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Abstract

The stochastic non-linear fractional knapsack problem
is a challenging optimization problem with numerous
applications, including resource allocation. The goal is
to find the most valuable mix of materials that fits within
a knapsack of fixed capacity. When the value functions
of the involved materials are fully known and differen-
tiable, the most valuable mixture can be found by direct
application of Lagrange multipliers. However, in many
real-world applications, such as web polling, informa-
tion about material value is uncertain, and in many cases
missing altogether. Surprisingly, without prior informa-
tion about material value, the recently proposed Learn-
ing Automata Knapsack Game (LAKG) offers arbitrar-
ily accurate convergence towards the optimal solution,
simply by interacting with the knapsack on-line.

This paper introduces Gaussian Process based Op-
timistic Knapsack Sampling (GPOKS) — a novel
model-based reinforcement learning scheme for solving
stochastic fractional knapsack problems, founded on
Gaussian Process (GP) enabled Optimistic Thompson
Sampling (OTS). Not only does this scheme converge
significantly faster than LAKG, GPOKS also incorpo-
rates GP based learning of the material values them-
selves, forming the basis for OTS supported balancing
between exploration and exploitation. Using resource
allocation in web polling as a proof-of-concept appli-
cation, our empirical results show that GPOKS consis-
tently outperforms LAKG, the current top-performer,
under a wide variety of parameter settings.

1 Introduction

The Internet can be seen as a massive collection of ever-
changing information, continuously evolving as web re-
sources are created, edited, deleted, and replaced (Pandey,
Ramamritham, & Chakrabarti 2003). Obtaining adequate
information from the Internet is crucial for many tasks, in-
cluding social media analytics, counter terrorism, and busi-
ness intelligence. It is thus important that the applied search
engines and web-monitoring frameworks are able to keep
their indexes and caches complete and up-to-date. Achiev-
ing this, of course, relies on detecting the changes that the
web resources undergo, typically by means of polling.

The problem of balancing polling capacity optimally
among web resources, with limited prior information, was

essentially unsolved until the Learning Automata Knap-
sack Game (LAKG) was introduced in 2006 as a generic
and adaptive solution to the so-called Stochastic Non-linear
Equality Fractional Knapsack (NEFK) Problem (Granmo et
al. 2006). Before that, the simplest and perhaps most com-
mon polling approach was to allocate the available polling
capacity uniformly among the web resources being moni-
tored, polling them all with the same fixed frequency, con-
strained by the available polling capacity. This uniform
polling strategy is clearly sub-optimal since web resources
evolve at different speed. For slowly changing web re-
sources, a high polling frequency translates into a corre-
spondingly large number of unfruitful polls. Conversely, for
quickly evolving web resources, a too low polling frequency
leads to potential loss of information or acting on out-dated
information. In brief, without balancing the allocation of
the available polling capacity, wasting resources polling one
resource may in turn prevent us from polling another more
attractive resource, thus degrading overall performance.

A two phase strategy has been proposed to address the
latter inefficiency: In the first phase, the uniform strategy is
applied, which allows the update probability of monitored
web resources to be estimated. By treating these probabil-
ity estimates as the true ones, Lagrange multipliers can be
applied to find an allocation of capacity that is optimal for
the estimated values (Pandey, Ramamritham, & Chakrabarti
2003). However, this method needs an arbitrary long esti-
mation phase to approach the optimal solution in the second
phase. That is, one either has to accept a sub-optimal final
solution because the update probability estimates are inac-
curate, or one must wait an extensive amount of time till
the estimates have become sufficiently accurate, allowing a
better solution in the second phase. Also note that evolving
update probabilities render the solution found with the latter
approach progressively more inaccurate.

