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Abstract 
This research investigated whether a fuzzy logic rule-
based decision support system could be used to detect 
potentially abnormal health conditions, by processing 
physiological data collected from vital signs monitoring 
devices. An application of the system to predict postural 
status of a person was demonstrated using real data, to 
mimic the effects of body position changes while doing 
certain normal daily activities. The results gathered in this 
experiment achieved accuracies of >85%. Applying this 
type of fuzzy logic approach, a decision system could be 
constructed to inform necessary actions by caregivers or 
for a person themself to make simple care decisions to 
manage their health situation.  . 
Keywords:  fuzzy logic, patient monitoring, decision 
support, assistive technologies, care management. 
 

1 Introduction 
 
Current trends in health within our society include the 
move towards an ageing population profile, and increased 
needs for complex care management for people with 
chronic diseases and multiple co-morbidities.  These are 
fast growing segments of the population; and so is the 
need for covering their broad ranging and diverse care 
requirements. External support to manage high-risk (or 
unsafe) health situations is often needed for them to 
continue their everyday living routines. This support is 
typically given by both professional and informal 
caregivers.  
Due to technological advances in wireless data 
communication systems in the last decade, the application 
of wireless-based vital sign monitoring devices for patient 
monitoring has gained increasing attention in the clinical 
arena. Patient health status can be determined based on 
the acquisition of basic physiological vital signs, 
suggesting that a system providing wireless monitoring of 
vital signs has potential benefits for clinical care 
management of independently living patients as well as 
their carers. A patient’s physiological state, which 
includes heart rate, blood pressure, body temperature etc., 
can be monitored continuously using wearable medical 
body sensor devices.  The remaining challenge is to gain 
sufficient understanding of this data to assist in health 
care needs. 

 
 
 

The overall aim of this research was to utilise information 
gathered from personal vital signs monitoring in a 
laboratory-based smart home environment, and to assist 
with clinical care decisions using a fuzzy logic rule-based 
clinical decision support system.  Fuzzy logic has benefits 
over other algorithmic approaches, as it has the potential 
to incorporate values from ordinal, nominal and 
continuous datasets within its rules, and can capture the 
knowledge associated with these rules in ways that are 
more intuitive to humans. 

 

2 Vital Signs Monitoring Concepts  
 
There are numerous examples in literature describing 
how monitoring of basic vital signs (i.e. heart rate, blood 
pressure, temperature and respiration rate) can play a key 
role in health care, e.g. Norris (2006) [39]. This approach 
requires software to discover patterns and irregularities as 
well as to make predictions. By collecting and analysing 
vital signs continuously it can be shown how well the 
vital organs of the body are working, e.g. heart and lungs 
(Harries et al. 2009) [40].   
Lockwood et al. (2004) [30] provided a review of the 
clinical usage of vital signs, including monitoring 
purpose, limitations, frequency and importance of vital 
signs measurements. They suggested that vital signs 
monitoring should become a routine procedure in chronic 
disease patients’ care. Bentzen (2009) [43] defined 
chronic diseases as:  
“diseases which are long in duration, having long term 
clinical course with no definite cure, gradually change 
over time, and having asynchronous evolution and 
heterogeneity in population susceptibility.”   
Living with a chronic disease, which increases in severity 
with age, has a significant impact on a person’s quality of 
life and on their family.  Chronic disease patients would 
be able to play a more active role in managing their own 
health by taking vital signs measurements daily and 
participating in meaningful electronic information 
exchanges with clinicians.  
A number of authors have suggested that using smart 
homes for health monitoring is a promising area for 
health care. Chan et al. (2009) [2] in their  review paper 
described the smart home as a promising and cost-
effective way to improve home care for elderly people 
and people suffering with different chronic diseases.  
Vincent et al. (2002) [19] identified  three research areas,  
which  combined to produce the concept of  “health smart 
home”. These three areas are medicine, information 
systems, and home based automatic and remote control 
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devices. A smart home contributes to monitoring of the 
patient’s health status continuously, taking into 
consideration the patient’s personal needs and wishes in 
addition to their specific medical requirements. The 
information gathered through health status monitoring 
systems can feed into an access controlled electronic 
patient records system for further medical interpretation. 
LoPresti et al. (2008) [21] identified different assistive 
technologies which can be used in smart homes to reduce 
the effect of disabilities and improve quality of life. 
Wearable and portable devices are used which help to 
monitor the vital signs or physiological behaviour of a 
person living in a smart home. Those devices are worn by 
the user or embedded in the smart home. They are wired 
or wirelessly connected to a monitoring centre. Recently, 
robotic technology has been developed to support basic 
activities and mobility for elderly people too. 

