
A network of ontologies for the integration of planning

and scheduling activities in batch process industries

Marcela Vegetti 1, Gabriela Henning
2

1 INGAR(CONICET/UTN), Avellaneda 3657, Santa Fe 3000, Argentinta

mvegetti@santafe-conicet.gov.ar

2
 INTEC (CONICET,UNL), Ruta Nacional 168, km 461,5, Santa Fe 3000, Argentina

ghenning@intec.unl.edu.ar

Abstract. In the last decades, the integration of informatics applications sup-

porting planning, scheduling and control has been a serious concern of the in-

dustrial community. Many standards have been developed to tackle this issue

by addressing the exchange of data between the scheduling function and its

immediate lower and upper levels in the planning pyramid. However, a more

comprehensive approach is required to tackle integration problems, since this

matter entails much more than data exchange. So, this article presents an onto-

logical framework that provides the foundations to reach an effective interoper-

ability among the various applications linked to scheduling activities.

1 Introduction

Despite over twenty years of research in batch scheduling, advanced scheduling sup-

port systems are not very common in the chemical industry yet. In addition, most of

the available commercial systems are not based on the solution methodologies that

academia has developed. One of the reasons why academic approaches are not adopt-

ed in industry is the fact that decision support tools do not integrate with the enter-

prise and manufacturing applications because they rely upon quite different

knowledge representations. In the last decades, the integration of informatics applica-

tions supporting planning, scheduling and control has been a serious concern of the
industrial community. The ISA-88 [1] and ISA-95 [2] standards have been developed

to tackle this issue by addressing the exchange of data between the scheduling func-

tion and its immediate lower and upper levels in the planning pyramid. However, a

more comprehensive approach is required to address integration problems, since this

matter entails much more than data exchange. In last decade, ontologies have been

considered an effective solution to interoperability problems in many domains. There-

fore, this article presents an ontological framework that provides the foundations to

reach an effective interoperability among the various applications linked to schedul-
ing activities, focusing on one of the ontologies of such framework.

The paper is organized as follows. Section 2 points out some of the problems of

dealing with multiple knowledge representations in the scheduling domain. Section 3

introduces the ontological approach that is proposed to address integration problems.

By means of example, Section 4 describes the ontology that was developed to formal-

ize the Resource Task Network (RTN) [3] model, which is one of the components of

the ontology network that is proposed in this contribution. The proposed formaliza-

tion is a definitional extension of the Process Specification Language (PSL) [4]. Fi-

nally, section 5 presents some concluding remarks.

2 Different knowledge representations in the scheduling field

Many academic approaches addressing scheduling problems resort to intermediate

representations, like the state-task (STN) or resource-task (RTN) networks (See Figs.

1 and 2 of [5]), before developing the mathematical model that indeed solves the

problem. However, this representation does not have a direct mapping to the master

data that is usually employed in industry. Thus, the human scheduler has to manually
create the STN/RTN graphical models from data that is spread in different tables of

the enterprise databases.

On the other hand, in the industrial domain, the most important input for the

scheduling problem is the ISA-88 master recipe, which provides the set of data that

uniquely defines the production requirements of a specific product batch. Recipes are

recursive structures containing five components: Header, Formula, Procedure,

Equipment requirements and Other Information. See for example Fig. 1, which de-

picts the master recipes of P1 and P2, which are the final products of the STN shown
in Fig. 2 of [5]. Fig. 1 shows that the procedure component of the P1 master recipe is

defined in terms of the T2, T1 and T3 operations. The INT3 recipe entity is also

shown in Fig. 1 and the ones corresponding to the other intermediates can be found in

[6]. An analysis of Fig. 1, the material in [6], along with Figs. 1 and 2 of [5] shows

that these recipe representations are quite different and that a direct mapping is not

possible. On top of the recipe information, the scheduling problem needs additional

input data, such as demands to be fulfilled, plant topology with unit features, etc. This

last type of information is not represented neither in the STN/RTN graphs nor in the
ISA-88 recipe model. Usually, industry specifies it in the so called physical model

proposed by ISA-88, while in academia it is handled in an informal way that is not

machine procesable and can lead to misinterpretations.

Having all this input information, a mathematical model is built and then solved.

