Sequential P Systems with Active Membranes Working
on Sets*

Michal Kovac¢ and Damas P. Gruska

Faculty of Mathematics, Physics and Informatics, Comenius University

Abstract. We study variants of P systems that are working in the sequential
mode. Usually, they are not computationally complete, but there are possible ex-
tensions that can increase the computation power. Extensions that implement a
notion of zero-checking are often computationally complete. P systems with an
ability to create new membranes are a rare exception as they are known to be
computationally complete even in the sequential mode without using a dedicated
zero-check operation. Using sets instead of multisets was inspired by Reaction
systems and we show how to use this relaxation in the context of active mem-
branes. We challenge the original definition of a membrane creation because pos-
sible multiplicity of labels of child membranes are in conflict with no multiplicity
of objects in Reaction systems. We propose more suitable notions of membrane
creation and prove computational completeness by simulating a register machine.

1 Introduction

Membrane systems (P systems) [1] were introduced by Paun (see [2]) as distributed
parallel computing devices inspired by the structure and functionality of cells. Starting
from the observation that there is an obvious parallelism in the cell biochemistry and
relying on the assumption that “if we wait enough, then all reactions which may take
place will take place”, a feature of the P systems is given by the maximal parallel way
of using the rules. For various reasons, ranging from looking for more realistic models
to just more mathematical challenge, the maximal parallelism was questioned, either
simply criticized, or replaced with presumably less restrictive assumptions. In some
cases, a sequential model may be a more reasonable assumption. In sequential P sys-
tems, only one rewriting rule is used in each step of computation. Without priorities,
they are equivalent to Petri nets [3], hence not computationally complete. However, pri-
orities, inhibitors and other modifications can increase the computation power. It seems
that there is a link between universality and ability to zero-check [4].

Standard models of membrane systems have configurations, where any given com-
partment is represented as a multiset of objects and each computational action is repre-
sented by a multiset of simultaneously executed (multiple copies of) individual evolu-
tion rules.

Such strong reliance on counting (through multiple copies of objects and rules) may
lead to potential problems in two respects. First, one may wonder how realistic is the
counting (multiset) mechanism if one needs to represent huge numbers of molecules

* Work supported by the grant VEGA 1/1333/12.

248

and instances of biochemical reactions. Second, a membrane system would normally
have an infinite state space, making the application of formal verifiation techniques
impratical or indeed impossible (there exists a rich body of results proving Turing com-
pleteness of even very simple kinds of membrane systems).

A radical solution to the state space problems can be provided by reaction systems,
which, however, model biochemial reactions in living cells using qualitative (based on
presence and absence of entities) rather than quantitative rewriting rules.

Set membrane systems [5] are based on sets (of objects or rules) together with the
associated set operations, rather than on multisets with multiset operations. An interest-
ing property of maximal parallel steps in set membrane systems is that there is always
exactly one maximal parallel set of simultaneously applicable rules, thus such system
is deterministic.

Alhazov in [6] proposed P systems, where the multiplicities of objects are ignored,
which is essentially the same as set membrane systems. He proved that with bounded
number of membranes they have a very limited computing power, exactly the Parikh
images of regular languages. On the other hand, allowing membrane creation or division
implies the computational completeness.

The sequential mode was only mentioned in [5] under the notion of “min-enabled”
computational step. As well as in the maximal parallel mode, the sequential set mem-
brane systems can also generate only the regular languages [6].

In section 2 we recall some computer science basic notions that we will use through
the work. Sequential P systems with active membranes working on sets instead of mul-
tisets (Sequential active set P systems) are formally presented in section 3.

In section 4 we show the computational completeness by simulating the register
machine. In the last section we propose two modifications of the definition of a mem-
brane creation because in the original definition possible multiplicity of labels of child
membranes are in conflict with no multiplicity of objects. First modification is called
inject-or-create and has no explicit membrane creation rule. Instead, when sending ob-
jects to a child membrane, which does not exist, then a new membrane is created and
objects are sent to it. Second modification is called wrap-or-create and has an explicit
membrane creation rule. However, applying such rule when a child membrane with the
same label exists wraps the existing membrane in the newly created one.

