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ABSTRACT
The virtualization technology is attractive for modern em-
bedded systems in that it can ideally implement resource
partitioning but also can provide transparent software devel-
opment environments. Although hardware emulation over-
heads for virtualization have been reduced significantly, the
network I/O performance in virtual machine is still not sat-
isfactory. It is very critical to minimize the virtualization
overheads especially in real-time embedded systems, because
the overheads can change the timing behavior of real-time
applications. To resolve this issue, we aim to design and
implement the device driver of RTEMS for the standardized
virtual network device called virtio. Our virtio device driver
can be portable across different Virtual Machine Monitors
(VMMs) because our implementation is compliant with the
standard. The measurement results clearly show that our
virtio can achieve comparable performance to the virtio im-
plemented in Linux while reducing memory consumption for
network buffers.

Categories and Subject Descriptors
D.4.7 [Operating Systems]: Organization and Design—
real-time systems and embedded systems

General Terms
Design, Performance

Keywords
Network virtualization, RTEMS, Real-time operating sys-
tem, virtio, Virtualization

1. INTRODUCTION
The virtualization technology provides multiple virtual ma-
chines on a single device, each of which can run own operat-
ing system and applications over emulated hardware in an
isolated manner [19]. The virtualization has been applied to
large-scale server systems to securely consolidate different
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services with high system utilization and low power con-
sumption. As modern complex embedded systems are also
facing the size, weight, and power (SWaP) issues, researchers
are trying to utilize the virtualization technology for tem-
poral and spatial partitioning [5, 21, 12]. In the partitioned
systems, a partition provides an isolated run-time environ-
ment with respect to processor and memory resources; thus,
virtual machines can be exploited to efficiently implement
partitions. Moreover, the virtualization can provide a trans-
parent and efficient development environment for embedded
software [10]. For example, if the number of target hard-
ware platforms is smaller than that of software developers,
they can work with virtual machines that emulate the target
hardware system.

A drawback of virtualization, however, is the overhead for
hardware emulation, which causes higher software execution
time. Although the emulation performance of instruction
sets has been significantly improved, the network I/O per-
formance in virtual machine is still far from the ideal perfor-
mance [13]. It is very critical to minimize the virtualization
overheads especially in real-time embedded systems, because
the overheads can increase the worst-case execution time and
jitters, thus changing the timing behavior of real-time ap-
plications. Few approaches to improve the performance of
network I/O virtualization in the context of embedded sys-
tems have been suggested, but these are either proprietary
or hardware-dependent [7, 6].

In order to improve the network I/O performance, usually a
paravirtualized abstraction layer is exposed to the device
driver running in the virtual machine. Then the device
driver explicitly uses this abstraction layer instead of access-
ing the original I/O space. This sacrifices the transparency
of whether the software knows it runs on a real machine or
a virtual machine, but can improve the network I/O per-
formance avoiding hardware emulation. It is desirable to
use the standardized abstraction layer to guarantee porta-
bility and reliability; otherwise, we would have to modify
or newly implement the device driver for different Virtual
Machine Monitors (VMMs) and have to manage different
versions of device driver.

In this paper, we aim to design and implement the vir-
tio driver for RTEMS [2], a Real-Time Operating System
(RTOS) used in spacecrafts and satellites. virtio [17] is the
standardized abstraction layer for paravirtualized I/O de-



vices and is supported by several well-known VMMs, such as
KVM [8] and VirtualBox [1]. To the best of our knowledge,
this is the first literature that presents detail design issues
of the virtio front-end driver for RTOS. Thus, our study
can provide insight into design choices of virtio for RTOS.
The measurement results clearly show that our virtio can
achieve comparable performance to the virtio implemented
in Linux. We also demonstrate that our implementation can
reduce memory consumption without sacrificing the network
bandwidth.

The rest of the paper is organized as follows: In Section
2, we give an overview of virtualization and virtio. We also
discuss related work in this section. In Section 3, we describe
our design and implementation of virtio for RTEMS. The
performance evaluation is done in Section 4. Finally, we
conclude this paper in Section 5.

2. BACKGROUND
In this section, we give an overview of virtualization and
describe virtio, the virtualization standard for I/O devices.
In addition, we discuss the state-of-the-art for network I/O
virtualization.