This paper introduces Gaussian Process based Optimistic
Knapsack Sampling (GPOKS) — a novel scheme for solv-
ing stochastic knapsack problems founded on Gaussian Pro-
cess (GP) (Rasmussen & Williams 2006) based Thompson
Sampling (TS) (Thompson 1933; Granmo 2010), enhanced
by the principles of Optimistic TS (May et al. 2012). As
we shall see, not only does this scheme converge signif-
icantly faster than LAKG, GPOKS also incorporates GP
based learning of the material unit values themselves, form-



ing the basis for TS based exploration and exploitation. This
allows GPOKS to gradually shift from estimation to opti-
mization, starting with pure estimation and converging to-
wards pure optimization.

In (Granmo 2010) we reported a Bayesian technique for
solving bandit like problems, revisiting the Thompson Sam-
pling (Thompson 1933) principle pioneered in 1933. This
revisit lead to novel schemes for handling multi-armed and
dynamic (restless) bandit problems (Granmo & Berg 2010;
Gupta, Granmo, & Agrawala 2011a; 2011b), and empiri-
cal results demonstrated the advantages of these techniques
over established top performers. Furthermore, we provided
theoretical results stating that the original technique is in-
stantaneously self-correcting and that it converges to only
pulling the optimal arm with probability as close to unity as
desired. We now expand this principle to support Thompson
Sampling for Stochastic NEFK Problems.

1.1 Formal Problem Formulation

In order to appreciate the qualities of the Stochastic NEFK
Problem, it is beneficial to view the problem in light of the
classical linear Fractional Knapsack (FK) Problem. Indeed,
the Stochastic NEFK Problem generalizes the latter problem
in two significant ways. Both of the two problems are briefly
defined below.

The Linear Fractional Knapsack (FK) Problem: The
linear FK problem is a classical continuous optimization
problem which also has applications within the field of re-
source allocation. The problem involves n materials of dif-
ferent value v; per unit volume, 1 < 7 < n, where each
material is available in a certain amount x; < b;. Let
fi(x;) denote the value of the amount x; of material 4, i.e.,
fi(z;) = v;z;. The problem is to fill a knapsack of fixed vol-
ume ¢ with the material mix & = [x1, ..., ;] of maximal
value > fi(z;) (Black 2004).

The Nonlinear Equality FK (NEFK) Problem: One im-
portant extension of the above classical problem is the Non-
linear Equality FK problem with a separable and concave
objective function. The problem can be stated as follows
(Kellerer, Pferschy, & Pisinger 2004):

maximize f(Z) = > fi(x:)
subject to Y [ x; =candVi € {1,...,n},z; > 0.

Since the objective function is considered to be concave,
the value function f;(z;) of each material is also concave.
This means that the derivatives of the material value func-
tions f;(x;) with respect to z;, (hereafter denoted f), are
non-increasing. In other words, the material value per unit
volume is no longer constant as in the linear case, but de-
creases with the material amount, and so the optimization
problem becomes:

maximize f(Z) = > fi(w:),
where f;(x;) = Owi fi(zi)dz;
subject to  Y.[z; =candVi € {1,...,n},z; > 0.

Efficient solutions to the latter problem, based on the princi-
ple of Lagrange multipliers, have been devised. In short, the
optimal value occurs when the derivatives f; of the material

value functions are equal, subject to the knapsack constraints
(Bretthauer & Shetty 2002):

filz) =+ = fu(an)
Sla;=candVi e {1,...,n},z; > 0.

The Stochastic NEFK Problem: In this paper we gener-
alize the above nonlinear equality knapsack problem. First
of all, we let the material value per unit volume for any z;
be a probability function p;(x;). Furthermore, we consider
the distribution of p;(z;) to be unknown. That is, each time
an amount z; of material ¢ is placed in the knapsack, we are
only allowed to observe an instantiation of p;(z;) at x;, and
not p; (w;) itself.! Given this stochastic environment, we in-
tend to devise an on-line incremental scheme that learns the
mix of materials of maximal expected value, through a series
of informed guesses. Thus, to clarify issues, we are provided
with a knapsack of fixed volume ¢, which is to be filled with
a mix of n different materials. However, unlike the NEFK,
in the Stochastic NEFK Problem the unit volume value of a
material ¢, 1 < ¢ < n, is a random quantity — it takes the
value 1 with probability p;(x;) and the value 0 with proba-
bility 1—p; (x;), respectively. As an additional complication,
p;i(x;) is nonlinear in the sense that it decreases monotoni-
cally with z;, i.e., z;, < i, < pi(xs,) > pi(a4,).

