
Timely and Non-Intrusive Active Document
Annotation via Adaptive Information Extraction

Fabio Ciravegna1, Alexiei Dingli1, Daniela Petrelli2 and Yorick Wilks1

Abstract.

The process of document annotation for the Semantic

Web is complex and time consuming, as it requires a great deal
of manual annotation. Information extraction from texts (IE) is a
technology used by some of the most recent systems for actively
supporting users in the process and reducing the burden of
annotation. The integration of IE systems in annotation tools is
quite a new development and in our opinion there is still the
necessity of thinking the impact of the IE system in the process
of annotation. In this paper we discuss two main requirements for
active annotation: timeliness and tuning of intrusiveness. Then
we present and discuss a model of interaction that addresses the
two issues and Melita, an annotation framework that implements
such methodology.

1. INTRODUCTION
The effort behind the Semantic Web (SW) is to add content to
web documents in order to access knowledge instead of
unstructured material, allowing knowledge to be managed in an
automatic way. Much work is done on (1) the definition of
standards for representation of knowledge (e.g. XML, RDF, OIL),
(2) the definition of structures for knowledge organization (e.g.
ontologies) and (3) the population of such knowledge structures.
(1) and (2) actually provide the necessary infrastructure for the
Semantic Web. (3) actually requires methodologies for creating
semantically enriched documents. It is reasonable to expect users
to manually annotate new documents up to a certain degree, but
annotation is a slow time-consuming process that involves high
costs. Therefore it is vital for the Semantic Web to produce
automatic or semi-automatic methods for extracting information
from web-related documents, either for helping in annotating new
documents or to extract additional information from existing
unstructured or partially structured documents. In this context,
Information Extraction from texts (IE) is one of the most
promising areas of Human Language Technologies for the
Semantic Web. IE is an automatic method for locating important
facts in electronic documents for successive use, e.g. for
annotating documents or for information storing (such as
populating an ontology with instances). In this perspective IE is
the perfect support for knowledge identification and extraction
from Web documents as it can – for example - provide support in
documents annotation either in an automatic way (unsupervised

 1 Department of Computer Science, University of Sheffield, Regent

Court, 211 Portobello Street, S1 4DP, Sheffield, UK, email
{fabio|alexiei|yorick}@dcs.shef.ac.uk

 2 Department of Information Studies, University of Sheffield, Regent

Court, 211 Portobello Street, S1 4DP, Sheffield, UK, email
D.Petrelli@shef.ac.uk

extraction of information) or semi-automatic way (e.g. as support
for human annotators in locating relevant facts in documents, via
information highlighting). In the last years a big effort has been
spent in the IE community on the use of Machine Learning for
helping in porting IE systems to new applications/domains
[1][2][3]. Some new annotation tools for the Semantic Web
already include adaptive IE capabilities for helping in the
annotation process. At the Open University, the MnM annotation
tool [4] interfaces with both the UMass IE tools [5] and
Sheffield’s Amilcare [11]. At the University of Karlsruhe the
Ontomat annotizer [6], an implementation of the CREAM
environment, interfaces with Sheffield’s Amilcare. The advantage
of using adaptive IE as a support for annotation is quite clear: the
IE system monitors the annotations inserted by the user and it
learns how to reproduce them. When equivalent cases are
encountered, annotations are automatically inserted by the IE
system and users have just to check them. This approach, called
active learning, has been proven to reduce the burden of manual
annotation up to 80% in some cases [7]. The current methodology
of interaction between annotation tool and IE system is still quite
simplistic. This influences also the way in which the user and the
annotation system interacts. Generally a batch interaction mode is
adopted, i.e., the user annotates a batch of texts and the IE tool is
trained on the whole batch. Then annotation is started on another
batch of texts and the IE system proposes annotations to users
when cases similar to those found in the training batches are
recognized. Although the use of adaptive IE constitutes quite an
improvement with respect to the completely manual annotation
approach, in our opinion the tremendous potentialities of adaptive
IE technologies are not fully exploited. We believe that it is time
to consider the way in which the interaction can be organized in
order to both maximize effectiveness in the annotation process and
minimize the burden of annotating/correcting on the user’s side.
We expect that such change will also influence the user-annotation
tool interaction style by moving from a simplistic user-system
interaction to real user-system collaboration

