
Scalable model exploration through abstraction
and fragmentation strategies

Antonio Garmendia⋆⋆, Antonio Jiménez-Pastor, and Juan de Lara

Modelling and Software Engineering Research Group
htpp://www.miso.es

Computer Science Department
Universidad Autónoma de Madrid (Spain)

Abstract. Model-Driven Engineering (MDE) promotes the use of mod-
els to conduct all phases of software development in an automated way.
However, for complex systems, these models may become large and un-
wieldy, and hence difficult to process and comprehend. In order to alle-
viate this situation, we explore the combination of model fragmentation
strategies, to split models into more manageable chunks; and model ab-
straction and visualization mechanisms, able to provide simpler views of
the models. The feasibility of this combination is confirmed based on an
evaluation over a synthetic models, and the model sets of the GraBaTs’09
contest.

Keywords: Model-Driven Engineering, Model Scalability, Model Frag-
mentation, Model Visualization, Model Abstraction.

1 Introduction

Model Driven Engineering (MDE) promotes a model-centric approach for soft-
ware development, where models are used to specify, design, test, and generate
code for the final application. While models abstract details of the real system
they represent, they may become large and unwieldy and therefore difficult to
understand and process. Therefore, methods to cope with large models are key
for a wider adoption of MDE in indutrial practice [6].

As a step in this direction, we present techniques, backed up by tools, for the
scalable exploration and processing of large models. First, we show a method
to specify strategies for fragmenting models. Taking inspiration from the way
programming languages organize projects, our strategies organize a model as
a project, which then can be divided into folders and files. Such strategies are
specified over the meta-model, as “annotations” of the different classes [2].

Second, we present a method for the visual exploration of models. The
method is based on filtering and abstracting models according to certain strate-
gies, so that only a few nodes in the focus of interest are fully displayed, while
others are aggregated into “abstract nodes”. Then, different ways are provided

⋆⋆ Authors listed in alphabetical order.



to navigate through abstract nodes to the submodels they contain. Compared
to fully representing a model on the screen, our approach permits higher space
scalability (as fewer nodes are represented), but requires from algorithms to
compute and navigate the abstractions.

We evaluate the approaches for large models and show how to combine them
on the basis of two case studies. The first one is based on a synthetic generation
of models, but based on a real case study of an EU project1. The second one is
based on the large models (up to 5 million objects) provided by the GraBaTs’09
competition case study2. As a lesson from these experiments, we conclude that
our visual exploration gives reasonable abstraction times (∼ 2 secs.) for models
up to roughly 10.000 objects. Beyond that point, even for a one-shot exploration,
it is advisable to first fragment the model, and then apply the visual exploration.

The rest of the paper is organized as follows. Section 2 describes a method
and tool support to define model fragmentation strategies. Section 3 introduces
some techniques and support for model visualization and exploration. Section 4
evaluates the approaches with the two experiments. Section 5 compares with
related research and Section 6 concludes.

2 Fragmenting models

We propose fragmenting models, following modular principles adopted by many
programming languages and IDEs [2]. Therefore one model is organized as a
Project. The model can then be fragmented into Packages (which are mapped to
folders in the file system), which may hold Units (or these can be placed directly
inside a project).

This kind of hierarchical organization permits structuring or defining different
ways to fragment a model. Fragmentation strategies are specified at the meta-
model level, where the different classes can be tagged as Project, Package and Unit,
giving rise to different possible model organizations. Conceptually, the different
model organizations are configured by instantiating the meta-model shown at
the top of Figure 1, and then mapping such instantiation to the meta-model to
which we want to apply the fragmentation strategy.

Figure 1 shows the application of the pattern to the Java JDTAST meta-
model. In this case, the IJavaModel class is mapped to Project. The IJavaProject

class is tagged as Package, this is possible because there is a composition relation
from IJavaModel (the project) to IJavaProject, as the patterns demands by means
of relation javaProjects. Another composition relation between IJavaProject and
IPackageFragmentRoot allows classes which inherit from the latter (BinaryPackage-
FragmentRoot and SourcePackageFragmentRoot) be tagged as Package. Finally, both
IClassFile and ICompilationUnit are instantiated as Unit.

