
Author Verification: Exploring a Large set of
Parameters using a Genetic Algorithm

Notebook for PAN at CLEF 2014

Erwan Moreau1, Arun Jayapal1, and Carl Vogel2

1 CNGL and Computational Linguistics Group
moreaue@cs.tcd.ie,jayapala@cs.tcd.ie

2 Computational Linguistics Group
vogel@cs.tcd.ie

Centre for Computing and Language Studies
School of Computer Science and Statistics

Trinity College Dublin
Dublin 2, Ireland

Abstract In this paper we present the system we submitted to the PAN’14 com-
petition for the author verification task. We consider the task as a supervised
classification problem, where each case in a dataset is an instance. Our system
works by applying the same combination of parameters to every case in a dataset.
Thus, the training stage consists in finding an optimal combination of parameters
which maximizes the performance on the training data using cross-validation.
This is achieved using a simple genetic algorithm, since the space of all possible
combinations is impractical.

1 Introduction

In this author verification task, a training set containing 6 datasets was provided; each
dataset consists of a set of problems (between 96 and 200) which belong to the same
language and genre; each problem consists of a small set (between 1 and 5) of “known”
documents written by a single person and a “questioned” document: the task is to deter-
mine whether the questioned document was written by the same person. More precisely,
the system must provide its prediction as a value in the interval [0, 1], which represents
the probability that the answer is positive (same author). The intended interpretation
is for 0 to mean “different author” with maximum certainty, and for 1 to mean “same
author” with maximum certainty, and any intermediate value describes the likeliness of
a positive answer, and with 0.5 equivalent to the system saying “I don’t know”. The
predictions are evaluated using the product of the area under the ROC curve (AUC) and
the modified accuracy measure c@1 [6], which treats 0.5 answers as a particular case.

We consider the task as a supervised learning problem, where, for each dataset,
the goal is to find a function which, when applied to a set of unseen problems in this
dataset, maximizes the performance (product of AUC and C@1). This function must
be generic enough to capture the stylistic characteristics of every author. It is meant to
represent how to capture any author’s style within a particular dataset, that is, in the

1092



context of a particular language and genre. For example, the type of observations (e.g.,
word bigrams) to take into account depends on the language, but whether a particular
observation (e.g., the bigram “it is”) is relevant or not is specific to a given author.

We define the space of all possible functions in the following way: each function is
defined by a set of parameters, each parameter being assigned a particular value among
a predefined set of possible values. The process of selecting features from the texts,
combining them in any predefined way, and learning how to interpret the differences
between the known documents and the questioned document is entirely driven by the
values taken by these parameters. For example, a parameter indicates which distance
metric should be used to compare the unknown document to the set of known docu-
ments. We call a particular combination of parameters a configuration. We define the
two following strategies which share only a subset of common parameters:

– The fine-grained strategy, described in §3, in which there are many possible param-
eters, is intended to try as many configurations (or functions) as possible, in order
to maximize the performance.

– The robust strategy, described in §4, is a more simple method which uses only a
small subset of parameters. It is intended to be safer (in particular less prone to
overfitting), but probably not to perform as well as the fined-grained strategy.

For the fine-grained strategy, the space of all possible configurations is too big to
be explored exhaustively. This is why we implement a simple genetic algorithm, which
is supposed to converge to a (possibly local) optimal configuration. This algorithm is
described in §3.4.

2 General architecture

For every problem to solve, we extract observations3 from the set of known texts, and
try to measure the four following abstract characteristics:

– their consistency, i.e. how consistently these observations apply among the known
documents written by the author;

– their divergence (from a reference corpus), i.e. how much the frequency of these
observations differs from the reference corpus (see §3.2);

– the confidence of the system in the reliability of these observations;
– the distance between the known documents and the questioned document with re-

spect to these observations.

We consider multiple ways to compute and use these four characteristic values. In
particular, the configuration file defines:

– the types of observations to take into account;
– the method to compute every characteristic at the observation level;
– the method to extract the most relevant subset of observations;

3 We use the term “observation” here to avoid any confusion with the features used in the ma-
chine learning stage.

1093



– the method to obtain a global value for each of the four characteristics;
– which subset of these values will be used as features in the machine learning stage.