Since unit volume values are random, we operate with ex-
pected unit volume values rather than the actual unit volume
values. With this understanding, and the above perspective
in mind, the expected value of the amount x; of material ¢,
1 < i < n, becomes f;(z;) = fox'i pi(u)du. Accordingly,
the expected value per unit volume? of material i becomes
fl(z;) = pi(x;). In this stochastic and non-linear version
of the FK problem, the goal is to fill the knapsack so that
the expected value f(Z) = Y} fi(x;) of the material mix
contained in the knapsack is maximized. Thus, we aim to:

maximize f(Z) =>] f; (JUz)’
where f;(x;) = fom pi(u)du,pi(z;) = fi(z:)
subject to ZT% =candVie {1,...,n},z; > 0.

A fascinating property of the above problem is that the
amount of information available to the decision maker is
limited — the decision maker is only allowed to observe the
current unit value of each material (either O or 1). That is,
each time a material mix is placed in the knapsack, the unit
value of each material is provided to the decision maker. The
actual outcome probabilities p;(x;), 1 < i < n, however, re-
main unknown. As aresult of the latter, the expected value of
the material mix must be maximized by means of trial-and-
error, i.e., by experimenting with different material mixes
and by observing the resulting random unit value outcomes.

"For the sake of consistency with previous work on the Stochas-
tic NEFK Problem, we here model stochastic material unit values
using Bernoulli trials. However, since GPOKS is based on Gaus-
sian Processes, the central limit theorem opens up for addressing
a number of other distributions too. Furthermore, there exist dedi-
cated kernel functions for a variety of distributions.

*We hereafter use f/(x;) to denote the derivative of the ex-
pected value function f;(x;) with respect to x;.



1.2 Paper Contributions

The contributions of this paper can be summarized as fol-
lows:

1. We combine Bayesian modeling with reinforcement
learning to provide a novel solution to the Stochastic
NEFK Problem.

2. We propose the first reinforcement learning scheme that
combines Gaussian Processes (Rasmussen & Williams
2006) with Thompson Sampling (Thompson 1933;
Granmo 2010).

3. We introduce GP based sampling mechanisms in the spirit
of Optimistic Thompson Sampling (May et al. 2012) for
increased performance.

4. The resulting scheme persistently outperforms state-of-
the-art approaches when applied to resource allocation in
web polling.

These contributions form the first steps towards establishing
a new family of reinforcement learning schemes that pro-
vide on-line solutions to stochastic versions of classical op-
timization problems. This is achieved by carefully design-
ing Bayesian models that capture the nature of the optimiza-
tion problems, applying TS principles to address the explo-
ration/exploitation dilemma in on-line learning and control.

1.3 Paper Outline

In Section 2, we present our scheme for Gaussian Pro-
cess Based Optimistic Knapsack Sampling (GPOKS). We
start with a brief introduction to Gaussian Processes before
we propose how Gaussian Processes can enable Thomp-
son Sampling — the current leader when it comes to solv-
ing Bernoulli Bandit Problems (Granmo 2010) — for ex-
ploration and exploitation when solving on-line Stochastic
NEFK problems. Then, in Section 3, we define the web re-
source allocation polling problem in more detail, following
up with an evaluation of GPOKS compared with state-of-
the-art. We conclude in Section 4 and present pointers for
further work.

2 Gaussian Process Based Optimistic
Knapsack Sampling (GPOKS)

The conflict between exploration and exploitation is a well-
known problem in reinforcement learning, and other areas
of artificial intelligence. The multi-armed bandit problem
captures the essence of this conflict, and has thus occupied
researchers for over fifty years (Wyatt 1997). In brief, an
agent sequentially pulls one of multiple arms attached to a
gambling machine, with each pull resulting in a random re-
ward. The reward distributions are unknown, and thus, one
must balance between exploiting existing knowledge about
the arms, and obtaining new information.