2.1 Overview of Virtualization and virtio
The software that creates and runs the virtual machines is
called VMM or hypervisor. The virtualization technology is
generally classified into full-virtualization and paravirtual-
ization. The full-virtualization allows legacy operating sys-
tem to run in virtual machine without any modifications.
To do this, VMMs of full-virtualization usually perform bi-
nary translation and emulate every detail of physical hard-
ware platforms. KVM and VirtualBox are examples of full-
virtualization VMMs. On the other hand, VMMs of paravir-
tualization provide guest operating systems with program-
ming interfaces, which are similar to the interfaces provided
by hardware platforms but much simpler and lighter. Thus,
the paravirtualization requires modifications of guest oper-
ating systems and can present better performance than full-
virtualization. Xen [3] and XtratuM [12] are examples of
paravirtualization VMMs.

virtio is the standard for virtual I/O devices. It was initially
suggested by IBM [17] and recently became an OASIS stan-
dard [18]. The virtio standard defines paravirtualized in-
terfaces between front-end and back-end drivers as shown in
Fig. 1. The paravirtualized interfaces include two virtqueues
to store send and receive descriptors. Because virtqueues are
located in a shared memory between front-end and back-end
drivers, the guest operating system and VMM can directly
communicate each other without hardware emulation. Many
VMMs, such as KVM, VirtualBox, and XtratuM, support
virtio or its modification. General-purpose operating sys-
tems, such as Linux and Windows, implement the virtio
front-end driver.

2.2 Related Work
There has been significant research on network I/O virtual-
ization. The most of existing investigations are, however, fo-
cusing on the performance optimization for general-purpose
operating systems [20, 15, 22, 16, 4]. Especially, the ap-
proaches that require supports from network devices are not

Figure 1: virtio.

suitable for embedded systems, because their network con-
trollers are not equipped with sufficient hardware resources
to implement multiple virtual network devices. Though
there is an architectural research on efficient network I/O
virtualization in the context of embedded systems [6], it
also highly depends on the assist from network controller.
The software-based approach for embedded system has been
studied in a very limited scope that does not consider the
standardized interfaces for network I/O virtualization [7].

Compared to existing research, virtio can be differentiated
in that it does not require hardware support and can be
more portable [17, 18]. The studies for virtio have mainly
dealt with the back-end driver [11, 14]. However, there are
several additional issues for the front-end driver on RTOS
due to inherent structural characteristics of RTOS and the
resource constraint of embedded systems. In this paper, we
focus on the design and implementation issues of the virtio
front-end driver for RTOS.

3. VIRTIO FOR RTEMS
In this section, we suggest the design of virtio front-end
driver for RTEMS. Our design can efficiently handle hard-
ware events generated by the back-end driver and mitigate
memory consumption for network buffers. We have imple-
mented the suggested design on the experimental system
that runs RTEMS (version 4.10.2) over the KVM hypervi-
sor as described in Section 4.1, but it is general enough to
apply to other system setups.

3.1 Initialization
The virtio network device is implemented as a PCI device.
Thus, the front-end driver obtains the information of the vir-
tual network device through PCI configuration space. Once
the registers of the virtio device are found in the configu-
ration space, the driver can access the I/O memory of the
virtio device by using the Base Address Register (BAR). The
virtio header, which has the layout shown in Fig. 2, locates



Figure 2: virtio header in I/O memory.

in that I/O memory region and is used for initialization.

Our front-end driver initializes the virtio device through the
virtio header as specified in the standard. For example,
the driver decides the size of the virtqueues by reading the
value in Queue Size region. Then the driver allocates the
virtqueues in the guest memory area and lets the back-end
driver know the base addresses of the virtqueues by writing
these to the Queue Address region. Thus, both front-end
and back-end drivers can directly access the virtqueues by
means of memory referencing without expensive hardware
emulation.

The front-end driver also initializes the function pointers of
the general network driver layer of RTEMS with the actual
network I/O functions implemented by the front-end driver.
For example, the if_start pointer is initialized by the func-
tion that transmits a message through the virtio device.
This function adds a send descriptor to the TX virtqueue
and notifies it to the back-end driver. If the TX virtqueue
is full, this function intermediately queues the descriptor to
the interface queue described in Section 3.2.

3.2 Event Handling
The interrupt handler is responsible for hardware events.
However, since the interrupt handler is expected to finish
immediately relinquishing the CPU resources as soon as pos-
sible, the actual processing of hardware events usually takes
place later. In general-purpose operating systems, such de-
layed event handling is performed by the bottom half that
executes in interrupt context with a lower priority than the
interrupt handler. In regard to network I/O, demultiplex-
ing of incoming messages and handling of acknowledgment
packets are the examples that the bottom half performs.
However, RTOS usually do not implement a framework for
bottom half; thus, we have to use a high-priority thread as
a bottom half. The interrupt handler sends a signal to this
thread to request the actual event handling, where there
is a tradeoff between signaling overhead and size of inter-
rupt handler. If the bottom half thread handles every hard-
ware event aiming for a small interrupt handler, the signal-
ing overhead can increase in proportional to the number of
interrupts. For example, it takes more than 70 µs per in-
terrupt in RTEMS for signaling and scheduling between a
thread and an interrupt handler on our experimental system

Figure 3: Hardware event handling.

described in Section 4.1. On the other hand, if the interrupt
handler takes care of most of events to reduce the signaling
overhead, the system throughput can be degraded, because
interrupt handlers usually disable interrupts during its exe-
cution.

