . ., s}, formed from minterms of the system F (X).
The algorithm of compatible minimization of the system F (X) of complete func-

tions given by the perfect PSTF
{

Y ⊕

i

}

, Y ∗
i ≡∅, is realized in the following way. On the

first stage the system minterms (m)1,2,. . .,s′ of the set
{

Y ⊕

I

}

, I∈{1, 2, . . ., s}, are split

by using the matrix Mr
n creating a system conjuncterms of (n−1)-rank (θn−1

i )1,2,. . .,s′ .

The minimal covering of the matrix Mr
n is done in similar way [27, 29] by the identical

system conjuncterms-copies of (n−1)-rank. But among them, a decisive role for realiza-

tion of compatible minimization of the given system will be played by those ones the in-

dices of which contain the greatest quantity of numbers with the set {1, 2, . . ., s}. Here-

with, if (θr−1
i )1,2,. . .,s′ and (θr−1

j )1,2,. . .,s′′ , s′, s′′∈{1, 2, . . ., s}, these are identical sys-

tem conjuncterms-copies of (r−1)-rank of the matrix Mr
n, r=1, 2, . . ., n−1, then they

can be elements of its covering if the indices of their generative form (θr
i )1,2,. . .,s′ and

(θr
j )1,2,. . .,s′′ will form a not empty intersection, i. e. {1, 2, . . ., s′}

⋂

{1, 2, . . ., s′′} 6= ∅.

For example, let the system minterms (100)1,2,4, (110)1,3, (010)1,2,3 be generative el-

ements of the matrix Mn−1
n . For the mask {l–l} the identical system conjuncterms-

copies will be (1–0)1 and (1–0)1, the index of which determines the intersection

{1, 2, 4}
⋂

{1, 3} = {1}, and for the mask {–ll} will be (–10)1,3 and (−10)1,3 be-

cause {1, 3}
⋂

{1, 2, 3} = {1, 3}. So, in this case for covering of the matrix Mn−1
n it is

recommended to choose the pair of the mask {–ll} because the power |{1, 3}| > |{1}|.

Example 4. In the polynomial set-theoretical format to minimize the system F (X) of

complete functions fi(x1, x2, x3), i = 1, 2, 3, by the splitting method. This has per-

fect STF











Y 1
1 ={(000),(010),(101),(110)}1

Y 1
2 ={(001),(011),(101)}1

Y 1
3 ={(000),(001),(010),(011)}1

. This example is borrowed from [21, p. 35]

where the author illustrates efficiency of xlinking method.
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Solution. Having transformed the given system of the perfect STF {Y 1
1,2,3} into the sys-

tem of the perfect PSTF {Y ⊕

1,2,3} and, having formed from it a set of system minterms,

we will execute the splitting procedure by using the matrix M1
3 and its covering proce-

dure:

Y ⊕

1,2,3 =
{

(000)1,3, (001)2,3, (010)1,3, (011)2,3, (101)1,2, (110)1
}⊕ S

⇒

S
⇒





l––

–l–
––l



=





0––1,3 0––2,3 0––1,3 0––2,3 1––1,2 1––1

–0– –0– –1– –1– –0– –1–

––0 ––1 ––0 ––1 ––1 ––0





C
⇒

C
⇒

{

(

(0––)1,3, (001)1,3, (011)1,3

)

,
(

(0––)2,3, (000)2,3, (010)2,3

)

, (101)1,2, (110)1

}⊕

.

We will do the splitting procedure with system minterms of the formed set by using the

matrix M2
3 and its covering procedure:

(001)1,3, (011)1,3, (000)2,3, (010)2,3, (101)1,2, (110)1
S
⇒





ll–
l–l
–ll



 =

=





00– 01– 00– 01– 10– 11−
0–11,3 0–11,3 0–02,3 0–02,3 1–1 1–0

–01 –11 –00 –10 –01 –10





C
⇒{(0–1)1,3,(0–0)2,3,(101)1,2,(110)1}

⊕.

