
Graph-based Modelling of Students’ Interaction Data from
Exploratory Learning Environments

Alexandra Poulovassilis
London Knowledge Lab

Birkbeck, Univ. of London
ap@dcs.bbk.ac.uk

Sergio Gutierrez-Santos
London Knowledge Lab

Birkbeck, Univ. of London
sergut@dcs.bbk.ac.uk

Manolis Mavrikis
London Knowledge Lab

UCL Institute of Education
m.mavrikis@lkl.ac.uk

ABSTRACT
Students’ interaction data from learning environments has
an inherent temporal dimension, with successive events be-
ing related through the“next event”relationship. Exploratory
learning environments (ELEs), in particular, can generate
very large volumes of such data, making their interpretation
a challenging task. Using two mathematical microworlds
as exemplars, we illustrate how modelling students’ event-
based interaction data as a graph can open up new querying
and analysis opportunities. We demonstrate the possibilities
that graph-based modelling can provide for querying and
analysing the data, enabling investigation of student-system
interactions and leading to the improvement of future ver-
sions of the ELEs under investigation.

Keywords
Exploratory Learning Environments, Interaction Data, Graph
Modelling

1. INTRODUCTION
Much recent research has focussed on Exploratory Learn-
ing Environments (ELEs) which encourage students’ open-
ended interaction within a knowledge domain, coupled with
intelligent techniques that aim to provide pedagogical sup-
port to ensure students’ productive interaction [9]. The data
gathered from students’ interactions with such ELEs pro-
vides a rich source of information for both pedagogical and
technical research, to help understand how students are us-
ing the ELE and how the intelligent support that it provides
may be enhanced to better support students’ learning.

In this paper, we consider how modelling students’ event-
based interaction data as a graph makes possible graph-
based queries and analyses that can provide insights into
the ways that students are using the affordances of the sys-
tem and the effects of system interventions on students’ be-
haviour. Our case studies are two intelligent ELEs: the
MiGen system, that aims to foster 11-14 year old students’

learning of algebraic generalisation [15]; and the iTalk2Learn
system that aims to support 8-10 year old students’ learning
of fractions [7]. Both systems provide students with math-
ematical microworlds in which they undertake construction
tasks: in MiGen creating 2-dimensional tiled models using
a tool called eXpresser and in iTalk2learn creating fractions
using the FractionsLab tool. In eXpresser, tasks typically re-
quire the construction of several models, moving from spe-
cific models involving specific numeric values to a general
model involving the use of one or more variables; in parallel,
students are asked to formulate algebraic rules specifying
the number of tiles of each colour that are needed to fully
colour their models. In FractionsLab, tasks require the con-
struction, comparison and manipulation of fractions, and
students are encouraged to talk aloud about aspects of their
constructions, such as whether two fractions are equivalent.

Both systems include intelligent components that provide
different levels of feedback to students, ranging from un-
solicited prompts and nudges, to low-interruption feedback
that students can choose to view if they wish. The aim
of this feedback is to balance students’ freedom to explore
while at the same time providing sufficient support to en-
sure that learning is being achieved [9]. The intelligent sup-
port is designed through detailed cognitive task analysis and
Wizard-of-Oz studies [13], and it relies on meaningful indica-
tors being detected as students are undertaking construction
tasks. Examples of such indicators in MiGen are ‘student
has made a building block’ (part of a model), ‘student has
unlocked a number’ (i.e. has created a variable), ‘student
has unlocked too many numbers for this task’; while ex-
amples of such indicators in FractionsLab are ‘student has
created a fraction’, ‘student has changed a fraction’ (numer-
ator or denominator), ‘student has released a fraction’ (i.e.
has finished changing it).

Teacher Assistance tools can subscribe to receive real-time
information relating to occurrences of indicators for each
student, and can present aspects of this information visu-
ally to the teacher [8]. Indicators are either task independent
(TI) or task dependent (TD). The former refer to aspects of
the student’s interaction that are related to the microworld
itself and do not depend on the specific task the student is
working on, while the latter require knowledge of the task
the student is working on, may relate to combinations of
student actions, and their detection requires intelligent rea-
soning to be applied (a mixture of case-based, rule-based and
probablistic techniques). Detailed discussions of MiGen’s TI

and TD indicators and how the latter are inferred may be
found in [8].