The resulting production schedule needs to be communicated to the adjacent levels in

the planning pyramid: (i) to the lower process control layer to materialize batch exe-

cution and (ii) to the upper production planning and control (PPC) level for plan man-

agement activities. In practice, the results included in the solver output file need to be
translated into the control recipe (the one that according to ISA-88 standard is em-

ployed by the control system to perform batch execution) and into the operations

schedule, an explicit representation of the schedule according to the ISA-95 standard.

As a result, it can be seen that in order to perform scheduling activities and to articu-

late them within the planning pyramid, several knowledge representations and models

need to interplay. For instance, to transform a given master recipe into a control one,

the procedure that is conceptualized in Fig. 2 would need to be executed (actually,

such an approach was never made explicit by researchers devoted to the industrial
scheduling field and it is presented in this contribution). Currently, the translation

from one representation to another is manually done, in the few cases it is indeed

carried out. In fact, none of the academic proposals take into account the automatic

translation of the solver output file into representations that are useful from an indus-

trial point of view, i.e. control recipes and explicit schedule representations. In addi-

tion to the manual translation workload, these heterogeneous data models employ

distinct terms to refer to the same concepts. Besides these semantic issues, since the
models are not formal, they cannot be interpreted by a computer and can also be am-

biguous. Moreover, an analysis of the ISA-88 and ISA-95 standards [7] reveals some

overlappings on the information and activities handled by them (e.g. product defini-

tion vs. recipe specification; equipment capability vs. physical model), which disclos-

es some collision points. The problems pointed out in the previous paragraphs are

some of the difficulties preventing the integration of scheduling activities within the

planning pyramid and, more specifically, precluding the adoption of advanced sched-

uling approaches in industry.

Fig. 1. Recipe entities for products P1, P2 and INT3

Fig. 2. Data manipulation and model translation associated with scheduling

3 Ontological approach that supports scheduling activities

In order to tackle the problems posed in the previous section an ontological approach

is addressed in this contribution. Following the interlingua approach [8], this contribu-
tion proposes the construction of a network of ontologies (see Fig. 3) that has the

Schedule Reference Ontology (SRO) as a common vocabulary. This network also

contains local ontologies that formalize the different sources of information support-

ing scheduling activities. Specifically, it contains the ontologies of the ISA-88 and

ISA-95 standards, the STN/RTN representations, the mathematical programming

models (whenever MILP/MINLP-based solution approaches are pursued), etc. The

implementation of this ontology network requires the formalization (triangles in Fig.

3), with a previous conceptualization in certain cases (diamonds in Fig.3), of the vari-
ous information sources. Moreover, the development of ontology alignment agents

(circles in Fig. 3), which map concepts of the local ontologies to their definitions in

the SRO common vocabulary, is also required. This core ontology plays a central role

in the network, acting as a bridge between the different ontologies in the net. The

development of the proposed network of ontologies is the starting point for the auto-

matic construction and translation of models that are employed during the scheduling

activities, as well as for the correct exchange of information among the scheduling

applications and the other manufacturing applications with which they interplay.
Some work has been done by the authors in relation to the formalization of ISA-88

standard [7,9]. In this article, the conceptualization and formalization of the RTN is

addressed.

Fig. 3. The proposed network of ontologies

4 RTN conceptualization and formalization

The approach that has been followed to formalize the RTN model is to develop a
definitional extension of PSL (Process Specification Language)[4]. The aim of PSL is

to create a process specification language to facilitate the complete and correct ex-

change of process information among manufacturing applications. PSL is structured

in two main layers: core theories and definitional extensions. Fig. 4 shows the PSL

theories and extensions that are required for the RTN extension proposed in this con-

tribution. The Core Theory is the kernel of PSL since it defines its basic concepts,

which are Activity, Object and Timepoint. These three concepts are used in almost all

theories and/or definitional PSL extensions. The Outer Core theory groups the theo-

ries related to Subactivities, Occurrence Trees, Activity Occurrence, Discrete State,

Atomic and Complex Activities. All of them require the concepts that are defined in

the Core theory. The Resource Requirements theory uses the Core and the Outer Core
theories to define the set of axioms that constrains the definition of the resource re-

quirements of an activity. All these theories become the foundation for the definition

of several extensions. In particular, the Processor Activity [10] and Resource Roles

[11] definitional extensions are required for the specification of the RTN extension to

be presented in the next two sections.