Having distributed system conjuncterms in the functions we obtain the system of the

PSTF {Y ⊕

1,2,3}, with the underlined elements of which we will do step by step the trans-

formations according to the rules (2), (3) and (7) of the theorems:










Y ⊕

1 ={(0––),(0–1),(101),(110)}⊕={(0–0),(1–1),(11–)}⊕={(0––),(––1),(11–)}⊕

Y ⊕

2 = {(0––), (0–0), (101)}⊕ = {(0–1), (101)}⊕ = {(––1), (111)}⊕

Y ⊕

3 = {(0–1), (0–0)}⊕ = {(0––)}⊕
.

Answer. Minimal system of the PSTF {Y ⊕

1,2,3}:











Y ⊕

1 = {(0––), (––1), (11–)}⊕

Y ⊕

2 = {(––1), (111)}⊕

Y ⊕

3 = {(0––)}⊕
. Cost

of its realization reflects the interrelation k∗

θ/k∗

l = 4/7. If compared with [21] it is a better

result, where this system is compatibly minimized by xlinking method with k∗

θ/k∗

l = 4/9,

namely











Y ⊕

1 = {(0––), (0–1), (110), (101)}⊕

Y ⊕

2 = {(0–1), (101)}⊕

Y ⊕

3 = {(0––)}⊕
.

In case of the system of incomplete functions (25) the set of system minterms

will consist of two subsets separated by the symbol
... and reflected as {Y ⊕

I

...Y ⊕̃

I },

I ∈ {1, 2, . . ., s}. Here the system minterms undergo the splitting procedure by us-

ing the matrix Mr
n, the elements of which are the conjuncterms of r-rank. It should be

noted, that in the course of covering the matrix Mr
n two procedures are realized at a

time: making the matrix compatible as its elements are used to maximum extent with

higher capacity of the set I , and making it more predetermined in which the elements

of the submatrix Y ⊕̃

I are used. After distribution of the last ones in the functions of the
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system we obtain {Y ⊕

I

...Y ⊕̃

I }, the elements of which for every function further undergo

the simplification procedure according to the rules of the respective theorems in Sec-

tion 3, selecting out of possible variants of transformation those which will provide the

compatible minimization of the given system F (X) in the best way.

Example 5. [37, p. 228, example 5.1] To minimize the system

F (X) of incomplete functions f1(a, b, c) and f2(a, b, c), given

by the truth table (see right) with the help of splitting method in

the polynomial set-theoretical format.

Solution. The given system F (X) has the perfect PSTF
{

Y ⊕

1 ={(000), (011), (110)}⊕, Y ⊕̃

1 ={(001), (100), (101)}⊕̃

Y ⊕

2 ={(010), (111)}⊕, Y ⊕̃

2 ={(001), (011), (100)}⊕̃

I a b c f1 f2

0 0 0 0 1 0

1 0 0 1 ∼ ∼
2 0 1 0 0 1

3 0 1 1 1 ∼
4 1 0 0 ∼ ∼
5 1 0 1 ∼ 0

6 1 1 0 1 0

7 1 1 1 0 1

We will form a set of system minterms
(

i.e.
{

Y ⊕

1,2

...Y ⊕̃

1,2

}

)

, with which we will do the

splitting procedure by using the matrix M1
3 and the procedure of its covering, for ex-

ample, for the mask {–l–}:

Y ⊕

1,2

...Y ⊕̃

1,2 ={(000)1,(010)2,(011)1,(110)1,(111)2
...(001)1,2,(011)2,(100)1,2,(101)1}

⊕ S
⇒

S
⇒





l––

–l–
––l



=





0–– 0–– 0–– 1–– 1–– 0–– 0–– 1–– 1––

–0–1 –1–2 –1–1 –1–1 –1–2 –0–1,2 –1–2 –0–1,2 –0–1

––0 ––0 ––1 ––0 ––1 ––1 ––1 ––0 ––1





C
⇒ {–l–}=

=
{

(000)1,
(

(–1–)2,(011)2,(110)2
)

,
(

(–1–)1,(010)1,(111)1
)...(001)1,2,(011)2,(100)1,2,(101)1

}⊕

.

After removal of the system minterm (011)2 the set of covering will look like

Y ⊕

1,2

...Y ⊕̃

1,2=
{

(000)1,
(

(–1–)2,(110)2
)

,
(

(–1–)1,(010)1,(111)1
)...(001)1,2,(011)2,(100)1,2,(101)1

}⊕

.