 

3 Fuzzy Logic Concepts 
 
Fuzzy logic (Zadeh 1990) [68] is a well established 
computational method for implementing rules in 
imprecise settings, where some adaptability for 
prescribing the rules is necessary.  A fuzzy system can be 
used to match any set of input-output combinations. 
Fuzzy logic can provide us with a simple way to draw 
definite results from vague, ambiguous or imprecise 
information. The rule inference system of the fuzzy 
model (Jang 1993) [67] consists of a number of 
conditional IF-THEN rules. For the designer who 
understands the system, these rules are easy to write, and 
as many rules as are necessary can be supplied to describe 
the system adequately.  
To improve clinician performance, fuzzy logic-based 
expert systems have shown potential for imitating human 
thought processes in the complex circumstances of 
clinical decision support (Pandey 2009) [75]. A key 
advantage of using fuzzy logic in such situations is that 
the fuzzy rules can be programmed easily, and as a result 
they are easily understood by clinicians. It is different 
from neural networks and other regression approaches, 
where the system behaves more like a black box to 
clinicians.  Schuh (2008) [73] found that fuzzy logic 
holds great promise for increasing efficiency and 
reliability in health care delivery situations requiring 
decisions based on vital signs information.  This has also 
been observed in specialised situations such as intensive 
care (Cicilia et al 2011) [81].  
Fuzzy control is the core computational component of a 
fuzzy logic system. It includes the processing of the 
measured input values based on the fuzzy rules, and their 
conversion into decisions with the help of fuzzy 
combination logic. A full description of fuzzy control 
principles is beyond the scope of this paper and can be 
found in numerous fuzzy logic texts. The functional 
elements of fuzzy control can be represented in a block 
diagram in Figure 1, based on fuzzy membership 
functions of variables of interest, as shown in Figure 2 for 
the example of body temperature represented by the 
variable T. 

 
 
Figure 1. Elements and structure of fuzzy control. 

 

 
 
 
 
 
Figure 2.  Fuzzy membership functions of variable T. 

 

4 Experimental Methodology 
 
This section will discuss the design of a laboratory 
experiment to undertake validation of the approach, using 
a longitudinal data set of physiological signals which 
have been gathered from an experiment involving 
monitoring of blood pressure and heart rate signals.  It is 
well known that changes to these vital signs will occur if 
the body position is changed from vertical to horizontal.  
The nature and rapidity of these changes mimics the 
changes in vital signs that may occur with onset of some 
exacerbated or acute health status in patients. 
The laboratory setup used a tilt table to generate changes 
in heart rate and blood pressure measurements that were 
correlated with the angle of the tilt table (Figure 3). These 
physiological changes would be similar to changes one 
would expect in circumstances such as changing health 
status or other physiological stressors such as an infection 
or blood loss.  The result of the fuzzy logic analysis of 
such data can be used to detect a change in physiological 
state occurring when the vital signs measures are either 
increasing or decreasing, compared to a steady state 
where there are no longitudinal changes in the vital sign 
measures. This output can be compared against the angle 
of the tilt table, that will serve as a gold standard for 
determining whether the system is in a steady state or not. 

 
Figure 3. Movement range of tilt table. 
 