We are here facing a similar problem, however, instead of
seeking the singly best material (bandit arm), we need to find
a mixture of materials, also referred to as a mixed strategy
in Game Theory. Recently, GP optimization has been ad-
dressed from a bandit problem perspective (Srinivas N. & M.
2010), allowing the GP to be explored globally with as few

evaluations as possible based on so-called upper confidence
bounds. Inspired by the success of GP based optimiza-
tion, we here propose a novel GP based model for stochastic
NEFK problems, where a collection of GPs captures the in-
dividual material unit values. Based on the GP colletion,
Thompson Sampling is applied to sample likely determinis-
tic NEFK problem instances from the GPs. These, in turn,
are solved based on Lagrange Multipliers, producing a po-
tential solution to the problem at hand.

2.1 Gaussian Processes based Representation of
Material Unit Value

A Gaussian Process (GP) is a stochastic process that rep-
resents a function as a multivariate Gaussian distribution
(Rasmussen & Williams 2006). It is specified as a tuple
GP = (u(Z), K(-,-)) where p(-) is the mean function, typi-
cally assigned ;4(Z) = 0, and K (-, -) is a kernel that specifies
the covariance matrix for the random vector Z. In this paper,
we use the one dimensional Squared Exponential kernel (eq.

1), configured by the hyper parameters 6 = {I, 0]20, o2}

1
ﬁ(mp_xq)Q)) +‘772L(5pq 1

Here [ is the characteristic length-scale parameter that deter-
mines how rapidly the correlation should decay as the dis-
tance between x,, and x, increases, UJ% is the signal variance

and o2 is white noise (note that &, here denotes the Kro-
necker delta between x,, and x,). For further information on
GPs we refer to (Rasmussen & Williams 2006).

By way of example, Figure 1 illustrates how the posterior
distribution over possible material unit value functions for a
given material ¢ can be represented by means of a GP. The
x-axis measures the amount of material, x;, while the y-axis
provides the material unit value f/(x;). The mean and 95%
confidence interval is included, as well as four samples indi-
cating possible candidates for f/(z;). Note that since the
Stochastic NEFK problem deals with non-increasing unit
value functions, f/(z;), we apply Rejection Sampling to
sample from the distribution of non-increasing functions.
Similarly, ”optimistic” sampling, as pioneered by May et al.
(May et al. 2012), is realized by rejecting sampled functions
that drop below the estimated mean.

K(zp,zq) = U]%exp(—

2.2 Architectural Overview of GPOKS

Figure 2 provides an architectural overview of our scheme.
As illustrated in the figure, GPOKS operates as follows:

1. A collection of GPs, one Gaussian Process, GP;, for each
material ¢, attempts to estimate the material unit value
functions, f!(z;),1 <i<mn.

2. One candidate material unit value function, fl’(;vl), 1<
1 < n, is then sampled from each GP; , thus applying the
TS principle of sampling functions proportionally to their
likelihoods.

3. The DET-KS component in the architectue finds the opti-
mal material mixture M = [xq, ..., Xy] for the sampled

material unit value functions, f[ (x;),1 < i < n, using
Lagrange multipliers.
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Figure 2: GPOKS Architectural Overview

4. One of the materials is then selected by the Scheduler
component for evaluation, ensuring that each material ¢
is selected with a frequency that is proportional to the

amount of material, x;, assigned by M.

5. Finally, the Stochastic Environment, i.e., the Stochastic
NEFK, samples the true outcome probability function,
pi(x;), at x;, providing feedback v; to the corresponding
GP;, which updates its Bayesian estimate of f/(x;).

By following the above steps our goal is to gradually im-
prove our “best guesses” so that each iteration successively
brings us closer to the optimal solution of the targeted
Stochastic NEFK problem.