2 Preliminaries

Here we recall several notions from the classical theory of formal languages.

An alphabet is a finite nonempty set of symbols. Usually, it is denoted by 3. A
string over an alphabet is a finite sequence of symbols from the alphabet. We denote
by X* the set of all strings over an alphabet X. By X+ = X* — {&} we denote the set
of all nonempty strings over 2. A language over the alphabet X' is any subset of X*.

The number of occurrences of a given symbol a € X' in the string w € X* is
denoted by |w|,. s (w) = (|way, [W]ay,-- -, |W]a,) is called a Parikh vector associ-
ated with the string w € X*, where X' = {a;,as,...,a,}. For a language L C X*,
Us(L) = {¥s(w)|lw € L} is the Parikh image of L. If FL is a family of languages,
PsFL denotes the family of Parikh images of languages in FL.

249

Next, we recall notions from graph theory.

A rooted tree is a tree, in which a particular node is distinguished from the others
and called the root node. Let T be a rooted tree. We will denote its root node by rr. Let
dbe anode of T\ {rr}. As T is a tree, there is a unique path from d to rr. The node
adjacent to d on that path is also unique and is called a parent node of d and is denoted
by parentr(d). We will denote the set of nodes of 7" by V' (T") and set of its edges by
E(T). Let Ty, T, be rooted trees. A bijection f : V(T}) — V(T3) is an isomorphism
HE {(f(w), (0))|(u,0) € B(T1)} = E(Ty) and f(rr) = rr,.

3 Sequential Active Set P Systems

The fundamental ingredient of a P system is the membrane structure (see [7]). It is a
hierarchically arranged set of membranes, all contained in the skin membrane. Each
membrane determines a compartment, also called region, which is the space delimited
from above by it and from below by the membranes placed directly inside, if any exists.
Clearly, the correspondence between membranes and regions is one-to-one, that is why
we sometimes use interchangeably these terms. The membrane structure can be also
viewed as a rooted tree with the skin membrane as the root node.

A P system consists of a membrane structure, where each membrane is labeled
with a number from 1 to m. Each membrane contains a set of objects. Objects can be
transformed into other objects and sent through a membrane according to given rules
defined for membrane labels. The rules are known from the beginning for each possible
membrane, even for the ones that do not exist yet, or the ones that will never exist.

In this paper we work with sequential P systems with active membranes working on
sets (Sequential active set P systems). The rules can modify the membrane structure by
dissolving and creating new membranes. That is why we will define the configuration
to include the membrane structure as well.

Let X be a set of objects. A membrane configuration is a tuple (7, [, ¢), where:

e T'is arooted tree,

e | € NV(T) is a mapping that assigns for each node of 7" a number (label), where
I(rp) = 1, so the skin membrane is always labeled with 1,

e c € (2¥)V(T) is a mapping that assigns for each node of T"a set of objects from X,
so it represents the contents of the membrane.

The common representation of a membrane structure in this paper is by a string,
where a membrane is denoted by a pair of matching square brackets, e.g. [1[2ablaac]; .
A sequential active set P system is a tuple (X, Cy, Ry, Ro, ..., R,,), where:

e Jis a set of objects,
e (y is the initial membrane configuration,
e Ri,Ry,...,R,, are finite sets of rewriting rules associated with the labels
1,2,...,m and can be of forms:
-u—w,wherew C X, |ul > 1,wC (¥ x{,1,];}))and1 < j <m,
- a dissolving rule v — wd, where u C X, Ju| > 1, w C (X' x
1<j<m,

250

- a membrane creation u — [;v1];v2, Where u C X, |u| > 1, v1,v; € X and
1<j<m.