In this paper we explore how graph-based representation of
event-based interaction data arising from ELEs such as Mi-
Gen and FractionsLab can aid in the querying and analysis
of such data, with the aim of exploring both the behaviours
of the students in undertaking the exploratory learning tasks
set and the effectiveness of the intelligent support being
provided by the system to the students. Data relating to
learning environments has often been modelled as a graph
in previous work, for example in [10] for providing support
to moderators in e-discussion environments; in [16, 18] for
supporting learning of argumentation; in [17] for modelling
data and metadata relating to episodes of work and learning
in a lifelong learning setting; in [1] for learning path discov-
ery as students“navigate”through learning objects; in [3] for
recognising students’ activity planning in ELEs; and in [23]
for gaining better understanding of learners’ interactions and
ties in professional networks.

Previous work that is close to ours is the work on interac-
tion networks and hint generation [6, 21, 20, 4, 5], in which
the graphs used consist of nodes representing states within a
problem-solving space and edges representing students’ ac-
tions in transitioning between states. This approach targets
learning environments where students are required to select
and apply rules, and the interaction network aims to rep-
resent concisely information relating to students’ problem-
solving sequences in moving from state to state. Our focus
here differs from this in that we are using graphs to model
fine-grained event-based interaction data arising from ELEs.
In our graphs, nodes are used to represent indicator occur-
rences (i.e. events, not problem states) and edges between
such nodes represent the “next event” relationship. Also,
rather than using the information derived from querying and
analysing this data to automatically generate hints, our fo-
cus is on investigating how students are using the system
and the effects of the system’s interventions in order to un-
derstand how students interact with the ELEs and improve
their future versions.

2. GRAPH-BASED MODELLING
Figure 1 illustrates our Graph Data Model for ELE interac-
tion data. We see two classes of nodes: Event — represent-
ing indicator occurrences; and EventType — representing
different indicator types. The instances of the Event class
are occurrences of indicators that are detected or generated
by the system as each student undertakes a task. We see
that instances of Event have several attributes: dateTime:
the date and time of the indicator occurrence; userID: the
student it relates to; sessionID: the class session that the
student was participating in at the time; taskID: the taskID
that the student was working on; and constrID: the con-
struction that the student was working on1.

1The model in Fig. 1 focusses on the interaction data. The
full data relating to ELEs such as eXpresser and Fraction-
sLab would also include classes relating to users, tasks, ses-
sions and constructions; and attributes describing instances
of these classes, such as a user’s name and year-group, a
task’s name and description, a construction’s content and
description, and a session’s description and duration.

Event
dateTime
taskID
constrID
userID
sessionID

EventType

eventID
eventStatus
eventCat

occurrenceOf

next

Figure 1: Core Graph Data Model

There is a relationship ‘next’ linking an instance of Event
to the next Event that occurs for the same user, task and
session. There is a relationship ‘occurrenceOf’ linking each
instance of Event to an instance of the EventType class.

The instances of the EventType class include: startTask,
endTask, numberCreated, numberUnlocked, unlockedNum-
berChanged, buildingBlockMade, correctModelRuleCreated,
incorrectModelRuleCreated, interventionGenerated, interven-
tionShown, in the case of eXpresser (see [8] for the full list);
and startTask, endTask, fractionCreated, fractionChanged,
fractionReleased, inverventionShown, in the case of Frac-
tionsLab.

We see that instances of the EventType class have several
attributes, including:

• eventID: a unique numerical identifier for each type of
indicator;

• eventStatus: this may be -1, 0 or 1, respectively stat-
ing that an occurrence of this type of indicator shows
that the student is making negative, neutral or posi-
tive progress towards achieving the task goals; an addi-
tional status 2 is used for indicators relating to system
interventions;

• eventCat: the category into which this indicator type
falls; for example, startTask and endTask are task-
related indicators; interventionGenerated and inter-
ventionShown are system-related ones; numberCreated,
numberUnlocked, unlockedNumberChanged are number-
related; and fractionCreated, fractionChanged, frac-
tionReleased are fraction-related.

Figure 2 shows a fragment of MiGen interaction data con-
forming to this graph data model. Specifically, it relates to
the interactions of user 5 as he/she is working on task 2
during session 9. The user makes three constructions during
this task (with constrIDs 1, 2 and 3). The start and end
of the task are delimited by an occurrence of the startTask
and endTask indicator type, respectively — events 23041
and 33154. We see that the two events following 23041 re-
late to an intervention being generated and being shown to
the student (this is likely to be because the student was in-
active for over a minute after starting the task); following
which, the student creates a number — event 24115.