In our design, the interrupt handler is only responsible for
moving the send/receive descriptors between interface queues
and virtqueues when the state of virtqueues changes. Fig. 3
shows the sequence of event handling, where the interface
queues are provided by RTEMS and used to pass network
messages between the device driver and upper-layer proto-
cols. When a hardware interrupt is triggered by the back-
end driver, the interrupt handler first checks if the TX virtqu-
eue has available slots for more requests, and moves the
send descriptor that is stored in the interface queue waiting
for the TX virtqueue to become available (steps 1 and 2 in
Fig. 3). Then the interrupt handler sees whether the RX
virtqueue has used descriptors for incoming messages, and
moves these to the interface queue (steps 3 and 4 in Fig. 3).
Finally, the interrupt handler sends a signal to the bottom
half thread (step 5 in Fig. 3) so that the actual processing for
received messages can be processed later (step 6 in Fig. 3).
It is noteworthy that the interrupt handler handles multiple
descriptors at a time to reduce the number of signals. In
addition, we suppress the interrupts with the aid from the
back-end driver.

3.3 Network Buffer Allocation
On the sender side, the network messages are intermedi-
ately buffered in the kernel due to the TCP congestion and
flow controls. As the TCP window moves, the buffered mes-
sages are sent as many as the TCP window allows. Thus, a
larger number of buffered messages can easily fill the win-
dow size and can achieve higher bandwidth. On the receiver
side, received messages are also buffered in the kernel un-
til the destination task becomes ready. A larger memory
space to keep the received messages also can enhance the
bandwidth, because it increases the advertised window size
in flow control. Although a larger TCP buffer size is benefi-
cial for network bandwidth, the operating system limits the
total size of messages buffered in the kernel to prevent the
messages from exhausting memory resources. However, we
have observed that the default TCP buffer size of 16 KByte
in RTEMS is not sufficient to fully utilize the bandwidth
provided by Gigabit Ethernet. Therefore, in Section 4.2,



Figure 4: Controlling the number of preallocated
receive buffers.

we heuristically search the optimal size of the TCP buffer
that promises high bandwidth without excessively wasting
memory resources.

Moreover, we control the number of preallocated receive
buffers (i.e., mbuf ). The virtio front-end driver is supposed
to preallocate a number of receive buffers that matches the
RX virtqueue, each of which occupies 2 KByte of memory.
The descriptors of the preallocated buffers are enqueued at
the initialization phase so that the back-end driver can di-
rectly place incoming messages in those buffers. This can
improve the bandwidth by reducing the number of inter-
rupts, but reserved memory areas can waste memory re-
sources. Therefore, it is desirable to size the RX virtqueue
based on the throughput of the front and back-end drivers.
If the front-end driver can process more messages than the
back-end driver, we do not need a large number of preallo-
cated receive buffers. However, we need a sufficient number
of buffers if the front-end driver slower than the back-end
driver. The back-end driver of KVM requires 256 preallo-
cated receive buffers, but we have discovered that 256 buffers
are excessively large for Gigabit Ethernet as discussed in
Section 4.2.

Fig. 4 shows how we control the number of preallocated re-
ceive buffers. The typical RX virtqueue has the used ring
and available ring areas, which store descriptors for used
and unused preallocated buffers, respectively. Our front-end
driver introduces the empty ring area to the RX virtqueue
in order to limit the number of preallocated buffers. At the
initialization phase, we fill the descriptors with preallocated
buffers until desc_head_idx reaches to the threshold defined
as sizeof(virtqueue)−sizeof(empty ring). Then, whenever
the interrupt handler is invoked, it enqueues the descriptors
of new preallocated buffers as many as vring_used.idx −
used_cons_idx (i.e., size of used ring). The descriptors in
the used ring are retrieved by the interrupt handler as men-
tioned in Section 3.2. Thus, the size of empty ring is con-
stant. We show the detail analysis of tradeoff between the
RX virtqueue size and network bandwidth in Section 4.2.

4. PERFORMANCE EVALUATION
In this section, we analyze the performance of our design
suggested in the previous section. First, we measure the im-
pact of network buffer size on network bandwidth. Then, we
compare the bandwidth and latency of our implementation
with those of Linux.

Figure 5: Experimental System Setup.

4.1 Experimental System Setup
We implemented the suggested design in RTEMS version
4.10.2. The mbuf space was configured in huge mode so
that it is capable of preallocating 256 mbufs for the RX
virtqueue. We measured the performance of the virtio on
two nodes that were equipped with Intel i5 and i3 proces-
sors, respectively, as shown in Figure 5. The Linux version
3.13.0 was installed to the former, and we installed the Linux
version 3.16.6 on the other node. The two nodes are con-
nected directly through Gigabit Ethernet.