Fig. 4. Parts of PSL that are required by the RTN extension

The RTN model is based on two fundamental concepts: resources and tasks. A task

is an operation with a given duration that can consume and generate resources [12].
According to Castro et al. [3], the concept of resource is entirely general and includes

all entities that are involved in the process steps, such as materials, processing and

storage equipment, personnel, as well as utilities (steam, cooling water, etc.).

The proposed extension specifies the definition of the Task and Resource concepts

as well as some axioms that constrain these definitions in the domain of RTN. In this

proposal the Common Logic implementation [13] of PSL was chosen and therefore,

the proposed extension has been implemented in this language.

4.1 Resource definition

The Resource Roles extension (RRe) [11] axiomatizes the fundamental intuitions

about resources. According to this extension an Object is a resource only with respect

to the role that it plays in some activity that requires the Object. Therefore, this exten-

sion does not axiomatize any other properties of resources [14].

In RTN the concept of resource includes all the entities that are involved in the

process steps [3]. In this sense this definition is similar to the resource concept that is

specified in PSL. However, in RTN, resources can be specialized in materials (raw

materials, intermediate ones, and final products), processing and storage equipment,

manpower and utilities. Therefore, the proposed formalization specifies this taxonomy.

The proposed RTN uses the RRe definitions to specify the different resources that are

involved in the definition of an RTN model.

Definition 1: Every resource ?r is either a material, a utility, a storage_unit, a pro-

cessing_unit or personnel.

(forall (?r) (iff (resource ?r)

 (or (material ?r)

 (storage_unit ?r)

 (processing_unit ?r)

 (utility ?r)

 (personnel ?r))))

Definition 2: A resource ?m is a material if and only if ?m is an input material or

output material of at least one task ?t. Both, input_material and output_material are

definitions belonging to Processor Activity extension [10]. This extension states that

an object ?m is an input material for an activity ?t if and only if ?t is a processor activ-

ity which consumes or modifies ?m. Similarly, an object ?m is an output material for

an activity ?t if and only if ?t is a processor activity which produces or modifies ?m.

(forall (?m) (iff (material ?m)

 (exists (?t) (and (task ?t) (or

 (input_material ?m ?t)

 (output_material ?m ?t))))))

Definition 3: A material ?m is a raw material if ?m participates as an input material in

at least one task ?t1 and there is no task in which ?m is an output material

(forall (?m)(iff (raw_material ?m) (and

 (material ?m)

 (exists (?t1) (and (task ?t1)

 (input_material ?m ?t1)))

 (not (exists (?t2) (and (task ?t2)

 (output_material ?m ?t2)))))))

Definition 4: A material ?m is an intermediate material if ?m participates both as an

input_material in at least one task ?t1 and as an output_material in at least another

task ?t2.

(forall (?m) (iff (intermediate_material ?m)

(and (material ?m)

 (exists (?t1 ?t2) (and (task ?t1) (task ?2)

 (input_material ?m ?t1)

 (output_material ?m ?t2)

 (<> ?t1 ?t2))))))

Definition 5: A material ?m is a final product if ?m does not participate as in-

put_material in any task and is an output_material in at least one task.

(forall (?m) (iff (final_product ?m)

 (and (material ?m)

 (exists (?t1)(task ?t1)(output_material ?m ?t1))

 (not (exists (?t2)(task ?t2)(input_material ?m ?t2))))))

Definition 6: A dedicated_storage_unit is a storage_unit that can only store a unique

material.

(forall (?dsu ?m1 ?m2)

 (iff (dedicated_storage_unit ?dsu)

 (and (material ?m1) (material ?m2)

 (can_store ?dsu ?m1)(can_store ?dsu ?m2)

 (= ?m1 ?m2))))

Definition 7: A shared storage unit is a storage_unit that can store different materials

(forall (?ssu)

(iff (shared_storage_unit ?ssu) (exists (?m1 ?m2)

 (if (and (can_store ?ssu ?m1)(can_store ?ssu ?m2)

 (<> ?m1 ?m2))))))

Definition 8: A processing_unit is a reusable or possible_reusable resource that can

perform at least one task.