There are additional attributes relating to events, not shown
here for simplicity, capturing values relating to the student’s

23041

dateTime:
20150331091524
taskID:2
constrID:1
userID:5
sessionID:9

occurrenceOf

next 23921

dateTime:
20150331091637
taskID:2
constrID:1
userID:5
sessionID:9

23923

dateTime:
20150331091638
taskID:2
constrID:1
userID:5
sessionID:9

next

33154

dateTime:
20150331094453
taskID:2
constrID:3
userID:5
sessionID:9

intervention-
Generated

eventID:6001
eventStatus:2
eventCat:systemEv

eventID:6002
eventStatus:2
eventCat:systemEv

endTask

eventID:9999
eventStatus:0
eventCat:taskEv

intervention-
Shown

numberCreated

eventID:1006
eventStatus:1
eventCat:numberEv

24115

dateTime:
20150331091655
taskID:2
constrID:1
userID:5
sessionID:9

next

next

...

occurrenceOf

occurrenceOf

occurrenceOf

occurrenceOf

startTask

eventID:0
eventStatus:0
eventCat:taskEv

Figure 2: Fragment of Graph Data

constructions and information relating to the system’s in-
terventions. For example, for event 24115, the value of the
number created, say 5; for event 23921, the feedback strat-
egy used by the system to generate this intervention, say
strategy 8; and for event 23923, the content of the message
displayed to the user, say“How many green tiles do you need
to make your pattern?” and whether this is a high-level in-
terruption by the system or a low-level interruption that
the student can choose to view or not. Such information
can be captured through additional edges outgoing from an
event instance to a literal-valued node: 24115

value−−−→ 5, 23921
strategy
−−−−−−→ 8, 23932

message
−−−−−−→ “How many green tiles do you need

to make your pattern?”, 23932
level−−−→ “high”. Since graph data

models are semi-structured (and graph data therefore does
not need to strictly conform to a single schema), this kind
of heterogeneity in the data is readily accommodated.

Figure 3 similarly shows a fragment of FractionsLab inter-
action data, relating to the interactions of user 5 working
on task 56 during session 1. The user makes one construc-
tion during this task. We see events relating to the stu-
dent changing and ‘releasing’ a fraction. Following which
the system displays a message (in this case, it was a high-
interruption message of encouragement“Great! Well Done”).

We see from Figures 2 and 3 that the sub-graph induced by
edges labelled ‘next’ consists of a set of paths, one path for
each task undertaken by a specific user in a specific session.
The entire graph is a DAG (directed acyclic graph): there
are no cycles induced by the edges labelled ‘next’ since each
links an earlier indicator occurrence to a later one; while
the instances of EventType and other literal-valued nodes
can have only incoming edges. The entire graph is also a
bipartite graph, with the two parts comprising (i) the in-
stances of Event, and (ii) the instances of EventType and
the literal-valued nodes.

As a final observation, we note that Figures 1 – 3 adopt
a “property graph” notation (e.g. as used in the Neo4J
graph database, neo4j.com) in which nodes may have at-
tributes. In a “classical” graph data model, each attribute

344712

dateTime:
20150215091741
taskID:56
constrID:4
userID:5
sessionID:1

occurrenceOf

next

344758

dateTime:
20150215091828
taskID:56
constrID:4
userID:5
sessionID:1

344759

dateTime:
20150215091828
taskID:56
constrID:4
userID:5
sessionID:1

next

fractionChanged

eventID:1002
eventStatus:1
eventCat:sfractionEv

eventID:1003
eventStatus:1
eventCat:fractionEv

clickButton

eventID:3002
eventStatus:0
eventCat:taskEv

fractionReleased

interventionShown

eventID:6002
eventStatus:2
eventCat:systemEv

344760

dateTime:
20150215091832
taskID:56
constrID:4
userID:5
sessionID:1

next

next

occurrenceOf

occurrenceOf

occurrenceOf

occurrenceOf

startTask

eventID:0
eventStatus:0
eventCat:taskEv

344761

dateTime:
20150215091833
taskID:56
constrID:4
userID:5
sessionID:1

next

...

