
Bridging DBpedia Categories and DL-Concept
Definitions using Formal Concept Analysis

Mehwish Alam, Aleksey Buzmakov, Victor Codocedo, Amedeo Napoli

LORIA (CNRS – Inria Nancy Grand Est – Université de Lorraine)
BP 239, Vandoeuvre-lès-Nancy, F-54506, France

{firstname.lastname@loria.fr}

Abstract. The popularization and quick growth of Linked Open Data (LOD) has
led to challenging aspects regarding quality assessment and data exploration of
the RDF triples that shape the LOD cloud. Particularly, we are interested in the
completeness of data and its potential to provide concept definitions in terms of
necessary and sufficient conditions. In this work we propose a novel technique
based on Formal Concept Analysis which organizes RDF data into a concept
lattice. This allows the discovery of implications, which are used to automatically
detect missing information and then to complete RDF data.

Keywords: Formal Concept Analysis, Linked Open Data, Data Completion.

1 Introduction

The World Wide Web has tried to overcome the barrier of data sharing by converging
data publication into Linked Open Data (LOD) [3]. The LOD cloud stores data in the
form of subject-predicate-object triples based on the RDF language1, a standard for-
malism for information description of web resources. In this context, DBpedia is the
largest reservoir of linked data in the world currently containing more than 4 million
triples. All of the information stored in DBpedia is obtained by parsing Wikipedia, the
largest open Encyclopedia created by the collaborative effort of thousands of people
with different levels of knowledge in several and diverse domains.

More specifically, DBpedia content is obtained from semi-structured sources of in-
formation in Wikipedia, namely infoboxes and categories. Infoboxes are used to stan-
dardize entries of a given type in Wikipedia. For example, the infobox for “automo-
bile” has entries for an image depicting the car, the name of the car, the manufacturer,
the engine, etc. These attributes are mapped by the DBpedia parser to a set of “prop-
erties” defined in an emerging ontology2 [2] (infobox dataset) or mapped through a
hand-crafted lookup table to what is called the DBPedia Ontology. Categories are an-
other important tool in Wikipedia used to organize information. Users can freely assign
a category name to an article relating it to other articles in the same category. Exam-
ple of categories for cars are “Category:2010s automobiles”, “Category:Sports cars” or

1 Resource Description Framework - http://www.w3.org/RDF/
2 Emerging in the sense of “dynamic” or “in progress”.

“Category:Flagship vehicles”. While we can see categories in Wikipedia as an emerg-
ing “folksonomy”, the fact that they are curated and “edited” make them closer to a
controlled vocabulary. DBpedia exploits the Wikipedia category system to “annotate”3

objects using a taxonomy-like notation. Thus, it is possible to query DBpedia by using
annotations (e.g. all cars annotated as “Sport cars”). While categorical information in
DBpedia is very valuable, it is not possible to use a category as one could expect, i.e.
as a definition of a class of elements that are instances of the class or, alternatively, that
are “described” by the category. In this sense, such a category violates the actual spirit
of semantic Web.

Let us explain this with an example. The Web site of DBpedia in its section of
“Online access” contains some query examples using the SPARQL query language.
The first query has the description “People who were born in Berlin before 1900” which
actually translates into a graph-based search of entities of the type “Person”, which have
the property “birthPlace” pointing to the entity representing the “city of Berlin” and
another property named “birthDate” with a value less than 1900. We can see here linked
data working at “its purest”, i.e. the form of the query provides the right-hand side of a
definition for “People who were born in Berlin before 1900”. Nevertheless, the fourth
query named “French films” does not work in the same way. While we could expect
also a graph-based search of objects of the type “Film” with maybe a property called
“hasCountry” pointing to the entity representing “France”, we have a much rougher
approach. The actual SPARQL query asks for objects (of any type) annotated as “French
films”.

In general, categorization systems express “information needs” allowing human en-
tities to quickly access data. French films are annotated as such because there is a need
to find them by these keywords. However, for a machine agent this information need is
better expressed through a definition, like that provided for the first query (i.e. “People
who were born in Berlin before 1900”). Currently, DBPedia mixes these two paradigms
of data access in an effort to profit from the structured nature of categories, nevertheless
further steps have to be developed to ensure coherence and completeness in data.