The tilt table used was a motorized table with a metal 
footboard. The subject’s feet were rested on the 
footboard. Soft Velcro straps were placed across the body 
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for safety reasons, to secure the person when the table 
was tilted during the test. When using the tilt table, it was 
always tilted upright so that the head of the subject was 
above his feet. Small, sticky patches containing 
electrodes were placed on the subject’s chest. These 
electrodes were connected to an electrocardiograph 
monitor (ECG) to record the electrical activity of the 
person heart to be shown as an ECG graph. The ECG 
showed the heart rate and rhythm during the test, at a raw 
sampling rate of 100Hz and an accuracy of 3%.   A blood 
pressure measuring device was also attached on the 
subject’s finger. This was connected to monitors so that 
the blood pressure could be observed during the test as 
well as being recorded.  
At the very beginning of the test, the subject was laid flat 
on his back on the tilt table. At that time his initial blood 
pressure, ECG, and his position angle data were recorded. 
After resting for few minutes, the test was started.  The 
blood pressure and ECG was constantly monitored 
throughout the test and instantaneous readings of the data 
stream were recorded every second for subsequent 
analysis. The following protocol was applied for 
changing the positioning of the tilt table: 
 
1.  Lying flat at rest for ~60 sec (to gain statistics of resting state) 
2.  Fast tilt upwards over ~10 sec 
3.  Very slow tilt downwards over ~30 sec 
4.  Lying flat resting state ~30 sec 
5.  Medium tilt upwards over ~20 sec 
6.  Upright resting state ~30 sec 
7.  Fast tilt downwards over ~10 sec 
8.  Lying flat resting state ~30 sec 
9.  Fast tilt upwards over ~10 sec 
10. Upright resting state ~30 sec  
11. Medium tilt downwards over ~20 sec 
12. Lying flat resting state ~30 sec 

 
A sample data set collected recorded using the above 
protocol is shown in the graphs in Figure 4. Data sets 
from three repetitions of the protocol were captured using 
one of the investigators as the subject, as a pre-ethics 
proof-of-concept exercise needed to justify a full human 
research ethics application for extending the work for 
recruited subjects in the future.  Little variability was 
observed in the three data sets, so it was considered 
unnecessary to collect further test data. 

 

 
Figure 4. Data captured from the experiment: (top to 
bottom): angle, footplate force, ECG, blood pressure. 

5 Experimental Results 
 
The fuzzy logic rules were derived using the blood 
pressure and heart rate signals from the first of the three 
cycles. These signals were pre-processed to find a 
smoothed curve of the recorded raw signals. In this 
smoothing process, the averages of the values of heart 
rate and blood pressure were calculated for every five 
timestamps using non-overlapping windows. Then these 
average values were used to plot a smooth curve of the 
systolic blood pressure and peak-to-peak heart rate to 
establish the trends. Figure 5 shows the training dataset.  

 

 
Figure 5. Training dataset (top to bottom): blood 
pressure, heart rate, tilt angle. 
 
The fuzzy logic solution has two input variables and one 
output variable.  Using the mean and standard deviation 
as a tolerance band for the input variables, three states 
(Low, Normal, High) are defined. The two input variables 
are combined by the AND (i.e. MAX) operator and valid 
states inferred from the values for the tilt angle, as 
represented in the decision matrix shown in Table 1. 

 
 Table 1. The decision matrix for the training data. 

 
Input Variable 1:  Systolic Blood 
Pressure 

 
 
 
Input 
Variable 
2: Heart 
Rate 

 

