
Using Graph Matching: Program Recognition of the Selection Sort Algorithm

Ronald Finkbine, Ph.D.
Indiana University Southeast
New Albany, Indiana 47250

rfinkbin@ius.edu

Abstract
The field of program understanding attempts to determine
the function of a code segment without programmer
intervention and for this to occur, it is necessary to have a
model (plan) against which to attempt to match the code
segment of interest. This paper traces in detail the pattern
recognition of the selection sort algorithm.

Introduction
The purpose of this research is to develop a general-
purpose algorithm recognition system, capable of
recognizing any well-defined and well-written algorithm.
This project uses plans (Wills 1992) to recognize common
forms (code segments) within existing software in an
attempt to gain knowledge about a legacy system (Sartipi
2003) from its source code (Biggerstaff 1990) by matching
against a large defined set of common algorithms, rather
than attempting to deduce what a code segment performs
from its specific dataflow (Rugaber et. al. 1990). This
research uses an intermediate representation of an abstract
syntax tree (AST), standard in compiler toolsets. This AST
representation is output as a flattened tree into a fact list,
which is the operation underpinning of expert systems.

Targeted Problems
This research concentrates on design recovery from legacy
software, written in older languages and with fewer
techniques applicable to modern software development.
This is because that recently written software is often
written in a more modern language, but this leaves a large
bulk of older, operational software, orphaned to endless
software maintenance until it is rewritten.

Legacy software, in general, exhibits a number of the
following problems: 1) parameter identification, 2)
identifying code segments that are replaceable by calls to
commercial libraries (such as IMSL), 3) removing
duplicate code to user library, 4) separation of intertwined
components, and 5) combining disparate codes into single

equations. Each of these problems increases the difficulty
in a software maintenance programming attempting to
understand a software component. Graph matching is
considered one of the most complex problems in
computing (Bienenstock 1987).

The first problem, parameter identification, is the most
simple. It involves searching the source code for variables
that are assigned values within assignment statements (no
reads) one time. Any usage, thereafter, is only on the right-
hand side of assignment statements and is a reference to
the variable, not a modification to the variable. Therefore,
these types of variables, or constants, can be identified by
the parameter statement which indicates their true usage.

The second problem, plan recognition, is comprised of
identifying code segments that are replaceable by calls to
commercial libraries (such as IMSL). This will involve
detecting codes similar to those used within commercial
libraries.

The third problem, duplicate removal, consists of detecting
and removing duplicate code to the user’s library. This
allows the user to designate a section of code as common
and to look through their remaining programs searching for
codes that are copies of the target.

The fourth problem, algorithm separation, involves
detection/separation of overlapping algorithms within the
same section of code. In Figure 1 it can be seen that there
are two initializations of arrays occurring within the same
do-loop. This is good for optimizing computer resources,
but not for optimizing the programmers’ time for
understanding and maintaining a program.

The fifth problem, algorithm aggregation, involves
combining disparate codes into single equations. As
displayed in Figure 2, an equation 1) can be coded in
multiple ways. Though the computations are equivalent,

 DO 10 I = 1, N
 A(I) = 0
 B(I) = 0

10 CONTINUE

Figure 1: Intertwined Algorithms

 For Loop through structure (less 1)
 with “i” index

 Minimization by position of
 partial structure

 Swap in structure of
 position “I” with
 position “small”

Figure 2: SSA Plans

the recognition of them must take these variations into
account.

This paper describes a portion of the High-Level
Algorithm Recognizer (HLAR) project (Finkbine1994),
which recognizes three algorithms selection sort (SSA),
quick sort and heap sort from four languages, C, Scheme,
Postscript and COBOL. This research is unique in that it
recognizes algorithms of significant size (currently 50 lines
of code), and detects these algorithms directly from
multiple third-generation programming languages instead
of from one language or directly from an intermediate form
(Ning 1989).

The first step in recognizing common algorithms is to
compile the input source program into an intermediate
representation (Seemann 1998). The bulk of the
recognition efforts will be made by CLIPS, a rule-based
forward-chaining expert system, therefore the source
programs will be expressed as a facts list (a tree
represented as a linked list). Once the CLIPS system is
initialized and pattern recognition begins, the general flow
of the pattern recognition process is listed in Table 1.