(forall (?pu) (iff (processing_unit ?pu)

 (exist (?t) (and (or (reusable ?pu ?t)

 (possibly_reusable ?pu ?t))

 (can_perform ?pu ?t)))))

The definitions of reusable or possible_reusable resources are stated in RRe [11]. A

resource ?r is reusable (possible_reusable) by an activity ?a if any other activity that

also requires ?r is still possible to be performed after ?a completes its occurrence, in

every (some) possible future.

An example of a reusable resource is a processing unit that does not require set-

up/changeover between activities. As soon as one activity occurs, it is always possible

to execute the next activity. In contrast, a possibly reusable resource is a processing

unit that requires some setup/changeover between different activities. After the first

activity occurs, it is available for the other activity, but only if the setup/activity activ-

ity occurs first.

Definition 9: A utility is a reusable resource that acts as a service or commodity hav-

ing a limited capacity

(forall (?ut) (iff (?utility ?ut)

 (exists (?t ?q) (and (reusable ?ut ?t)

 (max_capacity ?ut ?q)))))

4.2 Task definition

The other main concept of RTN model is task. This section deals with the definition

of this important concept and with the specification of a set of axioms that constrains

it.

Definitions 10-12: a task is a processor activity that has at least one input_material

and at least one output_material, which are consumed and created, respectively, in

given quantities.

(forall (?t) (iff (task ?t)(exists (?m ?m2 ?q1 ?q2)

 (and (processor_activity ?t)

 (input_material_demand ?m ?t ?q1)

 (output_material_generation ?m2 ?t ?q2)))))

(forall (?m ?t ?q1)(iff (input_material_demand ?m ?t ?q1)

 (and (material ?m) (task ?t) (input_material ?m ?t))))

(forall (?m ?t ?q1)

 (iff (output_material_generation ?m ?t ?q1)

 (and (material ?m) (task ?t)(output_material ?m ?t))))

The Processor Activity extension of PSL [10] defines a processor_activity as "an

activity which uses some set of resources, consumes or modifies some other set of

resources, and produces or modifies a set of objects."

A set of axioms is also developed to represent constraints on the RTN ontology. The-

se axioms make coherent the concepts in the considered engineering field.

Axiom 1: Every task ?t is related to one or more processing units in which a task oc-

currence can be performed.

(forall (?t) (if (task ?t)(exists (?pu)

 (and (processing_unit ?pu)

 (can_perform ?pu ?t)))))

Axiom 2: Every task has bounds in the size of the batch that it can handled in each

processing unit. These limits are indicated by the parameters min and max batch size.

Both parameters should be expressed in the same unit of measure, but due space lim-

its the specification of this constraint, which is indicated by the legal_batch_size

expression, is not shown.

 (forall (?t) (if (task ?t) (exists (?pu ?maxbs ?minbs)

 (and (processing_unit ?pu) (can_perform ?pu ?t)

 (max_batch_size ?t ?pu ?maxbs)

 (min_batch_size ?t ?pu ?minbs)

 (legal_batch_size ?maxbs ?minbs)))))

Axiom 3: The duration of each task ?t depends on the processing unit ?pu in which it

will be executed. There are two alternative ways of specifying the task duration. On

the one hand, the duration is represented by a unique parameter (?fixd). On the other

hand, two parameters are used: a fixed duration (?fixd) and a variable duration

(?vard), which depends on the batch size. When using two parameters for describing

the task duration, some constraints are imposed in the unit of measures of both pa-

rameters. These constraints are specified in the definition of the legal_duration ex-

pression. However, due to the lack of space, this specification is not shown in this

article.

(forall (?t) (if (task ?t)

 (or (exists (?pu ?fixd)(fixed_durantion ?t ?pu ?fixd))

 (exists (?pu ?fixd ?vard)

 (and (fixed_durantion ?t ?pu ?fixd)

 (variable_duration ?t ?pu ?vard)

 (legal_duration ?fixd ?vard))))))

Axiom 4: The utility requirement of a task in a given processing unit is expressed

using two parameters: fixed and variable amount. The unit of measure of both param-

eters should be consistent. This restriction is specified in the definition of le-

gal_amount expression, which is not shown in this article for space reasons.