The final step consists in training (or applying) a ML model based on these features.
There can actually be two models: the first and most important one predicts the scores
for each case in the dataset; the second optional one is meant to detect the ambiguous
cases, so that they can be assigned 0.5 instead of their predicted score, in order to
maximize the c@1 score.

In the robust strategy the parameters are restricted to a small set of possible configu-
rations, whereas with the fine-grained strategy, on the contrary, we explore a vast space
of parameters (about 1019 possible combinations in the predefined space that we use).
This is why the learning stage for the latter consists in learning an optimal configuration
using a genetic algorithm.

3 The fine-grained strategy

3.1 Observations and frequency statistics

We consider a large set of observations types, among which the configuration can use
any subset. These are typically various kinds of n-grams, but not only:

– words (actually tokens) unigrams to trigrams;
– Characters trigrams to pentagrams.
– Part-Of-Speech (POS) tags unigrams to tetragrams;
– Combinations of POS tags and tokens, including skip-grams, e.g.:

“<POS tag> <token> <POS tag>” or “<token> _ <POS tag>”;
– “stop words” n-grams, i.e. tokens n-grams considering only a predefined list of the

the most frequent tokens in the language,4 from trigrams to pentagrams;
– Token length classes, where the tokens are classified depending on their length into

6 categories: lower than 2, 3 to 4, 5 to 6, 6 to 8, 8 to 10, more than 10.
– Token-Type Ratio (number of distinct tokens divided by total number of words).

The POS tags are computed using TreeTagger5 [8]. The lists of most frequent words
in the language are computed from the complete set of documents in the training data:
we consider the 200 most frequent words, except for Dutch (100 most frequent words).

A few thresholds are applied when extracting these observations, in order to remove
some noise in the data and/or improve efficiency:

– Minimum absolute frequency in a document (possible values: 2, 3, 5);
– Minimum proportion of documents among the reference corpus which contain the

observation (possible values: 10%, 25%, 50%);
– Minmimum proportion of known documents containing the observation (only for

known documents) (possible values: 30%, 51%);

4 Other tokens are replaced with a special symbol, e.g. “the _ _ is _”.
5 http://www.cis.uni-muenchen.de/ schmid/tools/TreeTagger. POS tags are not used for the

Greek dataset.

1094



The frequency of all the observations which fulfill these conditions relativized to
the total possible number of such observations lpq is stored for very observation type
specified in the configuration. For every observation, various statistics are computed
based on the set of frequencies extracted from the known documents: mean, standard
deviation, median, etc. Practically, in the training stage, the observations and the statis-
tics are computed only once and then stored, so that the data can be used as many times
as necessary with different combinations of parameters.

3.2 Features

The consistency, divergence, confidence and distance values are based on the frequency
statistics extracted during the first step. At first they are computed for every distinct
observation. Then they can be “synthetized” in different ways according to the config-
uration; the final features can be either specific to each observation type or global.

Consistency The consistency value is meant to represent how constant the use of a
particular observation is, so that it can be assessed whether the observation is used in
a similar way in the unknown document. For example, the standard deviation of the
(relative) frequency of the observation among the known documents is a valid indicator
(the lower it is, the higher the consistency is). Other statistics are available, e.g. range
between minimum and maximum, ratio between first and third quartile, etc. However
these statistics are more reliable with a high number of known documents, and require
at the very least two distinct documents.

The goal of the consistency measure is to distinguish as far as possible between the
observations which are specific to the author and those which are only specific to the
document (for example the subject of an essay). This is why the more known documents
there are the most accurate the consistency is. Consequently, cases which contain only
one known document are irrelevant for consistency.6

Divergence The divergence measure is meant to represent to what extent a particular
observation is specific to an author. This value is calculated against a reference corpus,
which should ideally be an independent set of documents in the same language and
genre as the dataset. But since we do not have access to such a corpus for every dataset,
we simply consider the whole set of documents (known and unknown) in the training
set as the reference corpus. Because it is meant only to measure divergence, the only
important assumption that we make is that it contains documents written by a sufficient
number of different authors, and that it is not massively imbalanced (for instance if most
of the documents were by the same author).7

6 It is possible then to use different parts of the document, but this is not reliable in general since
the distinction between document specific and author specific observations cannot be made.