We have built tool support to apply such fragmentation strategies and to
produce a modelling environment that splits monolithic instances of the meta-
model according to the fragmentation strategy and supports the creation of mod-

1 http://mondo-project.org
2 http://www.emn.fr/z-info/atlanmod/index.php/GraBaTs_2009_Case_Study



Fig. 1: Pattern to describe the modular structure of a meta-model (top). Appli-
cation to the JDTAST meta-model (bottom).

els according to such organization. Our tool is called EMF-Splitter, it is built
atop of Eclipse and freely available at http://antoniogarmendia.github.io/
EMF-Splitter/. Figure 2 shows the generated modelling environment. The en-
vironment shows an Eclipse project, named Projectset0, created from the model
set0.xmi of the GraBaTs’09 contest. The project explorer shows the structure
of folders and files generated from the model, which follows the specified frag-
mentation strategy. To the right, a tree editor shows the content of one file.
The original model has about 70.000 model elements, while the fragmentation
strategy fragments it into 1.800 files.

3 Exploring models

When working with models it is very useful to explore them to get some insight
using our intuition, to analyse its different parts, or to find unusual or interesting
features. However, big models are impossible to be completely represented in a
computer monitor. Exploring models through the default tree editor of EMF is
also cumbersome, as it lacks facilities to visualize, search and navigate. Moreover,
many times, models lack a dedicated graphical editor providing visualization and
exploration services.

To solve these problems we have developed a tool called SAMPLER (ScAlable
Model exPLorER). It offers several features to visualize big models in the form of
graphs, such as focusing on a specific point of the graph or making some general
abstractions over the model before painting it. It allows to navigate along the
visualization and even search a node through the whole model. The tool permits
exploring models for which no concrete syntax has been defined, as it uses a
default graph-based representation.



Fig. 2: Generated environment.

The main goal of SAMPLER is to draw the model without painting every
element on the screen. For this purpose we have developed a composition strategy
where we combine different kinds of abstractions which, executed in sequence,
give a fast and compact view of the model. There are two basic operations in
SAMPLER to make a model more readable: removing elements from the view,
and grouping some elements in a big composite element. When we decide to
remove an element, we can not view it when exploring the model, but when
we compact some elements into one bigger node, we can expand it and explore
the smaller elements as we wish. These operations are applied in three different
steps:

– Filters: the first step to make our visualization easier is to apply some
kind of filter. In many EMF models there are many intermediate objects,
which may not provide the user with meaningful information, but they are
technically needed to make the model conform to the meta-model. Hence,
SAMPLER provides mechanism to select and filter those undesired objects,
removing them from the view. When an object is filtered out, its incoming
references are composed with its outgoing ones, so that the connectivity of
the model is preserved.

– Global abstraction strategies: after filtering, there are others groups of
elements which may share properties of interest, and hence it makes sense to
cluster them into abstract nodes. This kind of composite operation is what
we will call global abstraction. There are many possibilities to create a global



abstraction strategy. For example, we can unify the leaves of the containment
tree of the model or we can use some cluster algorithms (like k-means).

– Local abstraction strategies: the last step of the SAMPLER abstraction
strategy is what we call local strategies. After applying the previous steps, we
may still have thousands of elements to draw, so that it is impossible to read
anything on the screen. In this case, our approach is to focus on a part of the
model at once. The local strategies focus the visualization in some point of
the model (a set of elements that the user can choose), fully displaying the
elements around that point, and compacting the other elements into abstract
nodes. These abstract nodes do not take much space in the screen, but are
explorable.

These three kinds of steps are put together to create visualization algorithms,
which create a drawing of the model. In SAMPLER, we offer some basic algo-
rithms, like just performing a global abstraction, or just a local one. These basic
algorithms can be composed, and new algorithms can be incorporated by imple-
menting a dedicated extension point.

Further than the visualization algorithms, SAMPLER provides a navigation
utility. It allows, once a model has been painted on the screen, to navigate
through the model. There are three navigation options:

– It is possible to expand a compacted abstract node so that, in the same
screen, the first elements of the abstract node are shown together with the
others elements present in the view.

– It allows to open an abstract node in another window and apply a common
visualization algorithm to view this part of the model.

– It is also possible to open a new window with the containment subtree of an
element of the model. As in the last option, in this new window, a common
algorithm can be used to view the subtree.

Finally, SAMPLER offers a search functionality. It uses the filters algorithms
described before, and allows to dynamically define different criteria for searching.