Figure 3: Fragment of Graph Data

of a node would be represented by an edge and its value by
a literal-valued node. So, for example, the information that
the taskID of event 23041 is 2 would be represented by an
edge 23041

taskID−−−−−→ 2. The query examples in the next section
assume this “classical” graph representation.

3. GRAPH QUERIES AND ANALYSES
Because the sub-graph induced by edges labelled ‘next’ con-
sists of a set of paths, the data readily lends itself to explo-
ration using conjunctive regular path (CRP) queries [2]. A
CRP query, Q, consisting of n conjuncts is of the form

(Z1, . . . , Zm)← (X1, R1, Y1), . . . , (Xn, Rn, Yn)

where each Xi and Yi is a variable or a constant, each Zi is
a variable that appears also in the right hand side of Q, and
each Ri is a regular expression over the set of edge labels.
In this context, a regular expression, R, has the following
syntax:

R := ε | a | | (R1.R2) | (R1|R2) |R∗ |R+

where ε denotes the empty string, a denotes an edge label,
denotes the disjunction of all edge labels, and the operators
have their usual meaning. The answer to a CRP query on a
graph G is obtained by finding for each 1 ≤ i ≤ n a binary
relation ri over the scheme (Xi, Yi), where there is a tuple
(x, y) in ri if and only if there is a path from x to y in G
such that: x = Xi if Xi is a constant; y = Yi if Yi is a
constant; and the concatenation of the edge labels in the
path satisfies the regular expression Ri. The answer is then
given by forming the natural join of the binary relations
r1, . . . , rn and finally projecting on Z1, . . . , Zm.

To illustrate, the following CRP query returns pairs of events
x, y such that x is an intervention message shown to the user
by the system and y indicates that the user’s next action –
in eXpresser – was to create a number (note, variables in
queries are distinguished by an initial question mark):

(?X,?Y) <- (?X,occurrenceOf,interventionShown),

(?X,next,?Y),

(?Y,occurrenceOf,numberCreated)

The result would contain pairs such as (23923,24115) from
Figure 2, demonstrating that there are indeed situations
where an intervention message displayed by the MiGen sys-
tem leads directly to the creation of a number by the student.

The following query returns pairs of events x, y such that
that x is an intervention message shown to the user by the
system and y is the user’s next action; the type of y is also
returned, through the variable ?Z:

(?X,?Y,?Z) <- (?X,occurrenceOf,interventionShown),

(?X,next,?Y),

(?Y,occurrenceOf,?Z)

The result would contain triples such as (23923,24115,num-
berCreated) from Figure 2 and (344760,344761,clickButton)
from Figure 3, allowing researchers to see what types of
events directly follow the display of an intervention mes-
sage. This would allow the confirmation or contradiction of
researchers’ expectations regarding the immediate effect of
intervention messages on students’ behaviours.

Focussing for the rest of this section on the data in Figure 2,
the following query returns pairs of events x, y such that x is
any type of event and y indicates that the user’s next action
was to unlock a number; the type of x is also returned,
through the variable ?Z:

(?X,?Y,?Z) <- (?X,occurrenceOf,?Z),

(?X,next,?Y),

(?Y,occurrenceOf,numberUnlocked)

The result would allow researchers to see what types of
events immediately precede the unlocking of a number (i.e.
the creation of a variable). This would allow confirmation
of researchers’ expectations about the design of the MiGen
system’s intelligent support in guiding students towards gen-
eralising their models by changing a fixed number to an ‘un-
locked’ one.

The following query returns pairs of events x, y such that
that x is an intervention generated by the system and y is
any subsequent event linked to x through a path comprising
one or more ‘next’ edges; the type of y is also returned,
through the variable ?Z:

(?X,?Y,?Z) <- (?X,occurrenceOf,interventionGenerated),

(?X,next+,?Y),

(?Y,occurrenceOf,?Z)

The result would contain triples such as (23921, 23923, inter-
ventionShown), (23921, 24115, numberCreated), ... (23921,
33154, endTask), allowing researchers to see what types of
events directly or indirectly follow the display of an interven-
tion message by the system. This would allow the confirma-
tion or contradiction of researchers’ expectations regarding
the longer-term effect of intervention messages on students’
behaviours.

