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Abstract. Ontology reasoning, in particular query answering with De-
scription Logics-based ontologies, is a power-consuming task, especially
in mobile settings where such a resource is limited and shared by other
processes. To be able to determine whether a reasoning task will be
consuming significant amount of power, a benchmark framework will be
needed for ontology designers and reasoner developers. In this paper,
we report our work on a power consumption benchmark framework that
can be used to evaluate and compare the level of battery consumption of
different Description Logics reasoners on Android devices. To calculate
the power consumption of the reasoners, we measured the current flow
and the voltage of the integrated battery. We focus on Android-based
devices and evaluate the framework using 3 popular DL reasoners.

1 Introduction and Background

The international Telecommunication Union revealed the ubiquity of mobiles,
especially Android-based smartphones which takes around 77% of worldwide
smartphone operating system market share [1]. To enable semantics data inte-
gration, some reasoning processes for Description Logics(DL)-based ontologies
need to be performed. Although such reasoning tasks can be done on the cloud,
with results being downloaded onto mobile devices afterwards, it has been indi-
cated that local reasoning might produce results timely and they are robust to
Internet connection unreliability [10], not to mention the ability to avoid privacy
and security issues while uploading personal data to the cloud. Due to limited
resources of mobile devices, the performance of reasoning tasks across different
hardware platforms can vary and there has been not much research on how such
reasoning tasks would affect the battery of mobile devices.

The closest work to ours is from Patton and McGuinness [6], which uses exter-
nal power supply with fixed voltage instead of battery. The proposed framework
system in this paper, however, is capable of measuring the power consumption
of ontology reasoners from the operating system of the mobile devices, tak-
ing varying voltage of the battery into account. Our solution will thus make it
easier for ontology designers and reasoner developer to test and evaluate their
ontologies/reasoners in terms of power consumption efficiency, without having
to connect mobile devices to external power. It is particularly important for
smartphones with a built-in battery that cannot be taken out of the devices.



In our study, we used three ontology reasoners in this experiment: HermiT [7],
Pellet [8], and AndroJena. In this work we investigate on how power is consumed
on mobile-version of the above-mentioned reasoners on classification, instance
retrieval (with and without inference) and query answering tasks. HermiT and
Pellet can not be directly supported by Dalvik due to unsupportive Java classes.
Yus et al. [11] provided the android-ported versions for them. AndroJena is an
Android-ported version of the Jena reasoner that compatible with Dalvik. It
should be noted that some other ontology reasoners can work on Android as
well, such as ELK [5] and TrOWL [9]. A more comprehensive study will be part
of our future work.

2 Our Approach

To calculate the overall power consumption, electrical energy over some time
have to be measured. Our approach involves measuring the current flow (in
Ampere) and the voltage of the battery (in Volt). Given these values change
over time we can compute the amount of power consumption that has been used
for a specific task. Note that we do not use existing android apps available on
a market today to measure power consumption for two reasons: 1) With these
apps, we would not be able to programmatically start and stop measuring the
capacity of the battery when needed. 2) the accuracy of mentioned approach can
be affected by the age of the battery due to the use of total capacity instead of
the actual capacity.

To measure and calculate the battery information in mobile phones, hardware
manufacturers have developed a range of chips, namely “fuel gauge chips”. Most
fuel gauges integrated into mobile phones are used for monitoring and just a
few ones use their own sophisticated gauging algorithm to calculate the battery
State-Of-Charge (SOC), available capacity, and other useful information such as
current flow or voltage. In this experiment, we are not using gauging algorithms
to calculate the battery SOC as this would depend on the types of fuel gauges
used by phone manufactures. The calculation of power consumption is performed
using the following equation:

Power Consumption = Current ∗ V oltage ∗ ErrorRate/T ime

where Current and V oltage are retrieved using the properties in Android’s
BatteryManager class, BATTERY PROPERTY CURRENT NOW and EXTRA VOLTAGE,
respectively. Note that since the value of V oltage can be varied, it is necessary
to update the changes by implementing a BroadcastReceiver which is triggered
by a change of battery status. All values for this experiment had to be retrieved
periodically to make sure the results are accurate and the power consumption
can be calculated. To do so, a timer was set up to check and store the values
necessary to calculate the power consumption for every second.