For the first two forms, each rewriting rule may specify for each object on the right
side, whether it stays in the current region (we will omit the symbol -), moves through
the membrane to the parent region (T) or to a specific child region (| ;, where j is a label
of a membrane). We denote these transfers with an arrow immediately after the symbol.
An example of such rule is the following: ab — ab |2 ¢ T ¢d.

By applying the rule we mean the removal of objects specified on the left side and
the addition of the objects on the right side with respect to set union semantics. Symbol
0 ¢ X does not represent an object. It may be present only at the end of the rule, which
means that after the application of the rule, the membrane is dissolved and its contents
(objects, child membranes) are propagated to the parent membrane.

Active P systems differ from classic (passive) P systems in their ability to create
new membranes by rules of the third form. Such rule will create new child membrane
with a given label 7 and a given set of objects v; as its contents, while the set vy is
the set of products that stays in the current membrane. If the current membrane already
contains a child membrane with label j, then such rule is not applicable.

For a sequential active set P system (X, Cy, Ry, Ra, ..., R,,), configuration C' =
(T',1,c), membrane d € V(T) the rule r € Ry is applicable iff:

o r=u — wandu C ¢(d) and for all (a, |) € w there exists do € V(T') such that
l(d2) = k A parent(dg) = d,

o r =u — wd and u C ¢(d) and for all (a, |;) € w there exists dy € V(T') such
that I(d2) = k A parent(dz) = d and d # rr,

o 7 =u— [ju1];02 and u C ¢(d).

In this paper we assume only sequential systems, so in each step of the compu-
tation, there is one rule nondeterministically chosen among all applicable rules in all
membranes to be applied.

A computation step of a sequential active P system is a relation = on the set of
membrane configurations such that C; = C5 holds iff there is an applicable rule in a
membrane in C1, such that applying that rule can result in Cs.

The P system can work in generating or in accepting mode. For the generating mode
we consider the concatenation of the objects which leave the system, in the order they
are sent out of the skin membrane (if several symbols are expelled at the same time,
then any ordering of them is considered). In this case we generate a language. The
result of a single computation is clearly only one multiset or a string, but for one initial
configuration there can be multiple possible computations. It follows from the fact that
there can be more than one applicable rule in each configuration and they are chosen
nondeterministically.

For the accepting mode the input word is encoded into a membrane structure by a
given encoding and it is accepted if and only if a given accepting configuration can be
reached[3].

251
4 Simulation of Register Machine

4.1 Register Machine

In this section we will show that sequential active set P systems are powerful computing
devices as they can simulate the register machine. The section starts with a definition
of deterministic register machine with a definition of a configuration. Next is the for-
mulation of the main theorem followed by a proof made by a simulation. At last the
efficiency of the simulation is questioned and various improvements are proposed.

Definition 1. A n-register machine is a tuple M = (n, P, i, h), where:

o n is the number of registers,

e P is a set of labeled instructions of the form j : (op(r), k,1), where op(r) is an
operation on register r < n, and j, k, | are labels from the set Lab(M) such that
there are no two instructions with the same label j,

e i is the initial label, and

o h is the final label.

The machine is capable of the following instructions:

e (add(r),k,1) : Add one to the contents of register r and proceed to instruction & or
to instruction /; in the deterministic variants usually considered in the literature we
demand k£ = L.

o (sub(r), k,l) : If register r is not empty, then subtract one from its contents and go
to instruction &, otherwise proceed to instruction /.

e halt : This instruction stops the machine. This additional instruction can only be
assigned to the final label h.

We will denote by (op(r), _, _) any of the operations add and sub operating on the
register r having arbitrary following instruction.

A deterministic m-register machine can analyze an input (n1,...,n,;,) € NJ* in
registers 1 to m, which is recognized if the register machine finally stops by the halt
instruction with all its registers being empty (this last requirement is not necessary). If
the machine does not halt, the analysis was not successful.