 Low Normal High 

Low   Static 

Normal Static Static Lowering 

High  Lowering Raising 

 
The following rules based on this table were derived:   
RULE 1: IF systolic IS low AND heart_rate IS low THEN 
physiological_status IS Unclassified; 
RULE 2: IF systolic IS low AND heart_rate IS normal THEN 
physiological_status IS Static; 
RULE 3: IF systolic IS low AND heart_rate IS high THEN 
physiological_status IS Unclassified; 
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RULE 4: IF systolic IS normal AND heart_rate IS low THEN 
physiological_status IS Unclassified; 
RULE 5: IF systolic IS normal AND heart_rate IS normal THEN 
physiological_status IS Static; 
RULE 6: IF systolic IS normal AND heart_rate IS high THEN 
physiological_status IS Lowering; 
RULE 7: IF systolic IS high AND heart_rate IS low THEN 
physiological_status IS Static;          
RULE 8: IF systolic IS high AND heart_rate IS normal THEN 
physiological_status IS Lowering; 
RULE 9: IF systolic IS high AND heart_rate IS high THEN 
physiological_status IS Raising;  
The derived fuzzy rules were applied to the smoothed 
data of the test set for the second and third cycles, to 
determine the physiological status. By applying fuzzy 
logic to these two cycles of testing data, different regions 
in the data were classified into predicted statuses of 
Static, Raising and Lowering.  Figure 6 shows the results 
with yellow indicating static status, grey indicating 
lowering status and green indicating raising status. 

 

 
Figure 6. Classifying status using the trained rules. 
 
In order to compare the fuzzy logic output to the gold 
standard, statuses needed to be inferred from the angle of 
the tilt table. The following protocol was established to 
determine three different states categorised as: Static, 
Raising and Lowering.  Only changes of one or more 
smoothing period timesteps (i.ee >4 sec) were considered. 
The protocol used was as follows: 

 
1. If the change of angle is < 5° and timestamp interval >4 sec, 

then the tilting table is in static state. 
2. If the change of angle (upward) is: 25°< angle<90° and 

timestamp interval >4 sec, then the tilting table is in 
abnormal state and in the raising state. 

3. If the change of angle (downward) is: 25°< angle<90° and 
timestamp interval >4 sec, then the tilting table is in the 
lowering state.  

The results using these steps are summarised in Table 2, 
and the overall rate of positive and negative outcomes is 
shown in Table 3.  These outcomes were used to analyse 
classifier performance using the following indicators:  

 
 Sensitivity = TP/(TP+FN) = Prob(+ve test) 
 Specificity = TN/(TN+FP) = Prob(-ve test) 
 Accuracy = (TP+TN)/total obs = Prob(correct) 
 Error = (FP+FN)/total obs = Prob(wrong) 

 

Table 2. Matching actual states and predicted states. 
 

Predicted State (Computed) 

 
Actual 
State 
(Gold 
standard) 

 Static Raising Lowering Total 

Static 24 1 2 27 

Raising 2 2 2 6 

Lowering 1 0 5 6 

Total 27 3 9 39 

Table 3. Classifier positive and negative outcomes. 
 

                                       
                        Test Outcome (Static case) 

Gold Standard  
 Set (Static case) 

  True Positive (24)  False Positive (3) 

False Negative (3) True Negative (9) 

                     Test Outcome (Raising case) 

Gold Standard  
 Set (Raising case) 

  True Positive (2)  False Positive (4) 

False Negative (1) True Negative (32) 

                   Test Outcome (Lowering case) 

Gold Standard  
 Set (Lowering case) 

  True Positive (5)  False Positive (1) 

False Negative (4) True Negative (29) 

       
The resulting indicator values were calculated as follows: 

 
 Sensitivity (Static)  =  24 / (24+3)  =  24 / 27  =  0.89 
 Specificity (Static)  =  9 / (9+3)  =  9 / 12  =  0.75 
 Sensitivity (Raising)  =  2 / (2+1)  =  2 / 3  =  0.67 
 Specificity (Raising)  =  32 / (32+4)  =  32 / 36  =  0.89 
 Sensitivity (Lowering)  =  5 / (5+4)  =  5 / 9  =  0.56 
 Specificity (Lowering)  =  29 / (29+1)  =  29 / 30  =  0.97 
 Accuracy (Static)  =  (24+9) / 39  =  33 / 39  =  0.85 
 Error (Static)  =  (3+3) / 39  =  6 / 39  =  0.15  
 Accuracy (Raising)  =  (2+32) / 39  =  34 / 39  =  0.87 
 Error (Raising)  =  (4+1) / 39  =  5 / 39  =  0.13  
 Accuracy (Lowering)  =  (5+29) / 39  =  34 / 39  =  0.87 
 Error (Lowering)  =  (1+4) / 39  =  5 / 39  =  0.13  