To determine the error rate of this or similar experiments, the actual capacity
of the battery had to be compared with the total capacity of the battery. Total
capacity was calculated by dividing the factory-determined mili-amphere-hours



(mAh) from the percentage (100) of the battery. Then the actual capacity per 1%
of the battery was measured using the current sensor and both values compared.

Before Android Lollipop (starting with the Android API level 21), it was
almost impossible for mobile-apps developer to access accurate information re-
garding battery usage from the “fuel gauge sensors” using a software approach.
Since Android API level 21, information such as the State-of-charge (SOC), volt-
age, instantaneous battery current, and others provided by the fuel gauge sensors
can be accessible for developers by a range of new properties and methods in
BatteryManager class. Note that different smartphones will use different hard-
ware, in particular different fuel gauge sensors, and hence Android API Level 21
has enabled a generic interface for apps developers to access battery information
in an abstract and standardised way.

Although the power measuring techniques using integrated battery’s current
sensor was suggested around 5 years ago, they have been facing many compati-
bility issues. The main issue is that different manufacturers provide their devices
with different type of current sensors. As a result, it has been lack of a standard
way for Android-based apps developers to access battery information to calcu-
late power consumption accurately. We believe our approach is future-proof, in
that it is targeted for phones with Android API Level 21 and above while later
generations of Android-based phones will need to support at least Android API
Level 21. Given current rapid changes in the smartphone markets, it is reason-
able to develop an approach that is compatible to current and later version of
Android smartphones.

3 Evaluation

3.1 Experiment Setup

The experiment was done using a OnePlus One device, with 2.5GHz proces-
sor, 3GB RAM and 3100mAh battery. We used the datasets generated by the
LUBM benchmark generator [2]. Four datasets of different sizes (in terms of the
number of departments, ranging from 1, 5, 10 to 15) were generated. We chose
to perform four different reasoning tasks for each reasoner: simple instance re-
trieval, complex query answering with the inference, which is the act or process
of deriving logical conclusions from premises known or assumed to be true, just
inference, and TBox classification. The last two tasks were to see if reasoning
tasks with less or no involvement of individuals can affect the power consumption
of different reasoners.

For each reasoner, there were 16 simulation tests performed in total (4 rea-
soning tasks and 4 datasets of different sizes). To prevent bias caused by the
order of running the reasoners, we ran the 3 reasoners in all possible orders, e.g.,
6 runs for 3 reasoners per test and got the average timing. In addition, the con-
ditions of the experiment are kept the same for all the runs/reasoners, including
current temperature and the level of the battery at the beginning of every test.



3.2 Results

After executing the test queries on the mobile reasoners, we compared the re-
sults returned by 3 reasoners to verify correctness. It was found that all reasoners
produce the same answers to given queries except one case with the AndroJena
reasoner. For classification reasoning tasks, AndroJena produced incomplete re-
sult. According to Jena’s documentation [4], relationships between classes, when
using Jena’s OntModel, will be reported if they were asserted explicitly by the
document. Otherwise reasoner flags plausible relationships by blank nodes. The
class subsumptions, produced by other two reasoners, can be reflected in the
output. This explains why the output of the SPARQL queries produced by Jena
reasoner differs from ones produced by Pellet and Hermit.

Fig. 1. Comparison of reasoners, in respect to dataset containing 1 department.

Figure 1 (for dataset with 1 department) and Figure 2 (for dataset with 15
departments) both show that different reasoners perform differently with each
reasoning task. Firstly, instance retrieval task is the suggestion of LUBM project
and was also evaluated in [6]. The results that from our experiments and ones
reported in [6] both suggested that HermiT reasoner consumes much higher
power than its competitors. AndroJena and Pellet reasoners, on the other hand,
were using power consumption similarly. Although, it was recorded the slightly
higher power drain from the Pellet reasoner.

The second task, Inference and Instance Retrieval, was using Query 10 from
LUBM’s set of test query and differs from Query 6, 7, 8 and 9, which were used
in [6], in that it only requires the (implicit) subClassOf relationship between
GraduateStudent and Student.