A configuration of a register machine is a tuple (r1,..., 7y, ip), where r; is the
value of the register ¢ and ¢p (instruction pointer) is the label of current instruction to
be executed.

4.2 Simple Simulation
The main theorem is stated as follows:
Theorem 1. Sequential active set P systems are computationally complete.

Proof. Computational completeness is proved by a direct simulation of a register ma-
chine, which is also computationally complete.

252

For a register machine with m registers we will construct a sequential active set P
system (X, Co, Ry, ... Rmn41), where

X = {x;,y; for instructions with label j} U {¢; for each register i}

. Skin membrane will be labeled with m + 1, other labels correspond to registers 1 to m.
Cy will be the input word for the register machine encoded into a membrane structure
by the following encoding:

For a configuration of register machine (1,73, ...7,,4p) the membrane structure
will consist of a skin membrane, which will contain m chains consisting of r; mem-
branes embedded one into another like in a Matryoshka doll with label <. The innermost
membranes will contain a single object ¢;. If »; = 0 then ¢; is in the skin membrane
and there is no membrane with label . Object representing the label of the current
instruction (x;;,) is in the skin membrane.

We will have following rules in the skin membrane:

Yj — g

. x&; — x; |, for instruction j : (op(4),_, _),

. &, t; — [1y, t;]1 for instruction j : (add(i), k, k),
. xj,t; — [for instruction j : (sub(i), _,1)

B LW =

For the membrane i:

xj — x; |, for instruction j : (op(i), _, _),

. xj,t; = [1yk, ti]1 for instruction j : (add(i), k, k),
. y; — y; 1 for instruction j : (op(4), _, _),

. &, t; — Y, t;, 6 for instruction j : (sub(i), k,1)

S)

Object x; represents the instruction currently executed. It is sent down the chain
of membranes by rules 2 and 5. In the innermost membrane the creation of a new
membrane (rule 6), or the dissolution (rule 8) is performed. Then the next instruction
represented by object y; is sent upwards all the way to the skin membrane by the rule
7. The object t; is always present in the innermost membrane. For a SUB instruction
there are two rules in the skin membrane, together they implement the zero-test. The
rule 2 is applicable only if the register is nonempty and the rule 4 is applicable only if
the register is empty by requiring the presence of ¢;, meaning that the value of register
1 1s zero. a

Example 1. Assume a register machine with two registers with values r; = 2,7, =0
and the current instruction j : add(1, k, k). The corresponding membrane configuration
is [3[1[1t1]1]1;t2]3. The computation of the P system is deterministic, at each step there
is only one applicable rule. Starting with the rule 2 and then the rule 5, x; enters the
innermost membrane, where the rule 6 creates new membrane.

The simulation was quite straightforward. We proved that the model is computa-
tionally complete. However, the simulation is not very effective. It uses alphabet of size
2 x number of instructions + number of registers, and its number of membranes is lin-
early dependent on the sum of values of registers. The time needed for executing an
instruction on register ¢ is linearly dependent on 7;.

253

4.3 Optimalization of the Simulation

In this subsection we address the inefficient usage of membranes in the previous simu-
lation. New, optimized simulation will reduce it to logarithmic dependency.

For a register machine with m registers we will construct a seqeuntial active set
P system, where X' = {0,1,p,s,t} U {x;,y;, z; for instructions with label j}. Skin
membrane will be labeled with m + 1, other labels correspond to registers 1 to m.

Assume configuration of register machine (71,72, ... 7y, ip). For each register 4,
let b1bs . . . by, be a binary representation of r;. The skin membrane will contain a chain
of kK membranes embedded one into another like in a Matryoshka doll with label 3.
The membrane in depth d will contain the object b_4, which is either O or 1. So the
highest-order position in the binary number is represented by the innermost membrane
and more often changed positions by increments are in membranes closer to the skin
membrane. Moreover, the innermost membranes contain a single object ¢. The skin
membrane contains the label of the current instruction x;;,. Other membranes (not skin
and not innermost) contain s. Object p will be in all membranes except the skin mem-
brane and direct children of the skin membrane. It represents the fact that the membrane
can be dissolved, while keeping at least one membrane for binary representation of the
register value.