This first phase is the initial fact generation. In the
following discussion, rule names are listed in separate
phases (or firing sets). This is necessary since in a rule-
based expert system, rules can fire at the time their
conditional elements are satisfied. Within each phase, the
rules can (and do) fire in an order determined within the
expert system itself, not the order they are introduced into

the expert system or the order in which they are listed
within the system. A rule set once started will continue to
fire until all rules have attempted to fire one final time with
none successful. This procedure allows each rule to fire as
many times as possible, only halting when all have been
unsuccessful during the final pass.

SSA Recognition Trace
One of the algorithms currently recognized is the Selection
Sort Algorithm (SSA). Figure 2 is a depiction of the
component parts, also known as plans (or sub-plans),
within the SSA. The minimization plan and the swap plan
are contained, respectively, with the ssort plan. As well as
proper containment and ordering of the sub-plans in this
Figure, it is necessary that the plans have identifiers
(variables) in common. For example, for this function to
perform correctly, it is necessary that the indexing variable
of the containing for loop be one of the positions of the
data structure with the swap plan. These additional
requirements are necessary for the proper execution of the
algorithm and its subsequent recognition.

This section details the recognition of the SSA within
HLAR. This algorithm was chosen because it is a common
algorithm within computing literature and the computer
programming community. It has a complex plan structure,
providing enough challenge to be of interest within the
program understanding/re-engineering community. Figure
2 depicts the general flow of the recognition process
necessary for the SSA.

Table 1: Selection Sort Algorithm Rule Flow
Firing set Prefix Rules
First Defines 00
 General 00
 Expressions 00, 02, 07, 09, 10, 11, 17
 Structures 00
 Evaluations 01, 02
Second Variables 00, 02, 04, 05, 06, 07, 08
 swaps 00, 01
Third loop 00, 01, 02, 03
 min 00, 01
Complete SSA 00, 01

Initial Facts
After a third generation source language program is
translated into the intermediate form, a program will
traverse it and generate a list of facts that are input into the
HLAR system. The structure and purpose of these facts
are further explained in the remainder of this section. In
general, a statement will become a series of facts, roughly
equivalent to tokens in traditional compiler technology.

Initial Rules
There are two rules that fire first due to their salience value
regardless of the subject program being examined. Rule
gen_00 fires and establishes the number of the maximum
generalNode used. Next, the def_00 rule fires, establishing
the last-general-node field of every defineRoutineNode,
thus establishing the span of control of each routine. This
is not possible in a one-pass translator, such as is used to
generate the fact intermediate form from the standard
intermediate form, which is necessary for input into a rule-
based expert system. In the case of multiple routines
within a program, the control of each routine extends to the
beginning of the next routine. The control of the last
routine extends to the last generalNode, the value
calculated in the gen_00 rule.

For the SSA, the annotated explanation of the recognition
process appears in this section. Figure 4 contains the
intermediate form code used for explanation of the
recognition. In general, processing takes place from the
lowest level (tokens and expressions) to higher levels
(loops and if statements). Table 1 displays the general rule
flow in the SSA recognition. To support the passing of
information form rule within HLAR, it is necessary to have
a set of abstract data types known as templates.

First Rule Firing Set
After the facts generated from the SSA program are input,
the CLIPS system reviews these facts and attempts to

satisfy the requirements for each of the rules within the
HLAR system. This section describes the rules that are
fired and the facts they modify by retracting, asserting or
leaving them alone. Each of the statements referenced in
this section is from Figure 3, and the rule firing is
summarized in Table 2. In general, rules within a firing set
can fire in any order; however, some rules in this first
firing set generate data that fire other rules. This rule firing
set recognizes three categories of rules: expressions,
structures and evaluation clauses (used to determine the
path of execution within an if- statement and the exit of a
loop).

Figure 4 is included to display the intermediate code,
produced by a C language parser, which is being
recognized. The general layout of a program is a sequence
of global variable definitions and assignments followed by
sub-program definitions. In general, intermediate form
statements use prefix notation and each statement is a
function call followed by the parameters passed to or
returned from the function.