2.3 Example Steps

Figure 3 and 4 show the GP based estimates for the unit
value of two materials, f1(z1) and f4(z2), after only 5 ma-
terial value observations. As can be seen, uncertainty about
the material unit value functions is significant, and the esti-

mated optimal material amounts M = [2, &) are far from
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Figure 6: Web resource changes occurring over time. An ’x’
on the time-lines denotes that the respective web resource
has changed.

the optimal amounts M = [x1, x2].

However, after 193 iterations of the GPOKS algorithm,
we observe a number of fascinating properties in Figure 5.
First of all, the Bayesian estimates of the material unit val-
ues, fi(x1) and fi(z2), have become more accurate. Fur-
thermore, we observe that the estimated optimal material
mixture is now much closer to the optimal mixture. Finally,
observe that the uncertainty concerning fi(x1) and f}(x2)
varies with 1 and 5. The beauty of Thompson Sampling is
that the observations are collected with gradually increasing
exploitation, zooming in on the areas that are most likely to
contain the optimal material mixture.

3 Application: Web Polling

Having obtained a solution to the model in which we set the
NEFK, we shall now demonstrate how we can utilize this
solution for the current problem being studied, namely, the
optimal web-polling problem.

Web resource monitoring consists of repeatedly polling
a selection of web resources so that the user can detect
changes that occur over time. Clearly, as this task can be
prohibitively expensive, in practical applications, the sys-
tem imposes a constraint on the maximum number of web
resources that can be polled per time unit. This bound is
dictated by the governing communication bandwidth, and by
the speed limitations associated with the processing. Since
only a fraction of the web resources can be polled within
a given unit of time, the problem which the system’s ana-
lyst encounters is one of determining which web resources
are to be polled. In such cases, a reasonable choice of ac-
tion is to choose web resources in a manner that maximizes
the number of changes detected, and the optimal allocation
of the resources involves trial-and-error. As illustrated in
Figure 6, web resources may change with varying frequen-
cies (that are unknown to the decision maker), and changes
appear more or less randomly. Furthermore, as argued else-
where, (Granmo & Oommen 2006; Granmo et al. 2006;
2007), the probability that an individual web resource poll
uncovers a change on its own decreases monotonically with
the polling frequency used for that web resource.

Although several nonlinear criterion functions for mea-
suring web monitoring performance have been proposed
in the literature (e.g., see (Pandey, Ramamritham, &
Chakrabarti 2003; Wolf et al. 2002)), from a broader view-
point they are mainly built around the basic concept of up-
date detection probability, i.e., the probability that polling a
web resource results in new information being discovered.
Therefore, for the purpose of conceptual clarity, we will use
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Figure 3: Estimate of material unit value fi(x;) af-
ter 7 observations, with optimal and estimated material
amounts xp.

the update detection probability as the token of interest in
this paper. To further define our notion of web monitoring
performance, we consider that time is discrete with the time
interval length 7" to be the atomic unit of decision making. In
each time interval every single web resource 7 has a constant
probability g; of remaining unchanged. Furthermore, when
a web resource is updated/changed, the update is available
for detection only until the web resource is updated again.
After that, the original update is considered lost. For in-
stance, each time a newspaper web resource is updated, pre-
vious news items are replaced by the most recent ones.

In the following, we will denote the update detection
probability of a web resource ¢ as d;. Under the above con-
ditions, d; depends on the frequency, x;, that the resource is
polled with, and is modeled using the following expression:

di(zi) =1— Q’Li

By way of example, consider the scenario that a web re-
source remains unchanged in any single time step with prob-
ability 0.5. Then polling the web resource uncovers new
information with probability 1 — 0.5% = 0.875 if the web
resource is polled every 37¢ time step (i.e., with frequency
%) and 1 — 0.5 = 0.75 if the web resource is polled ev-
ery 2? time step. As seen, increasing the polling frequency
reduces the probability of discovering new information on
each polling.

