
Remarks on Memory Consistency Description

Ludwik Czaja

Vistula University, Warsaw

and

Institute of Informatics, The University of Warsaw

lczaja@mimuw.edu.pl

Abstract. Two observations in the matter of pictorial as well as formal presen-

tation of some consistency in distributed shared memory are made. The first con-

cerns geometric transformation of line segments and points picturing read/write

operations, the second - converting partial order of the operations into linear or-

der of their initiations and terminations. This allows to reduce serialization of the

read/write operations as a whole to permutations of their beginnings and ends.

Some draft proposals are introduced.

1 Introduction

Description of a consistency model for a distributed shared memory (DSM) requires

determining what partial orders between constituents of sequential processes are ad-

missible. The constituents need duration, some of them possibly long - like the update

of all replicas of variables. Customarily, a process is pictured as a sequence of line seg-

ments or points corresponding to read/write operations, and parallel run as a number of

such sequences put on rightwards directed parallel straight lines representing passage

of global time. But a certain vagueness and difficulty yields such presentation. What is

the right end of a segment corresponding to write operation? Is it a time instant when

update of all replicas of a variable being written is completed, or memory manager’s

response that write request was accepted? Not always the partial order of operations

can be converted into a linear order retaining the result of execution, required by some

kinds of consistency. For these reasons finer granularity of constituents of processes is

proposed: instead of read/write operations as a whole, timeless events of their initia-

tions (invocations) and terminations. In such semantic model, each parallel execution

may be represented as a sequence of events, in which independent events may occur

in arbitrary order. Furthermore, decision on whether or not a parallel execution can be

converted into equivalent sequential, reduces to finding a suitable permutation of the

sequence. Another observation is that arrangement of partially ordered executions of

read/write operations into a linear order, in geometrical terms means a transformation

of line segments representing the operations: shifting them along the time axis.

A schematic image of a system of two computers with DSM is in Fig. 1.1 This

virtual memory - a common address space - is here seen as a union of local memories

of computers.

104

Fig. 1.1

2 Parallel Executions as Succession of Global States

Consider the following system of two computers running programs in parallel with

initial values of variables a = b = 0. Reading their values is associated with sending

them to print.

computer 1 computer 2

a := 1;
print(b);

b := 1;
print(a);

Fig. 2.1

Neither the entire program statements, nor the access operations to the shared vari-

ables a, b are assumed to be atomic (indivisible). One of possible executions of the sys-

tem, presented as a succession of its global states 1 - 4, is shown in Table 1. The states

are chosen to display a progress of the system activity. Thus, in a sense, the choice is ar-

bitrary: adapted to a generality level suitable for presentation of a considered problem.

Here, writing to shared variables a, b (state 1) and reading their values (along with send-

ing to print - state 2), is performed in parallel by both computers. The dashed arrows

stretching across successive states represent the progress of data transmission from one

computer to the other.

Two remarks on this execution:

– A variable has a location in the local memory of each computer using this variable:

a paging (or cache memory) mechanism ensuring a local accessibility of the vari-

able is assumed (its functioning is not displayed in Table 1). That is why replicas

of one variable have locations in local memories of computers using this variable.

– Every computer reads value of a variable before it is updated in all replicas. That

is why printouts are a = 0, b = 0, but not a = 1, b = 1 - what would be the

case if progress of data transmission outdistanced reading of values of a and b

(transmissions racing)

105

Table 1. State 1: local update of values of variables a, b and start of their transmission.

State 2: local readout of values of variables a, b with sending them to print and their

transmission in progress. State 3: end of transmission of the value of variable a and

transmission of the value of variable b in progress. State 4: end of transmission of the

value of variable b.

106

3 Geometric Presentation of Parallel Executions

A set of read/write operation occurrences in a single computer process is called a history

of memory access of this process (history of the process in short). Customarily, it is

pictured as a set of line segments on a rightwards directed straight line - a global time

axis. Each segment represents a time interval between initiation and termination of

a read or write execution. Initiation, termed an invocation of the memory access, is

shown as the left-most point of the segment. It represents an instant of global time in

which request for the operation occurs in the process. Similarly, the right-most point

of the segment shows the termination of a read or write and for a read it represents

an instant of global time when a value being read is fully fetched from memory to

processor. However for a write, the right-most point of the segment may be understood

as an instant of global time in which either:

(1) all replicas of a shared variable’s value are updated by the value being written, or

(2) a response (acknowledgment of invocation) from the subsystem managing memory

access is received by the process.