 [1] (define-routine sort
[2] (parameters (inout numbers) (in count)
[9] (assign i 0)
[10] (loop
[11] (eval (gt I (minus count 1)))
[12] (assign big I)
[13] (assign j (plus i 1))
[14] (loop
[15] (eval (gt j count))
[16] (if
[17] (eval (gt (select numbers (key j) (field))
[18] (select numbers (key big) (field)))
[19] (assign big j))
[20] (assign j (plus j 1)))
[21] (assign temp (select numbers (key big) field)))
[22] (assign (select numbers (key big) (field))
[23] (select numbers (key I) (field))
[24] (assign (select numbers (key I) (field)) temp)
[25] (assign I (plus I 1))))

Figure 4: SSA Intermediate Form

Expressions are recognized within the first firing set. They
are the least-common denominator of program
understanding and appear on the right-hand side of
assignment statements and as the single operand of
evaluation statements. Their variety (such as x = x + 1
versus x = 1 + x) lead to the increased complexity of
pattern-matching algorithms.

The rule exp_00 detects an expression of zero in statement
9. Rule exp_02 detects an expression of an identifier plus
one in statements 13, 20, and 25. Rule exp_07 detects a
Boolean expression of an identifier greater-than another
identifier in statement 15. Rule exp_17 fires on statement
11 followed by rule exp_09, which detects a complex

expression in statement 11. Rule eval_02 detects a
comparison of simple identifiers in statement 15.
Rule exp_10 detects an expression of a simple identifier in
statements 12, 17, 18, 19, 21, 22, 23, and 24. This
identification of simple identifiers (variable references)
produces output that is part of the conditional input of rule
struc_00, which detects an array referenced by a simple
identifier in statements 17, 18, 21, 22, 23 and 24. Also,
rule eval_01 fires, recognizing the comparison of two
positions of the same array with the greater-than operator.

Second Ruling Firing Set
Due to the extensive rule firing that occurs in this set, the
rule execution is displayed in Table 3. Rule var_00 detects
an identifier occurring on both the left-hand- and right-
hand-side of an incrementing assignment in statements 21
and 25. Rule var_04 recognizes a somewhat similar x = y +
1 statement in 13. Rule var_05 recognizes a simple save-
value assignment statement in 12 and 19.

Rule var_06 recognizes the save-value of an array position
in statement 21. Rule var_07 recognizes a save between
two locations of the same array, and rule var_08
recognizes an assignment from a simple identifier to an
array position. These three assignment statement rules
(var_06, var_07 and var_08) produce input to rule
swap_00. Swap rule swap_00 fires on statements 21, 22,
23 and 24. This rule sets a controlling condition that has
prevented the not- rules from firing. After the assertion, an
interfering statement within the swap segment would be
detected, if one existed. And since there are no interfering
statements rule swap_01 fires successfully.

Potential swap

Actual swap

Special-if

Pot-minimization

Act-minimization

Potential SSA

Actual SSA

Figure 3: SSA CLIPS Template Flow

Table 2: SSA Firing Phase One
Rule Rule name Statements

exp_00 detect_exp_0 9
exp_02 detect_exp_plus_id_1 13, 20, 25
exp_07 detect_exp_gt_id_id 15
exp_09 detect_exp_gtlop_id_min_id_1 11
exp_10 detect_exp_id 12, 17-19, 21-24
exp_11 detect_exp_gt_strucid_strucid 17, 18
exp_17 detect_exp_minus_id_1 11
struc_0
0

detect_strucref_id 17, 18, 21, 22, 23, 24

eval_01 detect_gt_strucid_strucid 17, 18
eval_02 detect_gt_id_id 15

Third Rule Firing Set

Loop rule loop_00 fires on statements 9, 10, 11, 5,
recognizing the index variable initialization, increment,
and testing. This is followed by rule loop_01 firing on
these same statements since there is no interference with
the index variable within the loop statement and all
statements are within the same routine. Loop rule loop_02
fires on statements 13, 14, 15, 20, recognizing the index
variable initialization by an expression, increment and
testing. This is followed by loop rule loop_03 which fires
on statements 13, 14, 15, 20 since there is no interference
of the index variable within the loop statement and all
statements are within the same routine.