7 Although it is quite unlikely given the size of the training sets, we do not have any guarantee
that the second condition is satisfied in all the datasets provided. Assuming these conditions
are fulfilled, the fact that the reference corpus contains documents by the author of the problem
studied is not an issue, because it is frequent that a particular stylistic feature can be observed

1095



The system can use different methods to measure the divergence of an observation:
several simple statistics like the absolute difference between the frequency means (or
medians), but also more complex measures which try to estimate the difference between
the two distribution (known documents and documents in the reference corpus). Some
of these measures assume a normal distribution of the observation frequency accross the
documents:8 we use several measures based on the Bhattacharrya distance [1]. These
measures are also more reliable when the number of distinct documents is high.

Confidence The confidence measure is intended to find the most discriminative ob-
servations, based on their consistency and divergence values. Thus, it simply combines
these two values in order to rank the observations by their discriminative power for the
given author: for instance, an observation which is very consistent but not distinctive
(or the opposite) might be less interesting than another one which is less consistent but
has a better divergence value.

We consider various ways to combine the two numerical values: product, mean,
geometric mean, weighted product, etc. There is also an option to ignore the consistency
score (i.e. use the divergence as confidence), and another one for ranking the two values,
so that the rank is used instead of the actual score.

Distance Finally the distance measure is meant to capture how different the unknown
document is from the set of known documents. The distance value is usually not mean-
ingful at the level of the observation, but becomes meaningful only once computed on
a selected set of observations.

Various standard similarity or distance measures can be used, like the cosine or
Jaccard similarity, but also some more specific measures, like the probability that the
observed frequency in the unknown document belongs to the distribution observed in
the known documents (assuming this is a normal distribution). The distance can be
weighted in different ways with a coefficient based on the confidence score.

3.3 Scoring stage

The configuration defines what kind and how many features will be used, as well as
how to obtain them. Multiple possibilities have been implemented, including:

– There can be a set of features for each observations type, or all observations types
can be combined in a generic set of features;

– The maximum number of observations to consider for the distance feature(s);
– Whether consistency, divergence and confidence scores should be included in the

features.

with several authors: the relative ordering of the observations according to their specificity to
an author should not be impacted.

8 We had observed in [5] that this assumption holds in most cases for frequent n-grams.

1096



A regression model is trained/applied to the features which have been computed
for all the input cases (instances for the model).9 We use the Weka [3] (version 3.6.10)
implementation of SVM regression [4] (with polynomial or RBF kernel), and decision
trees regression [7], with variants depending on their parameters.

Optionally, a second model can be generated/applied in order to evaluate the confi-
dence in each answer, and possibly replace it with 0.5 (unanswered case). This classi-
fication “confidence model” can use any of the available features, as well as the score
computed with the first regression model.10

3.4 Genetic learning

The complete “author verification model” which is returned at the end of the training
stage consists of the scoring model (that is, the regression model and optionally the
confidence model), but also the configuration which was found to be optimal on the
training set by cross-validation. This is achieved using the generic genetic algorithm
described next.

The individuals in a population are the configurations, in which every parameter is
assigned a particular value among a predefined set (the “genotype”). Starting from a
random population, the algorithm iterates through each generation by selecting a pro-
portion of the population to “breed” the next generation.

The method for making a configuration which performs better more likely to get
selected is as follows: all the configurations in the population are ranked from 1 to N
by their performance in ascending order. The probability of an individual being selected
is defined as r/N×p×2, where r is its rank and p is the proportion to retain as breeders.
For example, if the population N = 200 and p = 10% (that is, 20 breeders are selected
at each stage), the probability for the best performing configuration (with relative rank
N/N = 1) to be selected is 1 × 10% × 2 = 20%, and the probability for the worst
performing configuration (with relative rank 1/200 = 0.05) is 0.01. Since the average
relative rank r/N is 0.5 by definition, the method selects, on average, N×0.5×p×2 =
N × p breeders, as expected (consequently p must not be higher than 0.5).

Every new individual is generated based on two “parents” picked randomly among
the breeders; every of its parameter is defined as one of its parents value (each having a
0.5 probability to be picked), but can be “mutated” with a (small) predefined probability.
We also use two variants: one consists in reusing a few of the previous best individuals
in each new generation (elitism), and the other in including a small proportion of totally
random individuals.