All these functionalities and tools have been implemented in a Eclipse plug-
in available at http://rioukay.github.io/sampler/. The main elements in-
cluded in the plug-in are the different Eclipse views (see Figure 3):

– The View Preferences view allows to change the configuration of the visu-
alization algorithm that is being using at that moment. It also gives the
possibility to change between the existing visualization algorithms.

– The Node Information view shows the information of the elements that have
been clicked on in the canvas. If the node clicked is an abstract node, then
it shows the information of its contained elements.

– The Filter Information view allows to add and configure additional filter
steps to the end of the algorithm.

Figure 3 shows an example of how SAMPLER works. We can see the diagram
visualization of the model where we have applied a local algorithm that shows the



Fig. 3: Exploring a model with SAMPLER

Fig. 4: Preview of the “Preferences View” of SAMPLER

root of the model (node WT ) and the five nearest elements of the containment
tree. The other elements are compacted according to their parents in that tree.

Each box in the diagram represent an element of the abstracted model. The
blue boxes correspond to simple elements of the model and the brown ones
are abstract nodes. There are two kinds of arrows connecting the nodes of the
diagram: dot arrows represent references, and line arrows represent containment.
Just below the canvas, we can see the views that we have described. Figure 3
shows the “Node Information” view. To the right we see the elements of the
model contained in the selected compacted node (the yellow box in the diagram).
To the left we show the attributes of the element selected on the right side of
the view.

Figure 4 shows how the “View Preferences” view looks like. To the left we
give the option to modify the generic options of the visualization and choosing



the abstraction algorithm. To the right, we allow changing the configuration of
the algorithm. In the example, with the local algorithm, we can choose how
many elements to show near the root, and which element of the model is the
root of the visualization.

4 Evaluation

Next, we evaluate the performance of our tools to deal with large models. Our
intention is to analyse to what extent large models can be explored with SAM-
PLER. When models become difficult to be visualized with the tool, we will
fragment them first, using a fragmentation strategy, so that the smaller chunks
can be visualized individually. Hence, we also perform an experiment to give an
account for the incurred cost of fragmentation.

In all our tests, we used the following environment:

– Execution environment:

• Operative System: Windows 7 Professional Service Pack 1.

• Processor: Intel(R) Core(TM) i7-2600, 3.40GHz

• RAM: 12 GB

– Java Virtual Machine Configuration:

• Execution environment: Java SE 1.8 (jre1.8.0 40 )

• Initial memory: 512 MB

• Maximum memory: 8 GB

4.1 Exploration performance

In this experiment, the goal is to check the performance of some of the SAM-
PLER abstraction strategies for large models. We generated models using an
EMF random instantiator from the ATLANMOD team3. We used a meta-
model taken from a case study of the EU project MONDO4 in the domain of
component-based embedded systems. We created 500 test models of each size.
The sizes we have tested go from 100 to 6.000 model elements.

In each test, we have taken four measures, the time taken to read the model,
and the time of execution of three of SAMPLER basic algorithms. Those algo-
rithms are:

– A global algorithm that creates only one composite node with all elements
inside it. This is a measure of how much time SAMPLER takes to explore
the whole model (compactification algorithm)

– A global algorithm that explores the whole model detecting the leaves of the
containment tree and compact them (global algorithm)

– A local algorithm that, given an object of the model, shows this element and
n of its neighbours while the others are compacted (local algorithm).



Fig. 5: Performance (ms) of the different algorithms of abstraction. From left to
right: local algorithm, global algorithm and compactification algorithm.

The graphics in Figure 5 show that every algorithm takes a reasonable time
to execute (no more than 10 seconds for 6.000 elements in the model) and that
the local and global algorithm takes a quadratic polynomial time to execute.

After this synthetic tests, we have executed the same algorithms in the same
conditions over the two first sets of JDTAST models of the GRaBaTs competi-
tions, which have a larger size. Table 1 shows the results of the experiment for the
three algorithms together with the estimation from the run of the smaller tests.
As it can be noted, the time required to create the abstraction of the model is
more than 25 minutes with the set0 model and more than 5 hours with the set1
model. Those times are not acceptable, and hence we resort to the application
of another pre-drawing techniques, such as fragmentation strategies. The next
subsection discusses on its performance.