 
Across the three states, Sensitivity values ranged from 
0.56 to 0.89, and Specificity values ranged from 0.75 to 
0.97.  The low Sensitivity values are related to the smaller 
sample sizes for the Raising and Lowering states.  
Accuracy rates ranged from 0.85 to 0.87, and Error rates 
ranged from 0.13 to 0.15, indicating good performance.  
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In considering the performance of this approach, several 
drawbacks affected the achievable accuracy negatively. 
The first issue was the time lag in the dropping of the 
vital sign values when changing the angle of the tilting 
table. While the tilting table was moved rapidly, it took 
several seconds for the physiological status of the human 
body to adapt accordingly. As a result, this problem has 
affected accuracy in determining the physiological status 
of a person in FastUp or in FastDown status. 
Another problem was related to the error rate associated 
with using the vital signs measurement equipment. When 
the position of the tilt table was changed, small 
movements of the body affected accurate measuring of 
the physiological data by the monitoring devices. For 
example, the blood pressure measuring device was 
attached with the finger and due to the movement of the 
body and fingers it sometimes gave erroneous readings.  
The smoothing function that was applied was intended to 
damp out such errors but there is some residual effect. 

 

6 Conclusion and Future Work 
 
We have described an efficient computational approach 
to the problem of personal monitoring of vital signs, to 
provide alerts under well defined abnormal health status 
conditions which are caused by a known or anticipated 
health situation.  The purpose of such alerts is to provide 
decision support inputs to carers, to prompt closer 
observations or direct interventions to be performed to 
help the subjects of care. This could be useful over a wide 
range of situations such as elderly or disabled living 
alone, or patients with chronic diseases or multiple co-
morbidities. 
Fuzzy logic was chosen as an appropriate computational 
approach due to its simplicity and ease of tuning to suit 
relatively smoothly changing vital signs values.  Then the 
approach was implemented in software, providing a 
multistage process for classifying the condition of a 
subject using fuzzy functions for each of several observed 
vital signs, and then combining these using rules to 
determine the overall health status.  
Using this approach, a fuzzy logic rule-based decision 
support system could, for example, be used to monitor 
daily activities of living and detection of falls for smart 
home residents, in combination with other technologies 
that have more sensitivity in detecting sudden change of 
body posture such as tri-axial accelerometers. Further 
research is required to find out the usefulness of such a 
fuzzy logic rule-based decision support system when a 
combination of vital signs and acceleration data is used to 
detect sudden changes in body posture. 
On the basis of this foundation work, fuzzy logic has 
been shown to provide a plausible approach to the general 
problem of classifying health status in situations of 
abnormalities in vital signs patterns.   It is anticipated that 
a more extensive system could be built by including 
further parameters and more complex rules, using the 
same fundamental algorithm.  The implementation 
methodology using an SQL database and fixed form 
parameter labelling functions for the fuzzy assignments, 

provides a robust implementation environment and a 
sufficiently simple rule specification mechanism to allow 
users who are not IT experts to reconfigure the system to 
suit a given vital signs classification problem. 
A worthwhile extension of this work would be to improve 
the level of sophistication and automation of the threshold 
values for the fuzzy logic classification process.  Instead 
of a simple statistical approach using a set of “normal” 
observations, actual patterns could be captured and stored 
which could be tested with greater severity than smooth 
fuzzy functions.  The work offers scope to increase the 
amount of ambient intelligence which could be provided 
in the “smart home” of the future, to help sustain 
occupants’ health circumstances. 
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