4 The robust strategy

In the robust strategy, consistency and divergence features were used to verify whether
the document X has been authored by the author of the given documents Y = {y1, y2, ...yn},

9 When training the model, the Y/N answers are converted to 1/0, so that the predictions of the
system are values in [0, 1], which is the expected output format.

10 In the learning stage, the model which was trained is applied to the instances. Depending on
the configuration, the instances can be split up so that the second model is based on unseen
instances (but then less instances are used to train each model, of course).

1097



but in a slightly different way as above: the consistency defines how well the words or
n-grams or character-grams were used consistently used across all the documents Y
and X . Whereas, divergence defines how well document X is distinct from documents
Y and viceversa. The intuition behind using this feature is that these features could
provide an insight into how the document X and documents Y co-vary linguistically.

Divergence Motivated from the Jaccard similarity, we use a slight variant to compute
the divergence of documents Y to document X (J1) and of document X to documents
Y (J2):

(1) J1 =
(p+ q)

(p+ q + r)
J2 =

(p+ r)

(p+ q + r)

where p is the number of words found in both X and Y documents, q is the number of
words found in Y but not in X and r is the number of words found in X but not in Y
documents. J1 will provide a measure on how distinct Y is from X , whereas J2 will
provide a measure on how distinct X is from Y .

The above provided are the document level metrics, which are used to compute the
word-level divergence for X and Y . One assumption considered here for word-level
metric; to compute divergence of word xi in X to Y , when the word wi is identified in
Y , we assign a boolean value 0 assuming no divergence and when wi is not identified
in Y , we assign 1 to a temporary variable F assuming complete divergence of word wi.
With, F , J1, J2 and relative frequency values (rf1

i and rf2
i ) for each word, we compute

the divergence for words in X to Y (di,J1
) and Y to X (di,J2

) as:

(2) di,J1 = F ∗ J1 ∗ rf1
i di,J2 = F ∗ J2 ∗ rf2

i

Consistency Consistency is defined as the difference between the relative frequencies:

(3) ci,J1 = rf1
i − rf2

i ci,J2 = rf2
i − rf1

i

These measures are based only on the characters tetragrams’ frequencies (the other
observations types are not taken into account). In order to train or apply the model, the
scoring stage defined in the fine-grained strategy is used.

5 Observations and results

5.1 Genetic learning process

Since the system was being implemented specifically for the task and we had to deal
with the time constraints for the competition, the process of tuning the genetic learning
parameters was not carried out in optimal conditions. In particular, we could not afford
to run many different cases, especially cases which require a long time; moreover, bugs
were fixed and features were added along the process. This is why we are not able to
provide here a very detailed analysis of the impact of the parameters on the evolution
of the performance. Yet we did several preliminary tests in order to determine a couple

1098



● ●
● ●

●

●

●

●
●

● ●

●
●

●

●
●

● ● ●

●
●

●

●

●

●

●

●

●
●

●
●

●

0.2

0.3

0.4

0.5

0.6

0.7

0.2

0.3

0.4

0.5

0.6

0.7

0.2

0.3

0.4

0.5

0.6

0.7

dutch−
essays

greek−
articles

spanish−
articles

0 5 10 15 20 25
generation

av
gP

er
f geneticParams

● 100:0.05:0.02:0.1:0.05
100:0.05:0.05:0.1:0.05
30:0.2:0.02:0.1:0.05
50:0.1:0.02:0.1:0.05
50:0.1:0.1:0.2:0.05

Figure 1. Average performance for various combinations of genetic parameters (preliminary test
stage). GeneticParams contains the following parameters: population, breeders proportion; muta-
tion probability; elitism proportion; random proportion. Example: on the longest curve (in green
with square symbols), it can be observed that the average performance at the 20th generation was
close to 0.6.12

of optimal combinations of genetic learning parameters. Figure 1 shows the results of
one of these.

In general, the system was able to converge relatively quickly (a few tens of gen-
erations at most) to a high level of performance with most tested combinations of pa-
rameters. In particular, the size of the population did not have a major impact on the
convergence (even though a larger population makes the evolution smoother). This is
why we opted for using a small population size, in order to minimize the time required
for the system to find optimal configurations. Figure 2 shows how the two selected sets
of parameters performed during the main learning stage.13 In total, between 13,400 and
26,700 configurations (in a space of 1019 possibilities) by dataset were evaluated in

12 Moreover, the legend shows that this value is the average over a population of 30 configu-
rations obtained after 19 iterations, where, at each stage: 20% of the previous configurations
are selected as breeders (i.e., 6 configurations); the probability of a mutation (of an individual
parameter) is 0.02; 10% (i.e., 3 configurations) of the new generation is made of the 10% best
previous configurations (“cloned” directly without any alteration); 5% (i.e., 1 or 2 configura-
tions) are totally random configurations.

