The Effect of Variations of Prior on Knowledge Tracing
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ABSTRACT

Knowledge tracing is a method which enables approximation
of a student’s knowledge state using a Bayesian network for
approximation. As the applications of this method increase,
it is vital to understand the limits of this approximation. We
are interested how well knowledge tracing performs when
students’ prior knowledge on the topic is extremely high or
low. Our results indicate that the estimates become more
erroneous when prior knowledge is extremely high (prior =
0.90).
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1. INTRODUCTION

The Bayesian Knowledge-Tracing (BKT) algorithm was de-
veloped in 1995 in an effort to model students’ changing
knowledge state during skill acquisition [5]. The idea is to
interpret students’ knowledge — a hidden variable — based
on observed answers to a set of questions. The algorithm
tracks the change in this probability distribution over time
using a simple Bayes’ net. The model is often presented as
four parameters: prior, learn, guess and slip (see Figure 1).
Prior refers to the probability that the student knows the
material initially, before acquiring any skills, learn indicates
that the student did not have the skill initially but acquired
it through doing the exercise, guess refers to accidentally
answering the question correct and slip to answering acci-
dentally wrong.

Knowledge tracing is the most prominent method used to
model student knowledge acquisition and is used in most in-
telligent learning systems. These systems have been said to
be outperforming humans since 2001 [3] and have been used
in the real world to tutor students [4]. For these reasons it is
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important to fully understand the strengths and limitations
of knowledge tracing before applying it more widely in the
classroom. As the parameters of the model are now known,
there is a need to estimate these parameters from the given
data. Previous research has demonstrated that the accuracy
of parameter estimation — and therefore knowledge tracing
— can be improved by applying different heuristics [17, 13]
or methods [16, 18] including personalizing the model for
each user [20, 8] or by extending the data used for analysis
[15, 6, 1].

Our work starts from a different premise: how robust is the
BKT approach to variation in the parameter space? Our
special interest is in the prior variable, which correlates to
a student’s knowledge of the topic before answering a ques-
tion. In any classroom, MOOC or otherwise, some students
will come in with a better understanding of the material
than others. Therefore it is important to study the effec-
tiveness of knowledge tracing on parameter estimation when
prior is extremely high or low.

If knowledge tracing models are inaccurate in modelling stu-
dents of a certain prior parameter, then smart tutors and
other systems designed to help those students learn will be
less effective. Especially if the students being modelled in-
accurately are those students doing poorly in the class, as
the smart tutors exist to help them the most.

Guess Guess Guess
Slip Slip Slip

Figure 1: The model of knowledge tracing



2. PREVIOUS WORK

For the purposes of this work, here we shortly summarize
three methods previously applied to improve the prediction
capabilities of BKT models. However, these methods are in-
sufficient to address the practical problem described above,
resulting in a need for our own experiment.

2.1 Individualization

Yudelson et al. [20] experimented with individualization by
bringing student-specific parameters into the BKT algorithm
on a larger scale. They split the usual skill-specific BKT
parameters into two components: one skill-specific and one
student-specific. They then built several individualized BKT
models and added student-specific parameters in batches,
examining the effect each addition had on the model’s per-
formance. They found that student-specific prior parame-
ters did not provide a vast improvement. However, student-
specific learning provided a significant improvement to the
model’s prediction accuracy.

Pardos and Heffernan furthered the experiment by develop-
ing a method of formulating the individualization within the
Bayes’ Net framework [11]. Especially interesting in terms
of our work is the difference prior values and methods sug-
gested for this individualization. Pardos observes that mod-
els taking student spesific priors based on students’ prior
knowledge clearly outperform traditional knowledge trace
approach. This is a contrast Yudelson et al.’s findings [20]
but it still underscores the importance of individualization
in the BKT algorithm.

Related to individualization per user, there have been dis-
cussion on using different values per resources. It can be
argued that different exercises teach different topics (7, 14].
This can be further used to individualize the model for dif-
ferent topics, an approach which has gained initial support
on empirical studies [14].