A placement of the line segments on the global time axis depends on the case taken into

account. In the case (1), the history of process is not always a sequence but sometimes

merely a set of segments, i.e. some segments may overlap - they are partially ordered in

time. This happens because transmission of data through the network not always makes

the process suspend: the subsystem managing memory access may proceed in parallel

with another activity of the process. In the case (2), the history of process is always a

sequence of segments - they are totally ordered. Therefore, in the case (1), the execution

shown in Table 1 is graphically represented in Fig.3.1, while in the case (2) - in Fig.3.2.

Fig.3.1

Fig.3.2

107

4 Sequential and Strict Consistency/Inconsistency - Informal

The system {computer 1, computer 2} in Fig.2.1 may be executed in many ways: a suc-

cession of its R/W operation instances in global time may be arbitrary unless restrictions

on the activity of subsystems managing of memory access is imposed. Various execu-

tions may render various outcomes, i.e. printouts and memory content. Consider the

following three examples:

– The DSM managed by subsystems permitting of execution like in Table 1 (geomet-

rically Figures 3.1, 3.2) is a sequentially inconsistent memory. The four read/write

operations cannot be arranged in one sequence preserving their order of execution

in individual programs and result of computation: these two requirements are in

contradiction! Indeed, in such arrangement, R(b, 0)1 should precede W (b, 1)2 and

R(a, 0)2 should precede W (a, 1)1 which violates the order of their execution spec-

ified by programs. The segments representing the operations cannot be arranged on

the global time axis so that the two requirements are fulfilled.

– Let us modify the above execution replacing R(b, 0)1 with R(b, 1)1. Now, the op-

erations can be arranged in one sequence fulfilling the two above requirements:

W (b, 1)2 R(a, 0)2 W (a, 1)1 R(b, 1)1. The corresponding segments have been suit-

ably shifted (a geometric transformation). The DSM managed by subsystems which

permit such executions but prohibit such as in the latter example, is a sequentially

consistent memory.

– Finally, let us modify the latter execution replacing R(a, 0)2 with R(a, 1)2. The se-

quence of operations fulfilling the two requirements is now, e.g. W (a, 1)1 W (b, 1)2
R(b, 1)1 R(a, 1)2.Moreover, the sequence preserves succession of operation invo-

cations in global time. The DSM managed by subsystems which permit such exe-

cutions but prohibit such as in the first example, is a strictly consistent memory.

In the first example, no requirement on conformity (order similarity) between a suc-

cession of read/write execution specified by individual programs and order of these

operations during the system concurrent run, is imposed. In the second, such confor-

mity is required as well as identical outcome of sequential and concurrent executions.

In the third example, apart from requirements such as in the latter, the conformity be-

tween the global time order of invocations of read/write operations and order of their

instances in sequential arrangement should be possible.

Bearing in mind the examples, one may express not too formally both properties of

DSM:

Sequential consistency. For any parallel execution there exists a sequential execu-

tion i.e. a sequence of read/write operations where their succession is the same as spec-

ified by individual programs; furthermore, each readout of a variable fetches a value as-

signed to this variable by a write operation, which precedes the readout in this sequence,

and assignment of different value to this variable does not occur inbetween.

Strict consistency. In any parallel execution, each readout of a variable fetches

a value assigned to this variable by a write operation performed before this readout

in global time, and assignment of different value to this variable has not been performed

inbetween.

108

Therefore, the meaning of words "precede", "inbetween" etc. is relative to a context

of their usage: they may refer to the global time or to a position in a sequence. This

must be specified whenever such words are used.

Remarks

(1). Sequential and strict consistency or inconsistency happens also if arrangement of

access operations to one variable only is considered. For example, the system in Fig.4.1

may be executed as in Fig.4.2. But the read/write operations cannot be arranged in one

sequence satisfying property of sequential consistency. Here too, reading a value of

variable a is associated with sending it to print.

computer 1 computer 2 computer 3 computer 4

a := 1;
....

....

a := 2;
....