Model
Local Algorithm Global Algorithm Compactification
Measure Estimation Measure Estimation Measure Estimation

set0 1.527.543, 80 82.280, 29 1.224.024, 6, 786.525, 93 778, 8, 745, 04

set1 20.596.201 611.014, 12 13.689.961, 00 6.126.755, 18 2.080, 00 2.096, 68

Table 1: Performance (ms) of SAMPLER over some JDTAST models.

4.2 Fragmentation performance

Next, we evaluate the performance of model fragmentation. Figure 1 shows the
fragmentation strategy that was applied to the JDTAST meta-model. After the
application of the modularity pattern, we split all the models found in the Gra-
BaTs’09 case study, turning each one of them into an Eclipse project.

Table 2 shows the results of our experiment. The columns depict the split
time, merge time (merging all files of a fragmented model into one file), gener-
ated number of files, mean and maximum number of elements of each fragment,

3 http://modeling-languages.com/a-pseudo-random-instance-generator-for-emf-models/
4 http://www.mondo-project.org



Model Split time Merge time # files Avg Max # model elements

set0 94.362, 04 7.808, 04 1.779 40, 17 1.322 71.458

set1 231.143, 78 37.847, 10 6.240 32, 68 4.549 203.938

set2 544.609, 02 83.905, 74 6.050 345, 27 50.718 2.088.890

set3 747.739, 30 199.811, 98 4.460 1.031, 24 50.718 4.599.358

set4 808.351, 00 511.554, 59 5.068 980, 04 50.718 4.966.846

Table 2: Performance (ms) of EMF-Splitter over the test-cases of GraBaTs’09.

and the total number of elements in the whole model. We can observe that the
maximum number of elements in a file is repeated for set2, set3 and set4. This
happens because this group of models was built by adding java classes incre-
mentally. For example, set2 is formed by set1 and the addition of some java
packages.

The results shows that, in average the exploration of the files with SAMPLER
would become easier, because the largest average size is about 1.000 elements
(which are easily explorable), while the maximum number of elements in a file
is 50.718, which would take about a minute and a half to load.

5 Related work

In this section we focus on existing works dealing with model fragmentation, and
model exploration and visualization of large graphs.

Due to the need to process large models, some authors have proposed to
split models for solving different tasks. For instance, Scheidgen and Zubow [10]
propose a persistence framework that allows automatic and transparent frag-
mentation to add, edit and update EMF models. This process is executed at
runtime, with considerable performance gains. However, the user does not have
a view of the different fragments as we have in EMF Splitter, which could help
improving the comprehensibility of the fragments.

Other works [5, 11] decompose models into submodels for enhancing their
comprehensibility. For example, in [5], the authors propose an algorithm to frag-
ment a model into submodels (actually they can build a lattice of submodels),
where each submodel is conformant to the original meta-model. The algorithm
considers cardinality constraints but not general OCL constraints, and there is
no tool support. Other works use Information Retrieval (IR) algorithms to split
a model based on the relevance of its elements [11]. Therefore, splitting models
that belong to the same meta-model can produce different structures.

Other works directed to define model composition mechanisms [3, 4, 12] are
intrusive. These papers [3,12] present techniques for model composition and re-
alize the importance of modularity in models as a research topic to minimise the
effort. Strüber et. al [4] present a structured process for model-driven distributed
software development which is based on split, edit and merge models for code
generation.

Regarding model visualization, in [9], the authors propose a framework call
ELVIZ for model visualization, based on the transformation of input models



to appropriate output formats. For example, given a class diagram, they can
extract the number of methods per class, and visualize such numbers as a bar
chart. ELVIZ facilitates the generation of input models to different visualization
outputs relying on mappings.

In [1], the authors present the tool Explen, which uses slicing techniques in
order to visualize large meta-models. Similar to our approach, it is possible to
focus on a given class, and select some slicing criteria (e.g., show the composition
relations only, show only a certain radius of classes, or show the sub/super type
hierarchy). They also include a flattening filter, which presents a hierarchy in
the form of a unique class. SAMPLER supports the visualization of models and
meta-models, and the abstractions/slice criteria are extensible. Moreover, we
support different navigation strategies from abstracted models.

The analysis of large graphs arising in e.g., social networks have produced
some summarization techniques, which try to encode in smaller graphs [7] or as
a variety of statistics [8] the main features of the large graph. For this purpose,
they find the most often occurring subtype graphs (cliques, starts, chains, etc) in
graphs. In the context of MDE, this information is encoded in the meta-model.
Other methods are more flexible, as they allow customization of the interesting
attributes of nodes [13], and nodes with similar values are summarized in a
single node. This would be similar to SAMPLERs global abstractions.