The basic idea is to recursively decide the next action based on lowest position. For
incrementing number ending with zero, incrementing the lowest position is enough.
Similar simple case is when decrementing number ending with one. For incrementing
number ending with one, we decrement the lowest position and recursively call incre-
ment on the binary number omitting the lowest position. Similarly, for decrementing
number ending with zero, we increment the lowest position and recursively call decre-
ment on the binary number omitting the lowest position. There are some special cases,
like incrementing 111 to 1000 or decrementing 1000 to 111. In these cases we should
change the number of membranes representing positions.

We will have following rules in the skin membrane:

—_

- Yy — Iy,
2. xj — x; |, for instruction j : op(i,_,_)

For the membrane ¢ and instruction j:
3. y; — y; T (return the next instruction to the skin membrane).
For the membrane ¢ and instruction j : add(i, k, k):

4. ;1 — x; |; 0 (we decremented lower position, so we must increment higher
position (011 to 100, now at 1 to 0)),

5. £;0 — y; T 1 (we incremented a position and can return and proceed to the next
instruction),

6. x;1t — [;1tpliyr T Os (incrementing 111 to 1000).

For the membrane ¢ and instruction j : sub(i, k, [):

7. xj1s — y;, 1 Os (we found position to decrement, proceed to the next instruction),
8. x;0 — x; |; 1 (1000 is decremented to 0111 and now we encountered a 0),

254

9. x;1tp — 2,td (decrementing the number of bits),
10. zjst — y;t (after decremented the number of bits, remove s in the new highest-
order position),
11. x;0t — y; T 0t (trying to decrement a zero)

Example 2. Assume a register machine with two registers with values r; = 3, 7o = 0
and the current instruction j : add(1, k, k). The corresponding membrane configuration
is [3[1[11tp]11s]1[20t]22;]3. The computation of the P system is deterministic, at each
step there is only one applicable rule. Starting with the rule 2, x; will meet the object
1 in the configuration [3[1[11¢p]112,]1[20t]2]s. The only applicable rule then is 4, re-
sulting in [3[1[11¢px;]10s]1[20t]2]3. £; now meets objects 1 and ¢, which means that
the only applicable rule is 6, creating a new innermost membrane and resulting in the
configuration [3[1 [1[11¢p]10]10yxs]1[20t]2]s. The object yy, is by the rule 3 propagated
to the skin membrane, where it is prepared for the next instruction by the rule 1.

One instruction of the register machine is performed by number of computa-
tional steps which is logarithmic on the value of the register the instruction is oper-
ated on. The number of membranes is logarithmic as well. The number of objects is
3 * number of instructions + 5.

4.4 Further Optimalizations

Could the simulation be optimized even more? Encoding the register value to a chain of
membranes is not making full use of membrane structure. There are many options for a
represention of an integer by a tree. For efficient implementation of the increment and
decrement instructions, we need an encoding with a property that a local change in the
value of the encoding of the entire tree corresponds to a local change in the value of the
encodings of its child subtrees. Stein in 1999 [8] proposed a boustrophedonic variant
of Cantor pairing function. The implementation of a sequential active set P system
simulating a register machine using this pairing function to encode child subtrees would
be quite easy, but we would stick to the logarithmic time in the worst case (diagonal of
the pairing function). Catalan pairing function [9] orders full binary trees by the number
of nodes. The time would be logarithmic with a base 4, which is a slight improvement,
but asymptotically still the same.

5 Modified Membrane Creation Semantics

In this section we will investigate the effect of other semantics of membrane creation.
The previous semantics assumed an explicit membrane creation rule. If the current
membrane already contains child membrane with the same label as the membrane about
to be created, then the rule is not applicable, and the membrane creation is aborted.
Similar behavior is in the definition of sending objects to the child membrane. If such
membrane does not exist, objects cannot be sent and the rule is not applicable.