1
. We propose two

user-centred criteria as measure of appropriateness of this
collaboration: timeliness and intrusiveness of the IE process. The
first shows the ability to react to user annotation: how timely is the
system to learn from user annotations. The latter represents the
level to which the system bothers the user, because for example it
requires CPU (and therefore stops the user annotation activity) or
because it suggests wrong annotations.
Timeliness: when the IE system (IES) is trained on blocks of
texts, there is a time gap between the moment in which

1
 Collaboration means working together for a common goal, all partners

contributing with their own capabilities and skills.

annotations are inserted by the user and the moment in which they
are used by the system for learning. User and system work in
strict sequence, one after the other. This sequential scheduling
hampers true collaboration. If a batch of texts contains many
similar documents, users may spend a lot of time in annotating
similar documents without receiving feedback from the IES for
the simple reason that no learning is scheduled for the moment.
The IES is not supportive to the user neither it is efficient since
similar cases are of very little use for the learner because they
cannot offer the variety of phenomena that empower learning.
The bigger the size of the batch of texts the worse the problem of
lack of timeliness is. A true collaboration implies a (re)training of
the system after every annotated text is released by the user.
Training can take a considerable amount of CPU time, therefore
stop the annotation session for a while. A positive collaboration
requires not to constraint the user time to the IES training time
(otherwise the intrusiveness of the IES increases). We believe that
an intelligent scheduling is needed to keep timeliness in learning
without increasing intrusiveness. It is also important to bear in
mind that timeliness is a matter of perception from the user side,
not an absolute feature, therefore what is important is that users
do not perceive any delay or impediment. The focus is on
effective collaboration not on timeliness at any cost.
Intrusiveness: in all the experiments with active learning done so
far it turned out difficult to avoid bothering users with proposed
annotations generated by unreliable rules (e.g. induced using an
insufficient number of cases). This problem is mainly related to
the tuning of the IES behaviour. Some IES provide internal tuning
methods for balancing features such as precision and recall or the
minimum number of cases to be covered in order to accepted a
rule for annotation. Such tuning methodologies are designed for
IE experts since they require a deep knowledge of the underline
IE system. This is especially true because the user goal is tuning
the level of intrusiveness in the annotation process and very often
there is no obvious correspondent in the IES tuning methodology.
For example Amilcare allows to modify error thresholds for rules,
number of cases covered by rules for acceptance, balance of
precision and recall in rule tuning: none of these correspond
directly to tuning the level of intrusiveness (even if large part of it
relies in the precision/recall balance). The acceptable level of
intrusiveness is subjective: some users might like to receive
suggestions largely regardless from their correctness, while others
do not want to be bothered unless suggestions are absolutely
reliable. We think that a user-friendly interaction methodology
must be implemented to help in selecting the appropriate level of
intrusiveness, without requiring users to cope with the complexity
of tuning an adaptive IE system.
In this paper we present an IE-based annotation methodology for
the Semantic Web that takes into account the problems of
timeliness and intrusiveness mentioned above.

2. THE ANNOTATION PROCESS
In our model the annotation process is split into two main phases
from the system point of view: (1) training and (2) active
annotation with revision. In user terms the first corresponds to
unassisted annotation, while the latter just requires correction of
annotation proposed by the IES.

2.1 Training
During training users annotate texts without any contribution from
the IES. In this phase the IES uses the annotations inserted by the
user to train its learner. During this phase the IES is constantly
inducing rules. We can define two sub-phases: (a) bootstrapping
and (b) training with verification. During bootstrapping the only
IES task is to learn from the user annotations. This sub-phase can
be of different length according to the specific IES requirements.
It depends on the minimum number of examples needed for a
minimum training. During the second sub-phases, the user
continues with the unassisted annotation, but the behaviour of the
IES changes. With some rules already available the IES silently
competes with the user in annotating the document. When the
annotation process is finished, the IES automatically compares its
annotations with those inserted by the user and calculates its
accuracy. Missing annotations or mistakes are used to retrain the
learners. The training phase ends when the accuracy in annotating
can provide the user preferred level of pro-activity and therefore it
is possible to move to the next phase: active annotation. We will
discuss in the following section how this condition is verified.