Given the above considerations, our aim is to find the
resource polling frequencies & that maximize the expected
number of pollings uncovering new information per time
step:

maximize Y, #; X d;(x;)
subject to Y [z =candVi=1,...,n,z; > 0.
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Figure 4: Estimate of material unit value fi(xs) af-
ter 7 observations, with optimal and estimated material
amounts Io.

3.1 GPOKS Solution

In order to find a solution to the above problem we must
define the Stochastic Environment that GPOKS is to inter-
act with. As seen in Section 2, the Stochastic Environment
consists of the unit volume value functions { f{(z1), f}(x2),
., f1(x5)}, which are unknown to GPOKS. We identify
the nature of these functions by applying the principle of
Lagrange multipliers to the above maximization problem.
In short, after some simplification, it can be seen that the
following conditions characterize the optimal solution:

dl(xl) = dg(l‘g) == dn(l‘n)
Ylzi=candVi=1,...,n,2;, > 0.

Since we are not able to observe d;(x;) or g; directly, we
base our definition of { f](z1), f5(z2), ..., f}(x,)} on the
result of polling web resources. Briefly stated, we want
f!(z;) to instantiate to the value 0 with probability 1—d;(z;)
and to the value 1 with probability d;(x;). Accordingly, if
the web resource ¢ is polled and ¢ has been updated since
our last polling, then we consider f/(x;) to have been in-
stantiated to 1. And, if the web resource ¢ is unchanged, we
consider f/(x;) to have been instantiated to 0.

3.2 Empirical Results

In this section we evaluate GPOKS and compare its perfor-
mance with the currently best performing algorithm, LAKG.
While H-TRAA possesses better scalability than LAKG
(Granmo & Oommen 2010), for two material problems,
their performance is identical because the hierarchical setup
of H-TRAA does not come into play. For clarification we
will also include some promising variants of GPOKS. Here
follows an overview of a selection of the policies that we
have investigated:

Uniform: The uniform policy allocates monitoring re-
sources uniformly across all web resources. This classical
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policy can, of course, be applied directly in an unknown en-
vironment.

LAKG: The LAKG scheme is basically a game between
so-called Learning Automata (Narendra & Thathachar
1989). They start off from a uniform policy and gradu-
ally improves toward the optimal configuration through a
sequence of small jumps across a discretized search space.
In all our experiments the resolution of LAKG is set to 100
states.

Optimal: This policy requires that update frequencies are
known, and finds the optimal solution based on the prin-
ciple of Lagrange multipliers (Pandey, Ramamritham, &
Chakrabarti 2003; Wolf et al. 2002).

GPOKS - Mean: To highlight the advantage of our Opti-
mistic Thompson Sampling approach, we also test a simpler
scheme where we use the mean of the GPs when estimating
the optimal solution rather than sampling functions from the
GPs.

We have conducted numerous experiments using various
configurations, such as different noise parameters and up-
date probabilities. Here, we present a representative subset
of these, as they all show the same trend. Performance is
measured as the average accumulated number of web re-
source updates found.

For these experiments, we used an ensemble of 1000 in-
dependent replications, each random generator seeded with
a unique number, to maximize the precision of the reported
results. In order to provide a robust overview of the perfor-
mance of GPOKS, we investigated three radically different
update probability configurations for web resource pairs. In

the first one, ¢ = 0.9/¢g2 = 0.1, one web resource is up-
dated significantly more often than the other. A more moder-
ate version of the latter configuration, ¢g; = 0.75/¢2 = 0.25,
was also investigated. Furthermore, we measured perfor-
mance when the two web resources have almost equal up-
date probability, ¢; = 0.55/g2 = 0.45. Finally, we also
investigated the robustness of GPOKS by adding increas-
ing amount of white-noise, (w,), to the feedback given to
GPOKS. Note that, for the sake of fairness, we applied the
same kernel hyper-parameters, § = {1.0,1.0,0.1}, for all
the GP based strategies, without further optimization.