We ran the ttcp benchmarking tool to measure the network
bandwidth with 1448 Byte messages, which is the maximum
user message size that can fit into one TCP segment over
Ethernet. We separately measured the send bandwidth and
receive bandwidth of virtio by running a virtual machine
only on the i5 node with KVM. We reported the bandwidth
on the i3 node that ran Linux without virtualization. The
intention behind such experimental setup is to measure the
performance with the real timer because the virtual timer
in virtual machines is not accurate [9].

4.2 Impact of Network Buffer Size
As mentioned in Section 3.3, we analyzed the impact of net-
work buffer size on bandwidth. Fig. 6 shows the variation
of send bandwidth with different sizes of the TCP buffer.
We can observe that the bandwidth increases as the kernel
buffer size increases. However, the bandwidth does not in-
crease anymore after 68 KByte of TCP buffer size, because
68 KByte is sufficient to fill the network pipe of Gigabit
Ethernet. Fig. 7 shows the experimental results for receive
bandwidth, which also suggests 68 KByte as the minimum
buffer size for the maximum receive bandwidth. Thus, we
increased the TCP buffer size from 16 KByte to 68 KByte
for our virtio.

We also measured the network bandwidth varying the size
of the RX virtqueue as shown in Fig. 8. This figure shows
that the network bandwidth increases until the virtqueue
size becomes only 8. Thus, we do not need more than 8
preallocated buffers for Gigabit Ethernet though the default
virtqueue size is 256.

In summary, we increased the in-kernel send and receive
TCP buffer sizes from 16 KByte to 68 KByte, which requires
additional memory resources of 104 KByte (= (68−16)×2)
for higher network bandwidth. However, we reduced the
number of preallocated receive buffers from 256 to 8 without
sacrificing the network bandwidth, which saved 496 KByte
(= 256 × 2 − 8 × 2) of memory, where the size of mbuf is
2 KByte as mentioned in Section 3.3. Thus, we saved 392



Figure 6: Tradeoff between TCP buffer size and send
bandwidth.

Figure 7: Tradeoff between TCP buffer size and re-
ceive bandwidth.

KByte (= 496− 104) in total while achieving the maximum
available bandwidth over Gigabit Ethernet.

4.3 Comparison with Linux
We compared the performance of RTEMS-virtio with that of
Linux-virtio to see if our virtio can achieve comparable per-
formance to the optimized one for general-purpose operating
system. As shown in Fig. 9, the unidirectional bandwidth
of RTEMS-virtio is almost the same with that of Linux-
virtio, which is near the maximum bandwidth the physical
hardware can provide in one direction. Thus, these results
show that our implementation can provide quite reasonable
performance with respect to bandwidth.

We also measured the round-trip latency in a way that two
nodes send and receive the same size message in a ping-
pong manner repeatedly for a given number of iterations.
We reported the average, maximum, and minimum laten-
cies for 10,000 iterations. Fig. 10 shows the measurement
results for 1 Byte and 1448 Byte messages. As we can see in
the figure, the average and minimum latencies of RTEMS-
virtio are comparable to those of Linux-virtio. However, the
maximum latency of RTEMS-virtio is significantly smaller
than that of Linux-virtio (the y-axis is log scale) meaning
RTEMS-virtio has a lower jitter. We always observed the

Figure 8: Tradeoff between RX virtqueue size and
receive bandwidth.

Figure 9: Comparison of bandwidth.

maximum latency in the first iteration of every measure-
ment for both RTEMS and Linux. Thus, we presume that
the lower maximum latency of RTMES is due to its smaller
working set.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we have suggested the design of the virtio
front-end driver for RTEMS. The suggested device driver
can be portable across different Virtual Machine Monitors
(VMMs) because our implementation is compliant with the
virtio standard. The suggested design can efficiently han-
dle hardware events generated by the back-end driver and
can reduce memory consumption for network buffers, while
achieving the maximum available network bandwidth over
Gigabit Ethernet. The measurement results have showed
that our implementation can save 392 KByte of memory
and can achieve comparable performance to the virtio im-
plemented in Linux. Our implementation also has a smaller
jitter of latency than Linux thanks to smaller working set of
RTEMS. In conclusion, this study can provide insights into
virtio from the viewpoint of the RTOS. Furthermore, the
discussions in this paper can be extended to apply to other
RTOS running in virtual machine to improve the network
performance and portability.



Figure 10: Comparison of latency.

As future work, we plan to measure the performance of our
virtio on a different VMM, such as VirtualBox, to show
that our implementation is portable across different VMMs.
Then we will release the source code. In addition, we in-
tend to extend our design for dynamic network buffer sizing
and measure the performance on real-time Ethernet, such
as AVB.
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