2.2 Enhancing the data

The second approach to improve these methods is related
to enhanching the data used for prediction. In its most
simple form, this can be done by adding additional relevant
data, such as data from past years, to the analysis [15].
Others have explored the possibility of adding more data to
the general domain-related knowledge on the models, and
suggest that these indeed improve the estimates [6].

However, the current direction in enhanced data relates to

information available on user interaction — especially in MOOC

environments where it is possible to access this kind of data.
To illustrate, Baker, Corbett, and Aleven [1] explore interac-
tions with the learning system and other non-exercise related
data, such as time spent on answering and asking help, to
determine the difference between slips and guesses.

We applaud these efforts and acknowledge that data other
than just student responses may indeed help to detect both
the cases where initial knowledge (prior) is high and when
it is low, instead of tweaking the EM algorithm further.

2.3 Improving the methods
There are several heuristics currently used to enhance the
BKT algorithm. One such heuristic involves expecting the
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Figure 2: The approach used in this study
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sum of slip and guess to be less than or equal to 1 [17]. Other
work determined that one’s starting estimated parameters
could affect where the algorithm converged to. In order to
improve the accuracy of the convergence, it was suggested
that starting parameters be selected from a Dirichlet distr-
bution derived from the data set [2, 13].

There have also been efforts to explore other machine learn-
ing methods on educational data. Initial trials born in the
KDDCup competition use a medley of random forests and
other machine learning algorithms but these methods have
proven largely unsuccessful [16, 18].

The knowledge tracing community, while accepting the va-
lidity of some of these heuristics [9, 12], has criticized their
inability to provide any insight into the student learning
model. Individualization, however, has the potential to im-
prove the BKT algorithm while also providing a pedagogical
explanation for said improvements.

3. METHODOLOGY

We began by generating datasets with specific known ini-
tial parameters in order to simulate groups of students at
different knowledge levels. We then ran expectation max-
imization (EM) on these datasets and allowed knowledge
tracing to calculate its own estimated parameters. We then
compared these estimated parameters to the original ones
used for generation to determine if the accurency of the pa-
rameter estimation depends on the initial parameters.

Table 1: Ground Truth Parameter Sets

prior learn guess slip
Set 1.1 ... 1.6 0.15 0.10 0.10 0.05
Set 2.1 ... 2.6 0.30 0.10 0.10 0.05
Set 3.1 ... 3.6 0.15 0.20 0.10 0.05

Set 48.1 ... 486 0.90 020 020 0.10



3.1 Generating the Data

As our goal was to determine how the prior ground truth af-
fects parameter estimation, we varied the prior used to syn-

thesize the data sets. We used six different priors (0.15,0.30, . ..

0.75,0.9), and two variations on learn, slip and guess' each
(see Table 1); total of 48 variations of these parameters.
Each of these data sets consists of 10,000 students and 20
observations per student. To increase the variation, we gen-
erated 6 datasets per condition. This kind of simulated ap-
proach has been previously used to evaluate the success of
Bayesian machine learning methods [8].

3.2 Analysis Procedure

For each data set, we estimated the parameters using the
expectation mazimization fitting (EM) algorithm using the
fastHMM implementation [10]. The parameter estimation
was conducted using a grid search with ten parameters, and
the best fitting model was selected using the log likelihood.

Using our 288 data sets, we can compare the estimates and
ground truths for each parameter and analyze the accuracy
of the estimates. We apply the standard methods of root-
mean-square error (RMSE) and other visualizations to do
our analysis. Using RMSE, we will be able to see if certain
ground truths lend themselves to more accurate estimations.

4. RESULTS

First, let us explore the parameter estimation in detail. The
avarage RMSE measurement in the data (Table 2) indicate
that the prediction quality decreases as the prior increases;
there is also increase of variance of the RMSE. This indi-
cates that the predictions with higher priors are first more
erronous and second, they converge in a larger area, result-
ing in variance. To confirm our observations, we conducted
a Wilcox-Mann-Whitney test to explore if the computed
RMSEs differented in statistically significant manner. As
shown in Table 3, both the RMSEs computed from the data
sets with priors 0.15 and 0.90 statistically differ significantly
from the other datasets (p < 0.05). Therefore we conclude
that the EM algortihm performs badly when prior is high.