Accordingly, in this work we describe an approach to bridge the gap between the
current syntactic nature of categorical annotations with their semantic correspondent
in the form of a concept definition. We achieve this by mining patterns derived from
entities annotated by a given category, e.g. All entities annotated as “Lamborghini cars”
are of “type automobile” and “manufactured by Lamborghini”, or all entities annotated
as “French films” are of “type film” and of “French nationality”. We describe how
these category-pattern equivalences can be described as “definitions” according to im-
plication rules among attributes which can be mined using Formal Concept Analysis
(FCA [7]). The method considers the analysis of heterogeneous complex data (not nec-
essarily binary data) through the use of “pattern structures” [6], which is an extension of
FCA able to process complex data descriptions. A concept lattice can be built from the
data and then used for discovering implication rules (i.e. association rules whose confi-
dence is 100%) which provide a basis for “subject definition” in terms of necessary and
sufficient conditions. For more details read the complete version of this paper [1].

3 Notice that in DBPedia the property used to link entities and categories is called “subject”. We
use “annotation” instead of “subject” to avoid confusions with the “subject” in an RDF triple.

This article is structured as follows: Section 2 gives a brief introduction to the the-
oretical background necessary to sustain the rest of the paper. Section 3 describes the
approach used for data completion in the DBpedia knowledge base. Finally, Section 4
concludes the paper.

2 Preliminaries

Linked Open Data (LOD) [3] is a formalism for publishing structured data on-line
using the resource description framework (RDF). RDF stores data in the form of state-
ments represented as xsubject, predicate, objecty. The profile of an RDF triple xs, p, oy
is given by pUYBqˆpUYBqˆpUYBYLqwhere a set of RDF triples is an RDF graph,
denoted by G. Here, U denotes a set of URI references, B refers to the blank node and
L to literals. For the sake of simplicity, in the current study we do no take into account
blank nodes pBq. An RDF triple is represented as U ˆ U ˆ pU Y Lq. For convenience,
in the following we denote the set of predicate names as P and the set of object names
as O. LOD can then be queried and accessed through SPARQL4, which is a standard
query language for RDF data. SPARQL is based on matching graph patterns (present
in the WHERE clause of a query) against RDF graphs. For example, let us consider the
SPARQL query given in Listing 1.1, for all the entities of type Automobile manufac-
tured by Lamborghini, annotated as “Sport_cars” and as “Lamborghini_vehicles”,

SELECT ?s WHERE {
?s dc:subject dbpc:Sports_cars .
?s dc:subject dbpc:Lamborghini_vehicles .
?s rdf:type dbo:Automobile .
?s dbo:manufacturer dbp:Lamborghini }

Listing 1.1: SPARQL for the formal context in Figure 1. Prefixes are defined in Table 1.

Formal Concept Analysis (FCA) is a mathematical framework introduced in [7], but in
the following we assume that the reader already has necessary background of FCA. We
only explain it with the help of an example. For example, consider the formal context
in Figure 1 where G “ U , M “ pP ˆ Oq and pu, pp, oqq P I ðñ xu, p, oy P G, i.e.
xu, p, oy is a triple built from different triples manually extracted from DBpedia about
nine different Lamborghini cars (35 RDF triples in total). Given a subject-predicate-
object triple, the formal context contains subjects in rows, the pairs predicate-object
in columns and a cross in the cell where the triple subject in row and predicate-object
in column exists. Figure 1 depicts the concept lattice in reduced notation calculated
for this formal context and contains 12 formal concepts. Consider the first five cars
(subjects) in the table for which the maximal set of attributes they share is given by the
first four predicate-object pairs. Actually, they form a formal concept depicted by the
gray cells in Figure 1 and labelled as “Islero, 400GT” in Figure 1 (actually, the extent
of this concept is “Islero, 400GT, 350GT, Reventon”). Given a concept lattice, rules can
be extracted from the intents of concepts which are comparable.

4 http://www.w3.org/TR/rdf-sparql-query/

Predicates Objects
Index URI Index URI

A dc:subject a dbpc:Sport_Cars
b dbpc:Lamborghini_vehicles

B dbp:manufacturer c dbp:Lamborghini
C rdf:type d dbo:Automobile
D dbp:assembly e dbp:Italy
E dbo:layout f dbp:Four-wheel_drive

g dbp:Front-engine

Namespaces:
dc: http://purl.org/dc/terms/

dbo: http://dbpedia.org/ontology/
rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns\#
dbp: http://dbpedia.org/resource/
dbpc: http://dbpedia.org/resource/Category:

Table 1: Index of pairs predicate-object and namespaces.