13 A recent server (24 Intel Xeon 3GHz cores) was used for the computation, but with only one
core for each pair dataset/genetic configuration. It is difficult to evaluate exactly the total time
spent due to various technical interruptions. Computing a single generation took in average
between 20 and 48 minutes (depending mostly on the size of the dataset) for the “fast” con-
figuration (30 individuals) and between 50 and 117 minutes for the “slow” configuration (75
individuals).

1099



the genetic learning process. Each configuration was evaluated using only 3 fold cross-
validation during the main genetic process; after this stage, a subset of the best config-
urations found was evaluated again using 10 fold and then 20 fold cross-validation.

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●
●

● ● ●
●

●
●

● ●
●

● ● ●
● ● ● ●

●
●

● ●
●

● ●
●

●

● ●

●

●
●

● ●
●

● ●

●
●

●

● ●
●

● ●

●
●

●

●

●
●

●
●

● ●

●

●
●

● ● ●

●
●

●

●

● ●

●

●

●
●

●

●
● ●

●
●

●

● ●

●

●
●

●
●

●
● ●

●
●

● ● ●
●

● ●

●

● ●
●

● ●
● ●

●
●

●

● ●
● ●

●
●

●

● ●

● ● ●
●

●

●
●

●
●

●
●

●
●

● ●
● ● ●

● ●

●

● ● ●

●

● ●

●
●

●

●

●
● ●

●
●

●

● ●

●
●

●

●
● ●

●
●

●
●

●
●

●

●

●

● ●

●
●

●

●

●
●

●
● ● ●

●
●

●
● ● ●

●

●

●

● ●
●

●

● ●
●

●

●
●

● ●

●

● ● ●

● ● ●
●

●
●

● ● ●

●

●

●

●

●

●
●

●
●

●

● ●

●

●

●

●

●
●

●
● ●

●

●

● ● ●

●
●

● ●

●
●

●

● ●

● ●

●
● ●

●

● ●
●

●
● ●

● ● ●
●

●
●

●
●

● ● ●

●

●

●

●

● ● ● ●
● ●

●
● ●

● ●

● ●
● ●

●
● ●

●
● ● ●

●
●

●
● ● ●

● ● ●

● ●
● ●

● ●
●

● ●
●

●
● ● ●

●
●

●
●

● ●
●

●
●

●

●

● ●

● ●
●

●
●

●
●

● ●

●

● ● ● ● ●
● ●

● ● ● ●
●

●

●
●

●

●
● ● ● ● ●

●
●

●
●

●
●

●
●

●

●

●
● ●

● ●
●

●

●

●
●

● ●
●

● ●

● ●
●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

● ● ●

● ●

●

●

●

●
●

● ●
●

●
●

●

● ●
●

●

● ●
● ● ● ● ●

●
● ● ●

●
● ●

● ● ● ●
● ● ● ● ●

●

●

● ● ●
●

●

●

●

● ● ●
●

●

●

●
●

●

●
●

● ●

●

●
●

● ●
● ●

●

●
●

●

●
●

● ●
●

●

●

●
●

●
●

●

●

● ● ●
●

●
●

●
●

●
● ● ● ● ● ●

●
● ● ●

● ● ● ● ● ●

●

● ●
●

● ●

●
● ●

●

●
●

●

● ●

● ● ● ●
●

●
● ● ●

●
●

●
●

●
● ●

● ●
● ●

● ● ●
●

● ●

●

● ●
● ● ● ●

●

●
●

●

● ●
●

●

●

●

●

● ●

●
●

●
●

●
●

●
●

●

●
● ●

● ●

●

●

● ● ●

●

●

● ●
●

● ● ●
●

● ● ●

●

●
● ●

●

●

●

●
● ●

●

●
● ●

● ● ●
● ●

● ● ●
●

●
●

● ●

●
●

●
●

●

●
● ● ● ● ●

●
●

●
●

●

●

●
●

●
● ●

●

●

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

dutch−
essays

dutch−
review

s
english−

essays
english−

novels
greek−

articles
spanish−

articles

0 50 100 150
generation

av
gP

er
f

geneticParams
● 30:0.2:0.02:0.1:0.05

75:0.1:0.04:0.1:0.05

Figure 2. Average performance by generation during the main learning stage. GeneticParams
contains the following parameters: population, breeders proportion; mutation probability; elitism
proportion; random proportion.