....

print(a);
.....

print(a);

print(a);
....

print(a);

Fig.4.1

Fig.4.2

However in another execution, which differs from the one in Fig.4.2 so that R(a, 2)4
is replaced with R(a, 1)4, the read/write operations can be arranged in one sequence:

W (a, 2)2, R(a, 2)3, W (a, 1)1, R(a, 1)4, R(a, 1)3, R(a, 1)4. Such execution satisfies

property of sequential consistency. Execution in which all read operations fetch value

2 would allow to arrange all the read/write operations in one sequence in which their

succession is the same as their order of execution in global time. Such sequence satisfies

property of strict consistency.

(2) Geometrically, arrangement of read/write operations in a sequence satisfying prop-

erty of sequential consistency causes a transformation of line segments: a shift along

the global time axis. For instance in the modified Fig.4.2, the segment W (a, 1)1 would

be shifted rightwards, so that this write is performed later than R(a, 2)3 and earlier than

R(a, 1)4: a delay of execution of W (a, 1)1 took place.

(3) Arrangement of read/write operations in one sequence boils down to extension of

their partial order to linear. The examples demonstrate that this is not possible for

some executions when restrictions defining sequential or strict consistency are imposed.

Without any restrictions it is always possible, also for infinite history of processes. This

109

is widely known due to a very general theorem: for any partial order relation � on a set

X there exists a linear order < on X such that � ⊆ < [KM 1976], [Mar 1996]

(4) The unpredictable duration of operations on memory ("coarse granularity") and their

presentation as line segments, makes images of parallel execution somewhat counter in-

tuitive, especially when right-most points of the segments represent acknowledgment of

invocations (case 2 in Section 3) - not update of all replicas. Worse, not every parallel

execution can be described in terms of interleaving of sequences of read/write opera-

tions: not always the interleavings exist for some consistency models. The segments are

partially ordered, so, one cannot speak of their permutations, what facilitates formal de-

scription of some consistency models proposed in Section 6. That is why the (timeless)

events of initiation and termination of read/write operations ("fine granularity"), not the

operations at the whole length, will be taken as atomic (indivisible) building units of

processes in the next Section. With such fine granularity, all events can be ordered into

global sequences - interleavings of local histories of memory operations. Parallel execu-

tions will be represented by such interleavings, where independent events may occur in

the arbitrary order, thus one execution may be represented by several interleavings (note

that such approach, in the abstract setting, was a basis for Mazurkiewicz traces [Maz

1987], [TBT 1995] THE BOOK OF TRACES, edited by V. Diekert and G. Rozenberg,

World Scientific Publ. Co. 1995).

5 Events of Initiation and Termination of Read/Write

Let us admit the following denotations and assumptions:

(1) Initiation of reading value α of variable x by computer number j = 1, 2, ..., N

is denoted by R(x, α)j and termination by R(x, α)j ; similarly of writing: W (x, α)j ,

W (x, α)j . Events R(x, α)j and W (x, α)j are interpreted as invocations for performing

the operations. Event R(x, α)j is interpreted as reception of value α of variable x and

W (x, α)j as completion of updating of all replicas of x with the value α. A computer

initiates and terminates the reading of a variable with the same value, and this concerns

also the writing.

(2) Subsystems managing of memory access ensure serialization of initiation and ter-

mination events, thus their linear order. In any such sequence, initiation of an operation

must precede its termination. Such model clearly exhibits arrangement of access oper-

ations on the global time axis. For example, the following sequence of events:

W (a, 1)1 W (a, 2)2 R(a, 2)3 R(a, 2)3 W (a, 1)1 R(a, 1)4 R(a, 1)3 R(a, 1)4 W (a, 2)2
R(a, 2)4 R(a, 1)3 R(a, 2)4

shows succession in global time of initiations and complete terminations of read/write

operations during parallel execution depicted in Fig.4.2. No sequence of read/write op-

erations as a whole may yield the same result.

Figure 5.1 shows the same execution as Figures 3.1, 3.2, but with events of initiation and

termination of read/write. Events W (a, 1)1, W (b, 1)2, denote completion of updating

all replicas of a and b with the value 1.