Having distributed the system conjuncterms on the functions, we obtain the system

PSTF







Y ⊕

1

...Y ⊕̃

1 = {(–1–), (000), (010), (111)
...(001), (100), (101)}⊕

Y ⊕

2

...Y ⊕̃

2 = {(–1–), (110)
... (001), (011), (100)}⊕

.

We will do the splitting procedure with the minterms of the PSTF of the function f1

by using the matrixM1
3 and the procedure of its covering:

{(000),(010),(111)
...(001),(100),(101)}⊕

S
⇒





l––

–l–
––l



=





0–– 0–– 1–– 0–– 1–– 1––

–0– –1– –1– –0– –0– –0–

––0 ––0 ––1 ––1 ––0 ––1





C
⇒

C
⇒

{

(

(0––), (011)
)

,
(

(––1), (011)
)

}⊕

⇒{(0––), (––1)}⊕.

Having taken into account the rule (3)

(

0––

––1

)⊕

≡

(

1––

––0

)⊕

we will obtain two solutions

of the minimal PSTF Y ⊕

1 =

{

(–1–),

{

1. (0––), (––1)
2. (1––), (––0)

}}⊕

.
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We will do similar procedures for the minterms of the PSTF of the function f2 by

applying the matrix M2
3 for their splitting:

{(110)
...(001), (011), (100)}⊕

S
⇒





ll−
l–l
–ll



=





11– 00– 01– 10–

1–0 0–1 0–1 1–0
–10 –01 –11 –00





C
⇒ {(1–0), (0–1)}⊕.

After the transformation according to the rule (3)

(

1–0
0–1

)

⊕
⇒

{(

1––

––1

)

,

(

––0
0––

)}

, we

obtain two solutions of the minimal PSTF Y ⊕

2 =

{

(–1–),

{

1. (1––), (––1)
2. (––0), (0––)

}}⊕

.

Answer. The given system of functions has two solutions of minimization which reflect

the PSTF

1.

{

Y ⊕

1 = {(–1–), (––1), (0––)}⊕

Y ⊕

2 = {(–1–), (––1), (1––)}⊕
; 2.

{

Y ⊕

1 = {(–1–), (––0), (1––)}⊕

Y ⊕

2 = {(–1–), (––0), (0––)}⊕
.

The analytical expressions correspond to these solutions:

1.

{

f1(a, b, c) = b ⊕ c ⊕ ā

f2(a, b, c) = b ⊕ c ⊕ a
; 2.

{

f1(a, b, c) = b ⊕ c̄ ⊕ a

f2(a, b, c) = b ⊕ c̄ ⊕ ā
.

Cost of realization of the system for the both solutions is equal to k∗

θ/k∗

l = 4/4. If

compared with [37] it is a better result, where cost of realization is equal to k∗

θ/k∗

l =

4/7, namely:

{

f1(a, b, c) = b ⊕ c̄ ⊕ ab

f2(a, b, c) = b ⊕ abc̄
.

6 Conclusions

A new minimization method in the polynomial set-theoretical format of complete and

incomplete logic functions with n variables and their system has been presented. It

consists in the splitting procedure of given minterms and iterative simplification of con-

juncterms on the based set-theoretical rules. The method’s efficiency has been proved by

numerous examples borrowed from well-known publications (see References) related

to different minimization methods. The vast majority of functions and their systems

minimized by the proposed method showed better results. This is due to the fact that

in the process of transformation are involved the conjuncterms with Hamming distance

d ≥ 3, the transformed PSTF of which may have elements for which in the given set

there will be a pair with smaller d. The search procedure of such elements has s combi-

native character: after each replacement of a chosen pair of conjuncterms of the given

PSTF Y ⊕ for certain set of the transformed PSTF Y ⊕ we obtain a new set where it

is necessary to determine distance d between new pairs and, having chosen from them

the elements with minimal d, to apply the rules of respective theorem and build again

a new set and so on. As a result, the probability of effective simplification of conjunc-

terms set increases through the use of appropriate transformation rules that reduce the

implementation cost of realization of minimized function.
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pp. 339-354 (2010)

29. Rytsar, B. Ye.: Minimization of logic functions system by parallel splitting conjuncterms

method. Journal of National University “L’viv Polytechnic” “Electronics and Telecom-
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