A B C D E
a b c d e f g

Reventon ˆ ˆ ˆ ˆ ˆ ˆ

Countach ˆ ˆ ˆ ˆ ˆ

350GT ˆ ˆ ˆ ˆ ˆ

400GT ˆ ˆ ˆ ˆ

Islero ˆ ˆ ˆ ˆ

Veneno ˆ ˆ

Aventador Roadster ˆ ˆ

Estoque ˆ ˆ ˆ ˆ

Gallardo ˆ ˆ ˆ

Fig. 1: The formal context shown on the left is built after scaling from DBpedia data given in
Table 1. Each cross (ˆ) corresponds to a triple subject-predicate-object. On the right the

corresponding concept lattice is shown.

3 Improving DBpedia with FCA

3.1 Problem context

Consider the following fictional scenario. You are a bookkeeper in a library of books
written in a language you do not understand. A customer arrives and asks you for a book
about “Cars”. Since you do not know what the books are about (because you cannot read
them), you ask the customer to browse the collection on his own. After he finds a book
he is interested to read, you will mark the symbol ‹ on that book for future references.
Then, in an empty page you will write (‹ - Cars). After several cases like this, you will
probably end up with a page full of symbols representing different topics or categories
of your books, among them (a - Sports), (˛ - Football) and (˝ - History). Now you can
even combine symbols when customers ask you for “Sport Cars” which you translate
into ‹a. Actually, the demand for books about “Sport Cars” is so high that you create a

new symbol : just for it. So doing, you have created your own categorization system of
a collection of books you do not understand.

In general, given a topic, you are able to retrieve books without many troubles,
however since you do not understand the books, you are restricted to the set of symbols
you have for doing this. Furthermore, if you are not careful some problems start to arise,
such as books marked with ˛ and without a. Finally, people do not get books marked
with : when they look for “Cars”, since they only search for the symbol a.

It is easy to stablish an analogy on how DBpedia profits from Wikipedia’s catego-
rization system and the above scenario. DBpedia is able to retrieve entities when queried
with an annotation (as the example of “French films”), however any information need
not initially provided as a category is unavailable for retrieval (such as “French films
about the Art Nouveau era”). Incoherences in categorical annotations are quite frequent
in DBpedia, for example there are over 200 entities annotated as “French films” which
are not typed as “Films”. Finally, DBpedia is not able to provide inferencing. For ex-
ample, in Figure 1, the entities Veneno and Aventador, even though they are annotated
as “Lamborghini vehicles”, cannot be retrieved when queried simply by “vehicles”. In
such a way, it is exactly as if they were marked with a symbol such as :.

3.2 The completion of DBpedia data

Our main concern in this case lies in two aspects. Firstly, are we able to complete data
using logical inferences? For example, can we complete the information in the dataset
by indicating that the entities “Estoque” and “Gallardo” should be categorized as “Lam-
borghini vehicles” and “Sport cars”? Secondly, are we able to complete the descriptions
of a given type? For example, DBpedia does not specify that an “Automobile” should
have a “manufacturer”. In the following, we try to answer these two questions using
implications and association rules.

Consider rules provided in Table 2. Of course, the first three implications are only
true in our dataset. This is due to the fact that we use the “closed world” assump-
tion, meaning that our rules only apply in “our world of data” where all cars are of
“Lamborghini” brand, i.e. all other information about cars that we do not know can be
assumed as false [5]. While these implications are trivial, they provide a good insight
of the capabilities of our model. For instance, including a larger number of triples in
our dataset would allow discovering that, while not all automobiles are manufactured
by Lamborghini, they are manufactured by either a Company, an Organization or an
Agent. These three classes5 are types of the entity Lamborghini in DBpedia. Such a
rule would allow providing a domain characterization to the otherwise empty descrip-
tion of the predicate “dbo:manufacturer” in the DBpedia schema.

The association rule given in the fourth row in Table 2 shows the fact that 29%
of the subjects of type “Automobile” and manufactured by “Lamborghini” should be
categorized by “Sports cars” and “Lamborghini vehicles” to complete the data. This
actually corresponds to the entities “Estoque” and “Gallardo” in Figure 1. Based on this
fact, we can use association rules also to create new triples that allow the completion of
the information included in DBpedia.