110

Fig.5.1

The nested bracket structures represent both histories of memory access. Parallel exe-

cution progresses e.g. in the following interleaving of the histories:

W (a, 1)1 W (b, 1)2 R(b, 0)1 R(a, 0)2 R(b, 0)1 R(a, 0)2 W (a, 1)1 W (b, 1)2

with the nested bracket structure (((()))). For the memory coherence, the sequence

of events should be rearranged so that its fragment from R(a, 0)2 to R(a, 0)2, thus

the entire operation R(a, 0)2, should precede entire operation W (a, 1)1 and R(b, 0)1
should precede W (b, 1)2. On the other hand, for not violating the order of the individual

programs run, W (a, 1)1 should precede R(b, 0)1 and W (b, 1)2 should precede R(a, 0)2
in this rearranged sequence. This is not possible, thus the execution in Fig.5.1 does not

fulfil requirements of sequential consistency.

Modifying the execution in Fig.5.1 by replacing R(b, 0)1, R(b, 0)1 with R(b, 1)1,

R(b, 1)1 accordingly, the sequential consistency is obtained by arrangement:

W (b, 1)2 W (b, 1)2
︸ ︷︷ ︸

W (b,1)2

R(a, 0)2 R(a, 0)2
︸ ︷︷ ︸

R(a,0)2

W (a, 1)1 W (a, 1)1
︸ ︷︷ ︸

W (a,1)1

R(b, 1)1 R(b, 1)1
︸ ︷︷ ︸

R(b,1)1

i.e. permutation of the given sequence. The permuted sequence has the flat bracket

structure ()()()().
Taking timeless events (points), but not time consuming entire operations, (line seg-

ments) as elementary indivisible objects means usage of a linear instead of partial order

for description of global system behaviours: the so-called "true concurrency" is simu-

lated by nondeterminism. The example shows that a decision whether or not a given

event-sequence can be transformed into a sequence fulfilling the property of sequential

or strict consistency, reduces to finding of its suitable permutation. This suggests using

this observation in a certain formalization of some consistency models presented in the

next Section.

6 Some Consistency Models in the Interleaving Semantics

Let us admit the following denotations:

(1) S = {P1, P2, . . . , PN} – a system of sequential programs with DSM, performing in

parallel by computers numbered 1, 2, . . . , N.

(2) V – set of variables used by the programs and allocated in DSM.

(3) D – set of values, the variables may assume.

111

(4) Ev = {W (x, α)j , W (x, α)j , R(x, α)j , R(x, α)j} with x ∈ V, α ∈ D, j ∈
{1, 2, . . . , N}; this is the set of all events of initiations and terminations of read/write

events that may occur during activity of the system S.

(5) Q = q1q2 . . . qn ∈ Ev* is sequentially simulated parallel activity of the system S if

every event W (x, α)j and R(x, α)j occurring in Q is preceded by respective W (x, α)j

and R(x, α)j in this sequence called a global history of S. If every W (x, α)j and

R(x, α)j is followed on by respective W (x, α)j and R(x, α)j then Q is called closed

with respect to the memory access operations.

Sequential and strict consistency: A global history Q = q1q2 . . . qn fulfills the prop-

erty of sequential consistency if Q is closed and there exists a permutation π(Q) =
qπ(1)qπ(2) . . . qπ(n) such that:

(i) If W (x, α)j or R(x, α)j occurs in π(Q) then it is adjacently preceded by respective

W (x, α)j or R(x, α)j .

(ii) Events W (x, α)j and R(x, α)j occur in the sequence π(Q) in the same order as in

the local history of program Pj ; by virtue of (i) operations W (x, α)j and R(x, α)j are

performed in the system S in the same global time order as in program Pj .

(iii) If an event R(x, α)j occurs in π(Q) then α is an initial value or R(x, α)j is

preceded in π(Q) by a certain event W (x, α)k with no event W (x, β)i inbetween,

where β 6= α, k, i = 1, 2, ..., N .

The system S obeys the principle of sequential consistency of DSM iff S admits only

global histories Q fulfilling the property of sequential consistency. In short: the memory

managed by S in sequentially consistent.

The strict consistency is obtained if (i), (ii), (iii) are satisfied for the non-rearranging

(identity) permutation π(Q) = Q.