5.2 Observations
Below we present some characteristics observed in the configurations which were se-
lected by the genetic learning process (in the case of the fine-grained strategy):

Observation types In most cases only a few observations types are selected (from 3
to 11). Several POS n-grams (as well as POS/tokens combinations) are selected in the
five cases where they are available; words n-grams are also selected in most cases, but
characters n-grams never are. The word length and the type/token ratio are used in half
of the cases. At least one knid of stop words n-grams is selected in 4 datasets.

Consistency, divergence, confidence and distance methods The Bhattacharrya coef-
ficient is used the main criterion for divergence in most cases, and in particular in all
datasets where the median number of known documents is higher than 1. The consis-
tency value is actually not used at all in most cases (4): the system choses to use only
divergence as confidence to select the relevant observations. The most simple distance
metrics are selected in general (mean of the difference, euclidean or cosine distance),
but half of the time the frequency is weighted with the confidence score. The number
of observations taken into account seems to depend mostly on the dataset.

1100



Learning stage

The decision tree regression (M5P) is selected most of the time for the scoring model.
The confidence model stage is selected in only one case; this must be because, in gen-
eral, the errors made by this classification model are more costly in performance than
the benefit of assigning 0.5 scores.

5.3 Earlybird test set and final model selection

Thanks to the Tira system [2], we were able to evaluate both strategies on the “early-
bird corpus”. Figure 3 shows the performance of the two strategies on the training set
(by cross-validation) and the earlybird test set; the results obtained on the training set
by cross-validation were always better with the fine-grained strategy, but in two cases
they were better with the robust strategy on the earlybird test set. This is of course an
expected consequence of how the two strategies were defined: the robust strategy is
usually not as good as the fine-grained one, but is less data-independent; conversely the
fine-grained strategy is more prone to overfitting.

But, more interestingly, we noticed that, with the fine-grained strategy, the perfor-
mance drops much more (between the training set and the earlybird test set) when the
dataset has only a small number of known documents by case in average, especially on
the datasets in which most cases contain only one known document. In table 1 we report
the performance and compute the drop in performance in all cases, and for each dataset
the difference between this value and the average value; based on this difference, we
can observe that the drop in performance correlates quite strongly with the (low) num-
ber of known documents by case for the fine-grained strategy, whereas it does not at all
for the robust strategy.

As a consequence, we decided to use both strategies in our official submission: for
the three datasets where there is only one known document (Dutch essays and reviews
and English novels), the model corresponding to the robust strategy is used instead of
the fine-grained model.

5.4 Results

Table 2 shows the performance obtained on each dataset by both strategies on the train-
ing set, the earlybird test set and the final test set, as well as our official ranking.14 In
particular, it shows that our decision to use the robust approach in three cases was good:
it performed better than any of the two original strategies taken independently. How-
ever our hypothesis that this was linked with the low number of known documents might
not hold, since our results on the English novels are quite low compared to the other
participants’ results, and this would not have happened with the fine-grained strategy.
Overall, our system was among the best in this task, ranking third among 13 in average
performance.

14 The results provided at the time of writing have not been made official yet, therefore changes
can still happen in the ranking.

1101



finegrained robust

0.00

0.25

0.50

0.75

DE DR EE EN GA SA DE DR EE EN GA SA
dataset

va
lu

e testSet
trainCV
testEarlybird

Figure 3. Performance of the fine-grained and robust strategies on the training set and the early-
bird test set (the datasets are identified by their initials, their full name can be found in table 1
below).

Table 1. Comparison of the performance on the training set and the earlybird corpus, and impact
of the number of known documents by case depending on the strategy. The penultimate column
is the difference in performance between the two datasets, and the last column is the difference
between the aforementioned value and the average value for the same strategy. Finally the Spear-
man correlation is calculated between the value in the last column and the mean number of known
documents.