Table 1 reports the performance of the different poli-
cies®. As can be seen, GPOKS clearly outperforms LAKG
when facing the ¢; = 0.9/g2 = 0.1 configuration, with
GPOKS detecting on average approximately 8 more updates
than LAKG over 1000 time steps. Also note how remark-
ably close GPOKS gets to the optimal performance, missing
on average merely 7 web resource updates over 1000 time
steps. We observe similar results for the g3 = 0.75/¢> =
0.25 configuration. Finally, for the ¢ = 0.55/g2 = 0.45
configuration, we observe that the performance of LAKG
and GPOKS becomes more similar. This can be explained
by the prior bias of LAKG, starting from a uniform allo-
cation of resources. This gives LAKG an advantage over
GPOKS, which are largely unbiased when it comes to prior
belief about update probabilities. Finally, notice the perfor-
mance loss caused by using the mean of the GPs (GPOKS-
Mean) instead of TS. This trend is further explored in Ta-

3Note that all of the setups apply a small degree of white noise
(ws = 0.1).



ble 2, where we increase the amount of white noise affect-
ing feedback. We then observe that GPOKS is surprisingly
robust towards noisy feedback compared to GPOKS-Mean.
This can be explained by the greedy nature of GPOKS-
Mean, which is less inclined to explore the space of func-
tions encompassed by the GPs, thus being more easily mis-
lead by noise.

4 Conclusions and Further Work

The stochastic non-linear fractional knapsack problem is a
challenging optimization problem with numerous applica-
tions, including resource allocation. The goal is to find the
most valuable mix of materials that fits within a knapsack
of fixed capacity. When the value functions of the involved
materials are fully known and differentiable, the most valu-
able mixture can be found by direct application of Lagrange
multipliers.

In this paper we introduced Gaussian Process based Op-
timistic Knapsack Sampling (GPOKS) — a novel model-
based reinforcement learning scheme for solving stochastic
fractional knapsack problems. The scheme is founded on
Gaussian Process (GP) enabled Optimistic Thompson Sam-
pling (OTS). Our empirical results demonstrates that this
scheme converge significantly faster than LAKG. Further-
more, GPOKS incorporates GP based learning of the mate-
rial unit values themselves, forming the basis for OTS sup-
ported balancing between exploration and exploitation. Us-
ing resource allocation in web polling as a proof-of-concept
application, our empirical results show that GPOKS consis-
tently outperforms LAKG, the current top-performer, under
a wide variety of parameter settings.

In our further work, we will address games of interacting
GPOKS for solving networked and hierarchical resource al-
location problems. Furthermore, we are investigating tech-
niques for decomposing the GP calculations for increased
computational performance.
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Scheme p1/ps Avg[#Updates] t=10 | Avg[#Updates] t=100 | Avg[#Updates] t=1000
Optimal 0.90/0.10 9.1 91.0 909.9
Uniform 0.90/0.10 59 59.0 590.0
LAKG 0.90/0.10 6.0 71.6 874.9
GPOKS 0.90/0.10 8.0 88.9 903.0
GPOKS-Mean | 0.90/0.10 8.5 89.7 902.9
Optimal 0.75/0.25 8.1 81.2 812.5
Uniform 0.75/0.25 6.9 68.8 687.5
LAKG 0.75/0.25 6.9 74.1 793.1
GPOKS 0.75/0.25 7.4 78.8 807.9
GPOKS-Mean | 0.75/0.25 6.6 69.6 792.2
Optimal 0.55/0.45 7.5 75.2 752.5
Uniform 0.55/0.45 7.5 74.8 747.5
LAKG 0.55/0.45 7.5 74.8 749.8
GPOKS 0.55/0.45 7.0 73.5 749.4
GPOKS-Mean | 0.55/0.45 5.4 52.8 725.3

Table 1: Average number of updates at different times, w, = 0.1

Scheme p1/p2 we =00 | wy, =02 | w, =04
GPOKS 0.75/0.25 808.2 804.5 804.1
GPOKS-Mean | 0.75/0.25 793.9 787.2 769.1

Table 2: The performance of GPOKS variants under different levels of white noise