5 In the OWL language sense.

Rule Confidence Support Meaning

d ùñ c 100% 7 Every automobile is manufactured by
Lamborghini.

c ùñ d 100% 7 Everything manufactured by Lamborghini
is an automobile.

e ùñ b,c 100% 3 All the entities assembled in Italy are
Lamborghini automobiles.

c,d ùñ a,b 71% 7 71% of the Lamborghini automobiles are catego-
rized as “sport cars” and “Lamborghini vehicles”

Table 2: Association rules extracted from formal context in Figure 1.

3.3 Pattern structures for the completion process

The aforementioned models to support linked data using FCA are adequate for small
datasets as the example provided. Actually, LOD do not always consists of triples of
resources (identified by their URIs) but contains a diversity of data types and struc-
tures including dates, numbers, collections, strings and others making the process of
data processing much more complex. This calls for a formalism able to deal with this
diversity of complex and heterogeneous data.

Accordingly, pattern structures are an extension of FCA which enables the analysis
of complex data, such as numerical values, graphs, partitions, etc. In a nutshell, pattern
structures provide the necessary definitions to apply FCA to entities with complex de-
scriptions. The basics of pattern structures are introduced in [6]. Below, we provide a
brief introduction using interval pattern structures [8].

Let us consider Table 3 showing the predicate dbo:productionStartYear for the sub-
jects in Figure 1. In such a case we would like to extract a pattern in the year of pro-
duction of a subset of cars. Contrasting a formal context as introduced in Section 2,
instead of having a set M of attributes, interval pattern structures use a semi-lattice
of interval descriptions ordered by a subsumption relation and denoted by pD,Ďq6.
Furthermore, instead of having an incidence relation set I , pattern structures use a map-
ping function δ : G Ñ D which assigns to any g P G the corresponding interval
description δpgq P D. For example, the entity “350GT” in Table 3 has the description
δp350GT q “ xr1963, 1963sy.

Let us consider two descriptions δpg1q “ xrl1i , r
1
i sy and δpg2q “ xrl2i , r

2
i sy, with

i P r1..ns where n is the number of intervals used for the description of entities. The
similarity operation [and the associated subsumption relation Ď between descriptions
are defined as the convex hull of two descriptions as follows:

δpg1q [δpg2q “ xrminpl
1
i , l

2
i q,maxpr

1
i , r

2
i qsy

δpg1q Ď δpg2q ðñ δpg1q [δpg2q “ δpg1q

δp350GT q [δpIsleroq “ xr1963, 1967sy

pδp350GT q [δpIsleroqq Ď δp400GT q

Finally, a pattern structure is denoted as pG, pD,Ďq, δq where operators p¨ql be-
tween ℘pGq and pD,Ďq are given below:

Al :“
ę

gPA

δpgq dl :“ tg P G | d Ď δpgqu

6 It can be noticed that standard FCA uses a semi-lattice of set descriptions ordered by inclusion,
i.e. (M,Ď).

An interval pattern concept pA, dq is such as A Ď G, d P D, A “ dl, d “ Al. Using
interval pattern concepts, we can extract and classify the actual pattern (and pattern
concepts) representing the years of production of the cars. Some of them are presented
in the lower part of Table 3. We can appreciate that cars can be divided in three main
periods of time of production given by the intent of the interval pattern concepts.

Entity dbo:productionStartYear

Reventon 2008
Countach 1974
350GT 1963
400GT 1965
Islero 1967
Veneno 2012
Aventador Roadster -
Estoque -
Gallardo -

Interval Pattern Concepts
Reventon, Veneno xr2008, 2012sy
Countach, xr1974, 1974sy
350GT,400GT,Islero xr1963, 1967sy

Table 3: Upper table shows values of predicate dbp:productionStartYear for entities in Figure 1.
The symbol - indicates that there are no values present in DBpedia for those subjects. Lower

table shows the derived interval pattern concepts .

3.4 Heterogeneous pattern structures

Different instances of the pattern structure framework have been proposed to deal with
different kinds of data, e.g. graph, sequences, interval, partitions, etc. For linked data
we propose to use the approach called “heterogeneous pattern structure” framework
introduced in [4] as a way to describe objects in a heterogeneous space, i.e. where there
are relational, multi-valued and binary attributes. It is easy to observe that this is actually
the case for linked data where the set of literals L greatly varies in nature depending on
the predicate. For the sake of simplicity we provide only the most important details of
the model used for working with linked data.