Dataset Known docs/case Strategy Perf. training Perf. Earlybird Perf. drop Diff. average

Dutch essays
mean 1.79 robust 0.802 0.777 -0.025 +0.103
median 1 fine-g. 0.817 0.501 -0.316 -0.071

Dutch reviews
mean 1.02 robust 0.389 0.338 -0.051 +0.077
median 1 fine-g. 0.608 0.253 -0.355 -0.111

English essays
mean 2.64 robust 0.292 0.265 -0.027 +0.101
median 3 fine-g. 0.493 0.446 -0.047 +0.198

English novels
mean 1.00 robust 0.722 0.324 -0.398 -0.270
median 1 fine-g. 0.860 0.370 -0.490 -0.245

Greek articles
mean 2.85 robust 0.359 0.246 -0.113 +0.015
median 3 fine-g. 0.595 0.541 -0.054 +0.191

Spanish articles
mean 5.00 robust 0.622 0.468 -0.154 -0.026
median 5 fine-g. 0.863 0.657 -0.206 +0.039

Correlation between Diff. average and mean known docs by case
robust 0.77
fine-g. 0.03

1102



Table 2. Results on all datasets with both strategies. The “mixed” column for the final test set
corresponds to our official submission. Remark: there were 13 participants in this task.

Dataset
Training set CV Earlybird test set Final test set

robust fine-grained robust fine-grained mixed robust fine-grained mixed rank
Dutch essays 0.802 0.817 0.777 0.501 0.777 0.755 0.563 0.777 4
Dutch reviews 0.389 0.608 0.338 0.253 0.338 0.375 0.350 0.375 3
English essays 0.292 0.493 0.265 0.446 0.446 0.325 0.372 0.372 3
English novels 0.722 0.860 0.324 0.370 0.324 0.313 0.352 0.313 8
Greek articles 0.359 0.595 0.246 0.541 0.541 0.436 0.565 0.565 3
Spanish articles 0.622 0.863 0.468 0.657 0.657 0.335 0.634 0.634 2
Average 0.531 0.706 0.403 0.461 0.514 0.423 0.473 0.502 3

Acknowledgments

We are grateful to the reviewers for their valuable feedback, and to the organizers of the
task for their hard work and their availability.

This research is supported by the Science Foundation Ireland (Grant 12/CE/I2267)
as part of the Centre for Global Intelligent Content (www.cngl.ie) funding at Trinity
College, University of Dublin.

References

1. Bhattacharyya, A.: On a measure of divergence between two statistical populations defined
by their probability distributions. Bulletin of Cal. Math. Soc. 35(1), 99–109 (1943)

2. Gollub, T., Potthast, M., Beyer, A., Busse, M., Rangel, F., Rosso, P., Stamatatos, E., Stein,
B.: Recent trends in digital text forensics and its evaluation. In: Forner, P., Müller, H.,
Paredes, R., Rosso, P., Stein, B. (eds.) Information Access Evaluation meets Multilinguality,
Multimodality, and Visualization. 4th International Conference of the CLEF Initiative (CLEF
13). Springer (September 2013)

3. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.: The weka data
mining software: an update. ACM SIGKDD Explorations Newsletter 11(1), 10–18 (2009)

4. Keerthi, S.S., Shevade, S.K., Bhattacharyya, C., Murthy, K.R.K.: Improvements to platt’s
SMO algorithm for SVM classifier design. Neural Comput. 13(3), 637–649 (Mar 2001)

5. Moreau, E., Vogel, C.: Style-based Distance Features for Author Verification - Notebook for
PAN at CLEF 2013. In: CLEF 2013 Evaluation Labs and Workshop - Working Notes Papers.
p. Online proceedings. Valencia, Spain (Sep 2013)

6. Peñas, A., Rodrigo, A.: A simple measure to assess non-response. In: Proceedings of the
49th Annual Meeting of the Association for Computational Linguistics: Human Language
Technologies. pp. 1415–1424. Association for Computational Linguistics, Portland, Oregon,
USA (June 2011), http://www.aclweb.org/anthology/P11-1142

7. Quinlan, J.R.: C4.5: programs for machine learning. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA (1993)

8. Schmid, H.: Improvements in part-of-speech tagging with an application to german. In:
Proceedings of the ACL SIGDAT-Workshop. pp. 47–50 (1995)

1103