These two behaviors are in fact complementary. It seems natural to join these two
artificial rule abortions and provide a rule that will always be applicable if the precon-
dition of left side inclusion is fulfilled.

255

5.1 Semantics Inject-or-Create

We will first examine the case where we have no explicit membrane creation rule. Any
rule which is sending some objects to child membrane labeled j will create child mem-
brane j if it does not exist.

Formally, rules can be of form:

e u—w,whereu C X, Jul >1,wC (Xx{,1,];})and1 <j<m,
e a dissolving rule u — wd, where w C X, |u| > 1, w € (¥ x {-,1,];}) and
I1<j<m.

For a sequential active set P system (X, Cy, Ry, Ra, ..., R,,), configuration C =
(T',1,c), membrane d € V(T) the rule r € Ry is applicable iff:

e r=u— wandu C ¢(d),
e r=u— wdand u C ¢(d) and d # rr.

Example 3. Assume the membrane configuration [1[2]2a];. If we apply the rule a —
a |2 in the skin membrane, the object a is sent to the membrane 2 because such child
membrane already exists. The resulting membrane configuration is [1 [2a]2]1.

If we apply the rule @ — a |3 in the skin membrane, a new membrane labeled 3
is created, because such child membrane does not exist yet. The resulting membrane
configuration is [1[2]2[3a]3]1-

Theorem 2. Sequential active set P systems with inject-or-create semantics are com-
putationally complete.

Proof. The simulation is essentially the same as in section 4.3. All the rules which
are sending objects into a child membrane are already assuming that the child mem-
brane already exists. The only difference is in the rule for membrane creation: x;1¢ —
[;1tpl;yx T Os. This rule is applied always in the innermost membrane with no child
membranes. Modified simulation will therefore use rule x;1t — 1 |; ¢ |; p |; yx T Os,
which, when applied, creates a child membrane ¢, because no such child membrane ex-
ists. a

The efficiency of this simulation is essentially the same as in section 4.3, that
means logarithmic number of steps for simulating one instruction of the register ma-
chine as well as logarithmic number of membranes and the number of objects is
3 * number of instructions + 5.

5.2 Semantics Wrap-or-Create

In this variant we stay with explicit membrane creation rule, but when the membrane
with the same label is already contained in the current membrane, the rule remains
applicable and the child membrane will be wrapped by a new membrane with the given
contents. For example, applying the rule a — [2b]2c in the membrane 1 of membrane
structure [1al2d]2]; would result in [1¢[2b[2d]2]2]1-

256

Theorem 3. Sequential active set P systems with wrap-or-create semantics are com-
putationally complete.

Proof. Again, we will show how to simulate the register machine. The simulation will
be similar to the one defined in subsection 4.2, but with additional control objects sim-
ilar to the second simulation 4.3.

For a register machine with m registers we will construct a sequential active set P
system (X, Co, Ry, ... Rimt1), where

XY = {x; for instructions with label j} U {¢;, s; for each register i}

. Skin membrane will be labeled with m + 1, other labels correspond to registers 1 to m.
Cy will be the input word for the register machine encoded into a membrane structure
by the following encoding:

For a configuration of register machine (1,73, ... 7, ip) the membrane structure
will consist of a skin membrane, which will contain m chains consisting of r; mem-
branes embedded one into another like in a Matryoshka doll with label . Membranes
with a child labeled ¢ will contain a single object s;. If the membrane has no child la-
beled 1, it contains an object ¢;. If ; = 0 then ¢; is in the skin membrane and there is
no membrane with label 7. Object representing the label of the current instruction ()
is in the skin membrane.