We can modify the query to retain only pairs x, y that relate
to the same construction:

(?X,?Y,?Z) <- (?X,occurrenceOf,interventionGenerated),

(?X,constrID,?C), (?X,next+,?Y),

(?Y,constrlID,?C), (?Y,occurrenceOf,?Z)

The result would contain triples such as
(23921, 23923, interventionShown),
(23921, 24115, numberCreated),
(23921, 24136, numberUnlocked),
(23921, 24189, unlockedNumberChanged),
relating to construction 1 made by user 5 during session 9
for task 2 (two more events — 24136 and 24189 — relat-
ing to construction 1 have been assumed here, in addition
to 23923 amd 24115 shown in Figure 2, for illustrative pur-
poses). The results would not contain (23921,33154,end-
Task), since event 33154 relates to construction 3.

To show more clearly the answers to the previous query in
the form of possible event paths, we can use extended regular
path (ERP) queries [11], in which a regular expression can
be associated with a path variable and path variables can
appear in the left-hand-side of queries. Thus, for example,
the following query returns the possible paths from x to y:

(?X,?P,?Y,?Z) <-

(?X,occurrenceOf,interventionGenerated),

(?X,constrID,?C), (?X,next+:?P,?Y),

(?Y,constrID,?C), (?Y,occurrenceOf,?Z)

The result would contain answers such as
(23921, [next], 23923, interventionShown),
(23921, [next, 23923, next], 24115, numberCreated),
(23921, [next, 23923, next, 24115, next], 24136, numberUn-
locked),
(23921, [next, 23923, next, 24115, next, 24136, next], 24189,
unlockedNumberChanged).

The use of the regular expressions next and next+ in the
previous queries matches precisely one edge labelled ‘next’,
or any number of such edges (greater than or equal to 1),
respectively. However, for finer control and ranking of query
answers, it is possible to use approximate answering of CRP
and ERP queries (see [11, 17]), in which edit operations such
as insertion, deletion or substitution of an edge label can be
applied to regular expressions.

For example, using the techniques described in [11, 17], the
user can chose to allow the insertion of the label ‘next’ into
a regular expression, at an edit cost of 1. Submitting then
this query:

(?X,?P,?Y,?Z) <-

(?X,occurrenceOf,interventionGenerated),

(?X,constrID,?C), APPROX(?X,next:?P,?Y),

(?Y,constrID,?C), (?Y,occurrenceOf,?Z)

would return first exact answers, such as
(23921, [next], 23923, interventionShown). The regular ex-
pression next in the conjunct APPROX(?X,next:?P,?Y) would
then be automatically approximated to next.next, leading
to answers such as

(23921, [next, 23923, next], 24115, numberCreated)
at an edit distance of 1 from the original query. Following
this, the regular expression next.next would be automati-
cally approximated to next.next.next, leading to answers
such as
(23921, [next, 23923, next, 24115, next], 24136, numberUn-
locked)
at distance 2. This incremental return of paths of increas-
ing length can continue for as long as the user wishes, and
allows researchers to examine increasingly longer-term ef-
fects of intervention messages on students’ behaviours. It
would also be possible for users to specify from the outset a
minimum and maximum edit distance to be used in approx-
imating and evaluating the query, for example to request
paths encompassing between 2 and 4 edges labelled ‘next’.

Queries based on evaluating regular expressions over a graph-
based representation of interaction data, such as those above,
can aid in the exploration of students’ behaviours as they are
undertaking tasks using ELEs and the effectiveness of the
intelligent support being provided by the ELE. The query
processing techniques employed are based on incremental
query evaluation algorithms which run in polynomial time
with respect to the size of the database graph and the size
of the query and which return answers in order of increasing
edit distance [11]. A recent paper [19] gives details of an
implementation, which is based on the construction of an
automaton (NFA) for each query conjunct, the incremental
construction of a weighted product automaton from each
conjunct’s automaton and the data graph, and the use of
a ranked join to combine answers being incrementally pro-
duced from the evaluation of each conjunct. The paper also
presents a performance study undertaken on two data sets
— lifelong learning data and metadata [17] and YAGO [22].
The first of these has rather ‘linear’ data, similar to the in-
teraction data discussed here, while the second has ‘bushier’
connectivity. Query performance is generally better for the
former than the latter, and the paper discusses several pos-
sible approaches towards query optimisation.