(forall (?t ?ut)

 (if(and (task ?t)(utility ?ut)(require ?t ?ut))

 (exists (?fixa ?vara)

 (and (fixed_amount ?t ?pu ?fixa)

 (variable_amount ?t ?pu ?vara)

 (legal_amount ?fixa ?vara)))))

Axiom 5: A task occurrence (an activity occurrence) ?tocc has to be executed in a

processing unit ?pu that is related to its corresponding task ?t and its size in this spe-

cific ?pu has to be between the max and min batch size specified for ?t

(forall (?tocc)

 (iff (occurrence_of ?tocc ?t)

 (exist (?t ?pu ?q ?maxbs ?minbs) (and

 (task ?t) (processing_unit ?pu)

 (can_perform ?t ?pu) (executed_in ?tocc ?pu)

 (size ?tocc ?pu ?q)

 (max_batch_size ?t ?pu ?maxbs)

 (min_batch_size ?t ?pu ?minbs)

 (and (>= ?q ?minbs)(<= ?q ?maxbs))))))

5 Conclusions

Ontologies support interoperability by providing semantic terminology in a computer
understandable format. This article proposes the definition of a network of ontologies

to solve the interoperability problems associated with the execution of scheduling

activities and their interplay with other functions within the Planning pyramid. This

ontology network, whose architecture is presented in this contribution, is the starting

point for the automatic construction and translation of models that are employed dur-

ing the scheduling activities. In addition, one of the ontologies of this network is in-

troduced along with its implementation in common logic as a definitional extension of

PSL.

6 Acknowledgments

The authors acknowledge the financial support received from CONICET (PIP

11220110100906 and PIP 11220110101145), ANPCyT (PICT-2013 1310), UNL (PI

CAI+D 2011) and UTN (PID 25-O156).

7 References

1. ANSI/ISA–88.00.01: Batch Control Part 1: Models and Terminology, 2010.

2. ANSI/ISA-95.00.01-2000: Enterprise-Control System Integration. Part 1: Models and ter-

minology, 2000.

3. Castro, P.M., Barbosa-Póvoa, A.P., Matos, H.A. (2003). Optimal Periodic Scheduling of

Batch Plants Using RTN-Based Discrete and Continuous-Time Formulations: A Case

Study Approach, Ind. Eng. Chem. Res., 42, 3346-3360.

4. ISO 18629-1 (2004) Process specification language -- Part 1: Overview and basic princi-

ples. ISO/TC 184/SC 4
5. Giménez, D. Henning, G., Marevelias, C. (2009). A novel network-based continuous-time

representation for process scheduling: Part I. Main concepts and mathematical formulation.

Computers and Chemical Engineering, 33, 1511–1528

6. VH (2014) SRO Data Repository https://sites.google.com/site/sropse2015/Last access:

30th November 2014.

7. Vegetti, M. and Henning, G. (2014). ISA-88 formalization. A step towards its integration

with the ISA-95 standard, FOMI 2014 Proceedings, Brasil.

8. Ciocoui, M., Gruninger, M., Nau, D. (2000). Ontologies for integrating Engineering Ap-

plications, Journal of Computing and Information Science and Engineering, 1, 12-22.

9. Vegetti, M. and Henning, G. (2015). An ontological approach to integration of planning

and scheduling activities in batch process industries, PSE/ESCAPE 2015 Proceedings,

Denmark.

10. National Institute of Standards and Technologies (2008). PSL ontology - Processor Ac-

tivities extension. Available on-line: http://www.mel.nist.gov/psl/psl-

ontology/part46/processor.html

11. National Institute of Standards and Technologies (2008). PSL ontology - Resource Roles

extension. Available on-line: http://www.mel.nist.gov/psl/psl-

ontology/part44/res_role.html

12. Wassick, J.M, Ferrio J. (2011). Extending the resource task network for industrial applica-

tions, Computers and Chemical Engineering 35, 2124– 2140

13. ISO/IEC 24707 (2007). Common Logic (CL): a framework for a family of logic-based

languages.

14. Schlenoff, C., Gruninger, M., Lee, J., (2000). The Essence of the Process Specification

Language. Transaction of the Society for Computer Simulation International, Vol. 16, N4.