We will have following rules in the skin membrane:

. xj8; — [18i]is;xy for instruction j : (add (i), k,_),
. xjt; — [iti]is;xy for instruction j : (add(i), k,_),
. xjt; — xyt; for instruction j : (sub(i), k, 1),

. xjs; — x; |, for instruction j : (sub(i), k, 1),

BN =

For the membrane i:
5. x5 — x10

For every add instruction there is just one rule applied in the simulation and for
each sub instruction there is one or two instructions, depending on the register value. If
r; > 0 then the instruction enters the membrane labeled ¢ and dissolves it, decreasing
the number of stacked membranes with label . a

Example 4. Assume a register machine with two registers with values r; = 2 and
ro = 0. The corresponding membrane configuration is [3[1[1t1]151]151t22;]3. If the
current instruction is j : sub(1, k, 1) then the only applicable is the rule 4 which results
in the configuration [3[1[1¢1]1512;]181t2]3. Then the only applicable is the rule 5 which
dissolves the membrane 1 resulting in the configuration [3[1¢1]151]181t22k]3.

For another example, consider instruction j : add(1, k, k). The increment is simu-
lated by wrapping the membrane 1 to a new membrane created by the rule 1 with the
resulting configuration [3[1[1[1t1]151]151]181t22k]3-

This simulation is the most suitable for simulating the register machine because for
incrementing the number of stacked membranes we just need to wrap the topmost mem-
brane into a new membrane. This gained us constant time for executing one instruction,
however the number of membranes remains linear on the sum of register values. The
number of objects is number of instructions + 2 % number of registers.

257

Conclusions

We have investigated the bridge between membrane systems and reaction systems for
the sequential variant with active membranes. We have shown computational complete-
ness by a simulation of a register machine. When using sets instead of multisets, the
original definition of creating a membrane may seem obsolete. Therefore, we have
proposed alternative definitions for membrane creation: inject-or-create and wrap-or-
create. In either case the resulting system has been shown to be universal.

As some simulations are not very effective, we have also proposed ways to improve
the efficiency. For the simulation with original membrane creation we managed to re-
duce time needed for executing one instruction of the register machine from linear to
logarithmic time. The wrap-or-create semantics is the most suitable for the simulation
as for every instruction of the register machine only constant number of steps of the P
system is needed.

The register value in the simulations is encoded in either unary or binary form. We
propose other options to encode the register value as a tree structure of membranes and
leave the construction of the simulation as a topic for further study.

References

1. Paun, G., Rozenberg, G., Salomaa, A.: The Oxford Handbook of Membrane Computing.
Oxford University Press, Inc., New York, NY, USA (2010)

2. PACun, G.: Computing with membranes. Journal of Computer and System Sciences 61(1)
(2000) 108 — 143

3. Ibarra, O., Woodworth, S., Yen, H.C., Dang, Z.: On sequential and 1-deterministic p systems.
In Wang, L., ed.: Computing and Combinatorics. Volume 3595 of Lecture Notes in Computer
Science. Springer Berlin Heidelberg (2005) 905-914

4. Alhazov, A.: Properties of membrane systems. In Gheorghe, M., Paun, G., Rozenberg, G.,
Salomaa, A., Verlan, S., eds.: Membrane Computing. Volume 7184 of Lecture Notes in Com-
puter Science. Springer Berlin Heidelberg (2012) 1-13

5. Kleijn, J., Koutny, M.: Membrane systems with qualitative evolution rules. Fundam. Inf.
110(1-4) (jan 2011) 217-230

6. Alhazov, A.: P systems without multiplicities of symbol-objects. Information Processing
Letters 100(3) (nov 2006) 124-129

7. Paun, G.: Introduction to membrane computing. In Ciobanu, G., Paun, G., Perez-Jimenez,

M., eds.: Applications of Membrane Computing. Natural Computing Series. Springer Berlin

Heidelberg (2006) 1-42

Stein, S.K.: Mathematics: the Man-made Universe. New York: McGraw-Hill (1999)

9. Stanley, R.P.: Enumerative Combinatorics. Wadsworth Publ. Co., Belmont, CA, USA (1986)

Sl