When the range of a predicate (hereafter referred to as “relation”) p P P is such that
rangeppq Ď U , we call p an “object relation”. Analogously, when the range is such
that rangeppq Ď L, p is a “literal relation”. For any given relation (object or literal),
we define the pattern structure Kp “ pG, pDp,[q, δpq, where pDp,Ďq is an ordered
set of descriptions defined for the elements in rangeppq, and δp maps entities g P G
to their descriptions in Dp. Based on that, the triple pG,H,∆q is called a “heteroge-
neous pattern structure”, where H “

Ś

Dppp P P q is the Cartesian product of all the
descriptions sets Dp, and ∆ maps an entity g P G to a tuple where each component
corresponds to a description in a set Dp.

For an “object relation”, the order in pDp,Ďq is given by standard set inclusion and
thus, the pattern structure Kp is just a formal context. Regarding “literal relations”, such
as numerical properties, the pattern structure may vary according to what is more ap-
propriate to deal with that specific kind of data. For example, considering the predicate

dbo:productionStartYear discussed in the previous section, Kdbo:productionStartYear should
be modelled as an interval pattern structure. For the running example, the heterogeneous
pattern structure is presented in Table 4. Cells in grey mark a heterogeneous pattern
concept the extent of which contains cars “350GT, 400GT, Islero”. The intent of this
heterogeneous pattern concept is given by the tuple pta, bu, tcu, tdu, xr1963, 1967syq,
i.e. “Automobiles manufactured by Lamborghini between 1963 and 1967”.

KA KB KC KD KE Kdbo:productionStartYear

a b c d e f g
Reventon ˆ ˆ ˆ ˆ ˆ ˆ xr2008, 2008sy

Countach ˆ ˆ ˆ ˆ ˆ xr1974, 1974sy

350GT ˆ ˆ ˆ ˆ ˆ xr1963, 1963sy

400GT ˆ ˆ ˆ ˆ xr1965, 1965sy

Islero ˆ ˆ ˆ ˆ xr1967, 1967sy

Veneno ˆ ˆ xr2012, 2012sy

Aventador Roadster ˆ ˆ -
Estoque ˆ ˆ ˆ ˆ -
Gallardo ˆ ˆ ˆ -

Table 4: Heterogeneous pattern structure for the running example. Indexes for properties are
shown in Table 1.

4 Conclusion

To conclude, in the current study we introduce a mechanism based on association rule
mining for the completion of the RDF dataset. Moreover, we use heterogeneous pattern
structures to deal with heterogeneity in LOD. This study shows the capabilities of FCA
for completing complex RDF structures.

References

1. Mehwish Alam, Aleksey Buzmakov, Victor Codocedo, and Amedeo Napoli. Mining defini-
tions from rdf annotations using formal concept analysis. In IJCAI 2015, Proceedings of the
24th International Joint Conference on Artificial Intelligence, Buenos Aires, Argentina, July
25-31, 2015, 2015.

2. Dominik Benz, Andreas Hotho, and Gerd Stumme. Semantics made by you and me: Self-
emerging ontologies can capture the diversity of shared knowledge. In Proceedings of the 2nd
Web Science Conference, 2010.

3. Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked data - the story so far. Int. J.
Semantic Web Inf. Syst., 5(3):1–22, 2009.

4. Víctor Codocedo and Amedeo Napoli. A Proposition for Combining Pattern Structures and
Relational Concept Analysis. In 12th International Conference on Formal Concept Analysis.
2014.

5. Christian Fürber and Martin Hepp. Swiqa - a semantic web information quality assessment
framework. In 19th European Conference on Information Systems, 2011.

6. Bernhard Ganter and Sergei O. Kuznetsov. Pattern structures and their projections. In ICCS,
volume 2120 of Lecture Notes in Computer Science, pages 129–142. Springer, 2001.

7. Bernhard Ganter and Rudolf Wille. Formal Concept Analysis: Mathematical Foundations.
Springer, Berlin/Heidelberg, 1999.

8. Mehdi Kaytoue, Sergei O. Kuznetsov, Amedeo Napoli, and Sébastien Duplessis. Mining
gene expression data with pattern structures in formal concept analysis. Information Sciences,
181(10):1989–2001, 2011.