To further understand this phenomena, we explore the esti-
mates per parameter. The errors per parameter are shown
in the Figure 3. The mean estimates are rather constantly
close by the zero, though a higher prior does affect variance.
As ground truth prior increases, the variance of guess and
learn increases while the variance of prior decreases. In the-
ory, a lesser variance on the prior prediction should imply

'Variations were 0.10 and 0.20 for learn and guess, and 0.05,
0.10 for slip.

Ground truth prior mean RMSE var RMSE
0.15 0.056639 0.000594
0.30 0.069073 0.001137
0.45 0.070005 0.000584
0.60 0.074044 0.001874
0.75 0.075946 0.002229
0.90 0.085257 0.004876

Table 2: The mean and variance of the root-mean-square
€rrors per prior

au250

Figure 4: Log likelihoods with different parameters

a more accurate prior estimate. However, as we saw in Ta-
ble 2, this is not actually the case. The prior estimate gets
less accurate as the value of the ground truth prior increases.
In Figure 3 we can see again some of the results we saw in
Table 2: the prediction accuracy decreases when prior is 0.6
and continues to decrease as prior increases.

Figure 4 shows that the log likelihood for each of the param-
eter combinations we analyzed. We see a slight, but non-
significant increase in the log likelihoods, suggesting that
the model is performing better — even while our RMSE er-
ror indicator demonstrates otherwise. It is also noteworthy
to observe that that when slip is 0.10, all log likelihoods
range between -65500 and -65250 but when slip is 0.05, all
log likelihoods range between -40000 and -35750, indicat-
ing that the slip value had a dramatic effect on the model
estimation accurancy.

S. IMPLICATIONS

Our findings indicate that there are higher errors in the
parameter estimations when prior is high (0.90). This is
probably due to the lack of evidence available for the HMM
to attribute to the learn and guess parameters. One ap-
proach to examine the impact of these errors is to examine
the students’ subjective experience in different conditions
[19]. As our data is syntetic, we can not measure the time
consumed by students due to errors, as examined by Youdel-
son & Koedinger [19]. Instead we explore the difference on
the number of questions students’ need to answer to achieve
mastery learning — for our purposes knowledge above 95 %
and assuming that the students answer each question cor-
rectly.

Examining the case of high prior knowledge, and when the
true learning was 0.1, we observed that majority of students
needed to answer over 5 times to achieve mastery (or: from
the 168 predicted value sets available, only 24 achieved mas-
tery), and for the high learning (0.2) the situation was not

Table 3: Significant differences between the RMSEs

0.15 0.30 0.45 0.60 0.75 0.90
0.15 1 <0.000 <0.001 <0.001 <0.001 <0.001
0.30 1 0.347 0.614 0.967 0.014
0.45 1 0.660 0.125 0.081
0.60 1 0.744 0.035
0.75 1 0.007
0.90 1
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Figure 3: Predicting parameters with different values of prior

significantly better — there 56 values achieved mastery with 5
responses. This indicates that the impact indeed was signif-
icant in terms of impact to students learning and highlights
the importance of this study.

6. CONCLUSIONS

We started this study with the motivation to explore how
well the knowledge tracing method performs when the prior
is high or low; this performance has practical implications
when applying this approach in a heterogenius classroom
where students arrive with highly different knowledge of the
domain. We studied this empirically by generating 288 dif-
ferent synthetic datasets and explored the difference between
the predicted parameters and the parameters used to gen-
erate the dataset.

Our results indicated a slightly increased in the estimation
error when prior was 0.90, which we mostly attribute to
higher error in learn and guess parameters. This observation
was statistically significant and most likely due to the fact
that students with higher priors produce less information
to be used by the HMM to estimate the guess and learn
parameters.

We explored the influence these errors had on the propabil-
ity of knowledge and observed that these errors significantly
reduced the speed students achieved mastery learning. This
result therefore implies that more work needs to be done to
detect those with high prior knowledge to cater their learn-
ing needs.
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