Altogether, to the best of our knowledge, our approach to combine model
fragmentation and model visualization techniques is novel.

6 Conclusions and future work

In this work, we have proposed the combination of model fragmentation and
model visualization techniques to explore large models. Model fragmentation is
performed by applying fragmentation strategies at the meta-model level. Model
exploration is done by applying different abstraction strategies to the model,
and with the availability of model exploration techniques. We have performed
an evaluation of the approach for large models. We have seen that for models in
the range of up to roughly six thousand elements, abstraction gives good results.
For large models, such as those of the GraBaTs’09, our proposal is fragmenting
them first. In this case, fragments become of manageable size, and then can be
visually explored.

In the future, we aim at the tighter integration of SAMPLER with the infor-
mation provided by the fragmentation strategies. In particular, when exploring
a fragmented model, we currently need to use the package explorer to move
between fragments. In the future, we would like SAMPLER to use the frag-
mentation information as a (global) abstraction algorithm. This way, fragments
would be explored transparently from within the SAMPLER visual canvas.

Acknowledgements. Work supported by the Spanish Ministry of Economy and
Competitivity (TIN2011-24139, TIN2014-52129-R), the EU commission (FP7-
ICT-2013-10, #611125) and the Community of Madrid (S2013/ICE-3006)



References

1. A. Blouin, N. Moha, B. Baudry, and H. A. Sahraoui. Slicing-based techniques for
visualizing large metamodels. In Second IEEE Working Conference on Software
Visualization, VISSOFT, pages 25–29. IEEE Computer Society, 2014.

2. A. Garmendia, E. Guerra, D. S. Kolovos, and J. de Lara. EMF splitter: A struc-
tured approach to EMF modularity. In XM@MoDELS, volume 1239 of CEUR
Workshop Proceedings, pages 22–31. CEUR-WS.org, 2014.

3. F. Heidenreich, J. Henriksson, J. Johannes, and S. Zschaler. On language-
independent model modularisation. T. Asp.-Oriented Soft. Dev. VI, 6:39–82, 2009.

4. P. Kelsen and Q. Ma. A modular model composition technique. In Proceedings of
FASE’10, volume 6013 of LNCS, pages 173–187. Springer, 2010.

5. P. Kelsen, Q. Ma, and C. Glodt. Models within models: Taming model complexity
using the sub-model lattice. In Proceedings of FASE’11, volume 6603 of LNCS,
pages 171–185. Springer, 2011.

6. D. S. Kolovos, L. M. Rose, N. Matragkas, R. F. Paige, E. Guerra, J. S. Cuadrado,
J. De Lara, I. Ráth, D. Varró, M. Tisi, and J. Cabot. A research roadmap towards
achieving scalability in model driven engineering. In Proc. BigMDE ’13, pages
2:1–2:10, New York, NY, USA, 2013. ACM.

7. D. Koutra, U. Kang, J. Vreeken, and C. Faloutsos. VOG: summarizing and under-
standing large graphs. In Proceedings of the 2014 SIAM International Conference
on Data Mining, pages 91–99. SIAM, 2014.

8. M. E. J. Newman. The structure and function of complex networks. SIAM Review,
45(2):167–256, 2003.

9. M. Ostendorp, J. Jelschen, and A. Winter. ELVIZ: A query-based approach to
model visualization. In Modellierung 2014, pages 105–120, 2014.

10. M. Scheidgen, A. Zubow, J. Fischer, and T. H. Kolbe. Automated and transparent
model fragmentation for persisting large models. In Proceedings of MoDELS’12,
volume 7590 of LNCS, pages 102–118. Springer, 2012.

11. D. Strüber, J. Rubin, G. Taentzer, and M. Chechik. Splitting models using in-
formation retrieval and model crawling techniques. In Proceedings of FASE’14,
volume 8411 of LNCS, pages 47–62. Springer, 2014.

12. D. Strüber, G. Taentzer, S. Jurack, and T. Schäfer. Towards a distributed modeling
process based on composite models. In Proceedings of FASE’13, volume 7793 of
LNCS, pages 6–20. Springer, 2013.

13. Y. Tian, R. A. Hankins, and J. M. Patel. Efficient aggregation for graph sum-
marization. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, pages 567–580. ACM, 2008.