In addition to evaluating queries over the interaction data,
by representing the data in the form of a graph it is possible
to apply graph structure analyses such as the following:

• path finding and clustering: this would be useful for
determining patterns of interest across a whole dataset,
or focussing on particular students, tasks or sessions
c.f. [4];

• average path length: this would be useful for determin-
ing the amount of student activity (i.e. the number of
indicator occurrences being generated per task) across
a whole dataset, or focussing on particular students,
tasks or sessions;

• graph diameter: to determine the greatest distance be-
tween any two nodes (which, due to the nature of the
data, would be event type nodes); this would be an in-
dication the most long-running and/or most intensive
task(s);

• degree centrality: determining the in-degree centrality
of event type nodes would identify key event types oc-
curring in students’ interactions; this analysis could be

Transition Matrix(Session 3)

s

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011
10141015

3002

3006

3007

3008

3009

5001

5002

5003

5004

6001

6002

6003
e

0.96342

0.00024384

Figure 4: Transitions between Event Types

applied across a whole dataset, or focussing on partic-
ular students, tasks or sessions;

• nodes that have a high probability of being visited on a
randomly chosen shortest path between two randomly
chosen nodes have high betweenness centrality; deter-
mining this measure for pairs of event type nodes (ig-
noring the directionality of the ‘occurrenceOf’ edges)
would identify event types that play key mediating
roles between other event types.

We have already undertaken some ad hoc analyses of in-
teraction data arising from classroom sessions using ELEs.
For example, Figure 4 shows the normalised incoming tran-
sitions for a 1-hour classroom session involving 22 students
using MiGen (in the diagram, s denotes the ‘startTask’ and
e the ‘endTask’ event types). Event types with an adja-
cent circle show transitions where this type of event occurs
repeatedly in succession. The thickness of each arrow or
circle indicates the value of the transition probability: the
thicker the line, the higher the probability. Red (light grey)
is used for probabilities < 0.2 and black for probabilities
≥ 0.2. We can observe a black arrow 3007 → 1005, indicat-
ing transitions from events of type 3007 (detection by the
system that the student has made an implausible building
block for this task) to events of type 1005 (modification of a
rule by the student). Such an observation raises a hypoth-
esis for more detailed analysis or further student observa-
tion, namely: “does the construction of an incorrect building
block lead students to self-correct their rules?”. Developing
a better understanding of such complex interaction can lead
to improvement of the system. For this particular example,
we designed a new prompt that suggests to students to first
consider the building block against the given task before
proceeding unnecessarily in correcting their rules. More ex-
amples of such ad hoc analyses are given in [14]. Represent-
ing the interaction data in graph form will allow more sys-
tematic, flexible and scalable application of graph-structure
algorithms such as those identified above.

4. CONCLUSIONS AND FUTURE WORK
We have presented a graph model for representing event-
based interaction data arising from Exploratory Learning
Environments, drawing on the data generated when students
undertake exploratory learning tasks with the eXpresser and

FractionsLab microworlds. Although developed in the con-
text of these systems, the model is a very general one and
can easily be used or extended to model similar data from
other ELEs.

We have explored the possibilities that evaluating regular
path queries over this graph-based representation might pro-
vide for exploring the behaviours of students as they are
working in the ELE and the effectiveness of the intelligent
support that it provides to them. We have also identified
additional graph algorithms that may yield further insights
about learners, tasks and significant indicators.

Planned worked includes transformation and uploading of
the interaction data sets gathered during trials and full class-
room sessions of the two systems into an industrial-strength
graph database such as Neo4J, following the graph model
presented in Section 2; followed by the design, implemen-
tation and evaluation of meaningful queries, analyses and
visualisations over the graph data, building on the work
presented in Section 3. Equipped with an appropriate user
interface, educational researchers, designers or even teach-
ers with less technical expertise could in this way explore
the data from their perspective. This has the potential to
lead to an improved understanding of interaction in this
context and to feed back to the design of the ELEs. We
see this approach very much in the spirit of “polyglot per-
sistence” (i.e. using different data storage methods to ad-
dress different data manipulation problems), and hence be-
ing used in conjunction with other EDM resources such as
DataShop [12]. Another direction of research is investigation
of how the flexible querying processing techniques for graph
data (including both query approximation and query relax-
ation) that have been developed in the context of querying
lifelong learners’ data and metadata [11, 17] might be ap-
plied or adapted to the much finer-granularity interaction
data described here and the more challenging pedagogical
setting of providing effective intelligent support to learners
undertaking exploratory tasks in ELEs.