Minimum rule min_00 fires on statements 13 through 20,
recognizing the form of a degenerative minimization by
position. This is followed by rule min_01, which fires on
statements 13 through 20, which verifies the statements
have the correct ordering, non-interference of variables and
proper containment.

The variable count was established as the variable that
contains the initialized length or the number of structure
positions with actual values that are not undefined. This
must be input by the user and not performed automatically
by HLAR. In the future, it will be part of the system, but
would involve recognition of additional algorithms that are
not currently part of this research.

Completion of Rule Firing
SSA recognition rule potential_ssort_00 recognizes the
form of a containing-loop, a contained-degenerative-
minimization-plan and a swap plan with all identifiers
matching appropriately. This triggers a search for
interfering statements that will hopefully find no reason to
terminate the search. An example of which would be an
intervening statement that sets the loop-indexing variable
to zero (illegal in Pascal, legal in C).

The SSA recognition rule, ssort_01 then will fire due to the
correct statement ordering, proper containment and non-
interference.

Summary
The HLAR system currently recognizes the three
algorithms (written in the C programming language) in the
number of rule firings listed in Table 4. In addition, it has
recognized the SSA in the COBOL, Scheme and Postscript
programming languages. Currently, this project is being
redesigned which will involve a platform change in order
to build a more appropriate GUI as well as to be able to
distribute the recognition tasks across a network.

To limit the need for outside assistance from a programmer
(Ning 1989), the HLAR system has been designed (and
redesigned) to accept multiple forms of algorithms. Future
work includes development of a subsystem to construct the
plans by compiling from source and to not have the
recognition rules written expressly by a programmer.

References
Biggerstaff, Ted, 1990. Design Recovery for Maintenance
and Reuse, IEEE Computer: July.

Bauer, D., S. L. Hakimi, and E. Schmeichel, 1990.
Recognizing Tough Graphs is NP-Hard: Discrete Applied
Mathematics:28, 191.195.

Bienenstock, E and von der Malsburg, C.1987. A neural
network for invariant pattern recognition, Europhysics
Letters: 4 121-126.

Finkbine, Ronald 1994. B., Recognition of High-Level
Algorithms, Ph.D. Dissertation, Department of Computer
Science, New Mexico Institute of Mining and Technology.

Ning, Jim Qun 1989. A Knowledge-Based Approach to
Program Analysis, Ph.D. Dissertation, Department of
Computer Science, University of Illinois at Urbana-

Table 3: SSA Firing SetTwo
Rule Rule name Stmt

var_00 detect_assign_sca_inc_1_self 21, 25
var_02 detect_assign_sca_array_base_c 9
var_04 detect_assign_sca_inc_1_other 13
var_05 detect_assign_sca_sca 12, 19
var_06 detect_assign_sca_struid 21
var_07 detect_assign_strucid_strucid 22, 23
var_08 detect_assign_struciddd_sca 24
swap_00 detect_potential_id_swap 21-24
swap_01 detect_actual_id_id_swap 21-24

Table 4: Algorithm rule firings
Algorithm Rule Firings

Selection Sort 50
Quick Sort 75
Heap Sort 150

Champaign.

Rugaber, Spencer, Stephen B. Ornburn, and Richard
LeBlanc, Jr., 1990. Recognizing Design Decision in
Programs, IEEE Computer, July.

Sartipi, Kamran and Kontongiannis, Kostas 2003. On
modeling software architechture recovery as graph
matching. Proceedings of International Conference on
Software Maintenance, September.

Seemann, Jochen and von Gudenberg, Jurgen 1998.
Pattern-Based Design Recovery of Java Software,
Proceedings of the 6th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, 10-
16.

Wills, Linda 1992. Automated Program Recognition by
Graph Parsing, Ph.D. Dissertation, Artificial Intelligence
Laboratory MIT, July.

	Indiana University Southeast
	Abstract
	The field of program understanding attempts to determine the function of a code segment without programmer intervention and for this to occur, it is necessary to have a model (plan) against which to attempt to match the code segment of interest. This ...
	Introduction
	SSA Recognition Trace
	Initial Rules
	First Rule Firing Set
	Completion of Rule Firing

	Summary