Remarks

1. The global history Q = q1q2 . . . qn ∈ Ev* uniquely determines the memory

state (content) and printouts yielded by Q. The memory state is a set of pairs

σ[Q] = {〈x, α〉 : x ∈ V, α ∈ D} thus a relation σ[Q] ⊆ V × D. If for

each closed Q relation σ[Q] is a function σ[Q] : V → D (i.e. x = y

implies σ[Q](x) = σ[Q](y): values of all replicas of each variable are iden-

tical), then the memory is coherent. Sequentially consistent memory is coherent.

Memory incoherence (lack of integrity) arises e.g. in effect of parallel execution

shown in Fig.4.2. The execution yields the DSM content: in memory of comput-

ers 1,2,4, the value of a is 2 and of computer 3 is 1. The memory state is then

σ[Q] = {〈a, 1〉, 〈a, 2〉}, which is not a function.

2. It is known that in general a decision whether or not a given finite execution fulfils

the sequential consistency property is intractable. It is evident in the model pre-

sented here: a search for a permutation satisfying (i),(ii),(iii) is required. A good

many research tackled this task with the same answer, unless additional informa-

tion is supplied about the system behaviour. Some examples of this research are

[GK 1992], [CLS 2005], [WYTC 2011].

112

3. A challenge is to extend the consistency concept to infinite executions. For such

executions some problems, e.g. starvation are explored, but (to my knowledge)

not memory consistency models. Note that space of infinite executions is non-

enumerable.

4. Strict (unacceptable for efficiency) and sequential consistency bring nearer the

DSM system to the multiprocessor with one physical shared memory with direct

access. Nonexistence of such memory is transparent for the DSM users. Applica-

tions where efficiency is more crucial than preservation of some execution order in

individual programs, may tolerate more liberal models than sequential consistency,

the natural model for users and more acceptable than strict consistency.

Causal consistency

In any execution, if an effect of an update (write) operation depends on another update

(in the same or different process and of the same or different variable), then in every

process, the global time order of readouts of the updated variables should be the same

as of these updates.

Let us define a relation of causal dependency in the set Ev : ⊆ Ev × Ev. For

events p, q two auxiliary primary relations are admitted:

1. If p precedes q in the same process then p
process
−−−−−→ q

2. If event q = R(x, α)i terminates reading value α of variable x and α was assigned

to x by a write operation completed with event p = W (x, α)j then p
readout
−−−−−→ q

Causal dependency is the least (wrt. ⊆) relation such that:

(i) if p
process
−−−−−→ q or p

readout
−−−−−→ q then p q

(ii) if p q and q r then p r

If p q then p is a cause of q and q is an effect of p. The events are independent if

neither p q nor q p, written p ‖ q.

Let R = {R(x, α)j}, W = {W (x, α)j}, j ∈ {1, 2, . . . , N}, x ∈ V, α ∈ D.

Let Q = q1q2 . . . qn ∈ Ev* be a closed history of execution of the system S. Q is

causally consistent iff for any qi, qj ∈ W in Q with qi qj , and for any qk, ql ∈ R in

Q, the following holds: if qk

process
←−−−→ ql (qk, ql are in the same process) and qi

readout
−−−−−→

qk and qj
readout
−−−−−→ ql then qk

process
−−−−−→ ql; but if for some qi, qj ∈ W, qk, ql ∈ R in Q,

the relations qi qj , qk

process
←−−−→ ql, qi

readout
−−−−−→ qk and qj

readout
−−−−−→ ql ql

process
−−−−−→ qk hold

then Q is causally inconsistent. In symbols:

∀qi, qj ∈ W [qi qj ⇒ ∀qk, ql ∈ R ((qk

process
←−−−→ ql ∧ qi

readout
−−−−−→ qk ∧

qj
readout
−−−−−→ ql) ⇒ qk

process
−−−−−→ ql)]

The system S obeys the principle of causal consistency of DSM iff S admits only global

causally consistent histories Q. In short: the memory managed by S is causally consis-

tent.