Acknowledgments
This work has been funded by the ESRC/EPSRC MiGen
project, the EU FP7 projects iTalk2Learn (#318051) and
M C Squared (#610467). We thank all the members of
these projects for their help and insights.

5. REFERENCES
[1] N. Belacel, G. Durand, and F. LaPlante. A binary

integer programming model for global optimization of
learning path discovery. G-EDM, 2014.

[2] D. Calvanese and et al. Containment of conjunctive
regular path queries with inverse. KRR, pages
176–185, 2015.

[3] R. Dekel and K. Gal. On-line plan recognition in
exploratory learning environments. G-EDM, 2014.

[4] M. Eagle and T. Barnes. Exploring differences in
problem solving with data-driven approach maps.
EDM, 2014.

[5] M. Eagle, D. Hicks, B. Peddycord III, and T. Barnes.
Exploring networks of problem-solving interactions.
LAK, pages 21–30, 2015.

[6] M. Eagle, M. Johnson, and T. Barnes. Interaction

networks: Generating high level hints based on
network community clustering. EDM, 2012.

[7] B. Grawemeyer and et al. Light-bulb moment?:
Towards adaptive presentation of feedback based on
students’ affective state. IUI, pages 400–404, 2015.

[8] S. Gutierrez-Santos, E. Geraniou, D. Pearce-Lazard,
and A. Poulovassilis. Design of Teacher Assistance
Tools in an Exploratory Learning Environment for
Algebraic Generalization. IEEE Trans. Learn. Tech.,
5(4):366–376, 2012.

[9] S. Gutierrez-Santos, M. Mavrikis, and G. D. Magoulas.
A Separation of Concerns for Engineering Intelligent
Support for Exploratory Learning Environments. J.
Research and Practice in Inf. Tech., 44:347–360, 2013.

[10] A. Harrer, R. Hever, and S. Ziebarth. Empowering
researchers to detect interaction patterns in
e-collaboration. Frontiers in Artificial Intelligence and
Applications, 158:503, 2007.

[11] C. Hurtado, A. Poulovassilis, and P. Wood. Finding
top-k approximate answers to path queries. FQAS,
pages 465–476, 2009.

[12] K. Koedinger and et al. A data repository for the
EDM community: The PSLC datashop. Handbook of
Educational Data Mining, 43, 2010.

[13] M. Mavrikis and S. Gutierrez-Santos. Not all Wizards
are from Oz: Iterative design of intelligent learning
environments by communication capacity tapering.
Computers and Education, 54(3):641–651, 2010.

[14] M. Mavrikis, Z. Zheng, S. Gutierrez-Santos, and
A. Poulovassilis. Visualisation and analysis of
students’ interaction data in exploratory learning
environments. Workshop on Web-Based Technology
for Training and Education (at WWW), 2015.

[15] R. Noss and et al. The design of a system to support
exploratory learning of algebraic generalisation.
Computers and Education, 59(1):63–82, 2012.

[16] N. Pinkwart and et al. Graph grammars: An ITS
technology for diagram representations. FLAIRS,
pages 433–438, 2008.

[17] A. Poulovassilis, P. Selmer, and P. Wood. Flexible
querying of lifelong learner metadata. IEEE Trans.
Learn. Tech., 5(2):117–129, 2012.

[18] O. Scheuer and B. McLaren. CASE: A configurable
argumentation support engine. IEEE Trans. Learn.
Tech., 6(2):144–157, 2013.

[19] P. Selmer, A. Poulovassilis, and W. P.T. Implementing
flexible operators for regular path queries. GraphQ
(EDBT/ICDT Workshops), pages 149–156, 2015.

[20] V. Sheshadri, C. Lynch, and T. Barnes. InVis: An
EDM tool for graphical rendering and analysis of
student interaction data. G-EDM, 2014.

[21] J. Stamper, M. Eagle, T. Barnes, and M. Croy.
Experimental evaluation of automatic hint generation
for a logic tutor. Artificial Intelligence in Education,
pages 345–352, 2011.

[22] F. Suchanek, G. Kasneci, and G. Weikum. YAGO: a
core of semantic knowledge. WWW, 2007.

[23] D. Suthers. From contingencies to network-level
phenomena: Multilevel analysis of activity and actors
in heterogeneous networked learning environments.
LAK, 2015.