Our Query 3 (for inference only) and Query 4 (for T-Box classification task)
were to inspect the power consumption for reasoning services with less or no in-
volvement of individuals. These were not evaluated by the work [6]. Interestingly,
HermiT outperformed the other reasoners in these tasks.



Fig. 2. Comparison of reasoners, in respect to dataset containing 15 departments.

In [6], the largest dataset that authors used contained only 4 departments.
This paper, however, aims to test reasoner’s scalability and hence the experi-
ments were performed against a wide range of datasets, from ones with 1 depart-
ment to ones with 15 departments. AndroJena cannot cope with large datasets
so it had to be aborted while performing two reasoning tasks including logi-
cal inference, due to the boundaries that were set. Nevertheless, the rest of the
reasoners performed well and produced the results.

It was found out that voltage is reducing when the state of charge is de-
creasing. Moreover, some tests took up to 51 minutes to complete their task.
During these tests the phone battery drained about 21% of the capacity and the
voltage decreased by 220mV. This happened because the permutation launches
3 reasoners, one after another a multiple times. Hence the results produced at
the beginning of the simulation test were slightly different than the ones received
later on during the same test, due to the decrease of voltage.

3.3 Discussion

This experiment proved that reasoners can be successfully compiled on the an-
droid mobile device. The results revealed that voltage is affecting the outcome
of the reasoning task. It was calculated that during the most time consuming
test, used in this experiment, voltage can differ by about 220mV. It also caused
the power consumption values calculated using varying voltage differ.

The results also suggested that the effect of different reasoning tasks and the
size of dataset to reasoners are important. AndroJena reasoner, for example, was
found to require much more hardware resources than other reasoners when per-
forming reasoning tasks involving inference and running on datasets containing
more than 21 thousand triples. Therefore, the reasoner had to be manually sus-
pended from occupying all the memory and getting into the outOfMemory error.
HermiT revealed its advantages over other reasoners when performing complex



tasks. However, simple tasks such as instance retrieval were causing HermiT
to take longer time and drain much more power. Pellet, on the other hand, was
showing stable results during the whole experiment. It was in average the fastest
and the least power consuming reasoner. Moreover, Pellet was also capable to use
either OWL or Jena APIs, so it has higher compatibility over other reasoners,
because it can support, for example, both SPARQL and SPARQL-DL queries.

4 Related Work

The most relevant work to this paper is Paton and McGuiness’s work [6], which
uses external power supply with fixed voltage instead of battery. Our setting
is closer to the real world set up. Furthermore, their approach only works for
smartphones with replaceable batteries but not for ones with built-in battery,
which is in fact the case for current generation of smartphones. Note that our
approach does not only work for Google Nexus devices but for any Android 5.0
and later devices (with Android API level 21 and later).

William Van Woensel et al. in [10] conducted the performance analysis (in-
stead of power consumption) of mobile reasoners. The Benchmark data and
rule-sets in their work were selected from [3]. The experiment was conducted
on Android platform but the framework was claimed as a cross-platform solu-
tion.This is an advantage compared to our approach which depends on the use
of Android API 21 to measure current flows and voltage. Given the dominance
of Android-based smartphones in the market, we believe that our approach is a
simpler yet efficient solution. Besides, unlike [10] our approach does not require
the datasets to be converted into another format before running the benchmark.

The main idea in paper [12] is to use battery built-in voltage sensor, measure
time period and the state of discharge (SOD), i.e., the percentage of the rated
battery energy that has been discharged. To calculate power consumption using
those values the variation of SOD based on voltage needs to be determined
within the period of testing time. An issue with this approach is that the formula
P × (t1 − t2) = E × (SOD(V1) − SOD(V2)) calculating the power consumption
is using the total capacity of battery (E) that is decreasing due to ageing.

5 Conclusion

We have presented an approach to measuring power consumption for Android-
based DL reasoners in a software level instead of the hardware levels as in pre-
vious works. By using new features provided in Android API Level 21, it is now
possible to access battery information such as voltage, current flows in order to
calculate the accurate power consumption of reasoning tasks. To evaluate the
approach, we have conducted some initial experiments to compare the power con-
sumption of different reasoners w.r.t. different reasoning tasks against datasets
of different scales. Reasoners were compared in term of power consumption while
running on mobile device and using the smart battery’s sensors instead of exter-
nal equipments.
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