Example. Let

Q = ...W (x, 9)1
︸ ︷︷ ︸

q1

...R(x, 9)2
︸ ︷︷ ︸

q2

...W (y, 3)2
︸ ︷︷ ︸

q3

...R(x, 9)3
︸ ︷︷ ︸

q4

...R(y, 3)3
︸ ︷︷ ︸

q5

...R(y, 3)4
︸ ︷︷ ︸

q6

...R(x, 9)4
︸ ︷︷ ︸

q7

113

This causally inconsistent execution is presented graphically in Fig.6.1. By defini-

tion of causality relation q1 q3 holds (suppose, for instance, that process P2 after

having read value 9 of variable x, computes
2
√

9 = 3 and writes 3 to y; initiations of

read/write operations are not shown for simplicity).

Fig.6.1

Fig.6.2a Fig.6.2b

Conditions for causal consistency of a history Q may be schematically presented

by diagram in Fig.6.2a. For demonstrating inconsistency in suffices finding events

q1, q3, q6, q7 such that there exists a diagram in Fig.6.2b. The diagrams show relations

between events in Q.

PRAM (Pipelined Random Access Memory) consistency

In any execution, if two update (write) operations are in the same process, then in every

process, the global time order of readouts of these updated variables should be the same

as of the updates.

Let Q = q1q2 . . . qn ∈ Ev* be a closed history of execution of the system S. Q is

PRAM-consistent iff for any qi, qj ∈ W in Q with qi

process
−−−−−→ qj , and for any qk, ql ∈ R in

Q, the following holds: if qk

process
←−−−→ ql (qk, ql are in the same process) and qi

readout
−−−−−→

qk and qj
readout
−−−−−→ ql then qk

process
−−−−−→ ql; but if for some qi, qj ∈ W, qk, ql ∈ R in Q,

114

the relations qi

process
−−−−−→ qj , qk

process
←−−−→ ql, qi

readout
−−−−−→ qk and qj

readout
−−−−−→ ql ql

process
−−−−−→ qk

hold then Q is PRAM-inconsistent.

In symbols:

∀qi, qj ∈ W [qi

process
−−−−−→ qj ⇒ ∀qk, ql ∈ R ((qk

process
←−−−→ ql ∧ qi

readout
−−−−−→ qk ∧

qj
readout
−−−−−→ ql) ⇒ qk

process
−−−−−→ ql)]

The system S obeys the principle of PRAM-consistency of DSM iff S admits only

global PRAM-consistent histories Q. In short: the memory managed by S is PRAM-

consistent.

Note that causally inconsistent execution shown in Fig.6.1 is PRAM-consistent. The

formal definitions of the four memory consistency models clearly set up them into the

known hierarchy: strict ⊂ sequential ⊂ causal ⊂ PRAM .

References

[CLS 2005] Cantin, J.F.; Lipasti, M.H.; Smith, J.E. The complexity of verifying memory coher-

ence and consistency, Parallel and Distributed Systems, IEEE Transactions on, On page(s):

663 - 671 Volume: 16, Issue: 7, July 2005

[GK 1992] Gibbons, P.B. ; AT&T Bell Lab., Murray Hill, NJ, USA ; Korach, E. The complexity

of sequential consistency , Published in: Parallel and Distributed Processing, 1992. Proceed-

ings of the Fourth IEEE Symposium on Date of Conference, Page(s): 317 - 325 : 1-4 Dec

1992

[KM 1976] Kuratowski K., Mostowski A., Set Theory, with an Introduction to Descriptive Set

Theory (Studies in Logic and the Foundations of Mathematics - Vol 86) Hardcover – Febru-

ary 26, 1976, second edition

[Mar 1996] Marczewski (Spilrajn) K.: Sur l’extension de l’ordre partiel, FM 16 (1930), in Ed-

ward Marczewski, Collected Mathematical Papers, IM PAN 1996, pp. 386-389

[Maz 1987] Mazurkiewicz A., Trace theory, in W. Brauer et al. Editors, Petri Nets, Applica-

tion and Relationship to other Models of Concurrency, n. 255, Lecture Notes in Computer

Sciences”, s. 279-324, 1987.

[TBT 1995] THE BOOK OF TRACES, (edited by V. Diekert and G. Rozenberg), World Scien-

tific Publ. Co. 1995.

[WYTC 2011] Weiwu Hu; Yunji Chen; Tianshi Chen; Cheng Qian; Lei Li, Linear Time Memory

Consistency Verification, Computers, IEEE Transactions on, On page(s): 502 - 516 Volume:

61, Issue: 4, April 2011