Figure 1. The training with verification sub-phase.

2.2 Active Annotation with Revision
In this phase the annotation methodology is heavily based on the
suggestions of the IES and the user main task is to correct and
integrate the suggested annotations (i.e. remove or add
annotations). Human corrections and integrations are inputted
back to the IES for retraining. This is the phase where the real
system-user cooperation takes place: the system helps the user in
annotation; the user feeds back the mistakes to help the system
perform better. In user terms this is where the added value of the
IES becomes apparent, because it heavily reduces the amount of
annotation the user has to insert. This supervision task is much
more convenient from both cognition and actions. Correcting
annotations is simpler than annotating bare texts, it is less time
consuming and it is also likely to be less error prone.

3. A NEW MODEL OF INTERACTION
The proposed model of interaction is based on non-intrusive and
timely active annotation. The first level of non-intrusiveness is
that the IES does not require any specific interface for annotation
or any specific adaptation by the user. It integrates in the usual
user environment and provides suggestions for possible
annotations in a way that is both familiar and intuitive for the user.
To some extent users could even ignore that an IES is working for
them. The interaction with the user is left to the annotation
interface, a tool designed for specific user classes and therefore

able to elicit the tuning requirements by using the correct
terminology for the specific domain. Even the correct settings and
requirements for the appropriate IES’s settings must be elicited
through the interface (and then converted in the IES specific
settings thorough an API).

3.1 Intrusiveness vs. Proactivity
Intrusiveness is the risk related to proactivity. As mentioned, there
are a number of ways in which the IES can be intrusive with
respect to the user task. On the one hand when the system
suggests annotation during phase 2 (active annotation with
revision), it can bother users with unreliable annotations. The
requirement here is to enable users to tune the IES behaviour so
that the level of suggestions is appropriate. The annotation
interface must bridge the qualitative vision of users (e.g. a request
to be more/less active or accurate) with the specific IES settings
(e.g. change error thresholds) [8]. On the other hand the IES
training requires CPU time and this can slow down or even stop
the user activity. This may happen in both the phases mentioned
above (training and active annotation with revision) as discussed
in the next section.

Figure 2. The active annotation with revision phase

3.2 Limiting the User Idle Time
Training requires time and for this reason most of the current
systems use a batch mode of training so to limit the time in which
the user has to wait while the system trains to specific moments
(e.g. coffee time). As explained above, the batch approach
presents timeliness problems: users may have to annotate a
number of similar texts before the learner is activated and the IES
is able to suggest annotations.
An appropriate scheduling of the learning phase can both improve
timeliness between user’s annotation and system learning and
limits the user idle time to the minimum. If we observe how time
is spent in the annotation process (select a document, manually
annotate the document, save the annotation), we notice that most
of the user time is spent in the manual annotation process. For this
reason we believe that this is the right moment to train the IES in
the background without the user noticing it. In principle it would
be possible to treat every annotation event in the interface as a
request to train on a specific example, but this requires the ability
to retreat annotations in case of user errors and this makes the
interaction with the IES quite complex. In our method the IES

works in the background with two parallel and asynchronous
processes. On the one hand while the user annotates document n
the system learns the annotations inserted in document n-1, i.e. the
learner is always one document behind the user. At the same time
(i.e. as a separate process) the IES applies the rules induced in the
previous learning sessions (i.e. from document 1 to document n-2)
in order to extract information (either for suggesting annotations
during active annotation or in order to silently test its accuracy
during unassisted learning). This means that the annotation
capability is always two steps behind. The advantage is that there
is no idle time for the user, as the annotation of a document
generally requires a great deal more time than training on a single
text.

3.3 Coping with Timeliness
As explained above timeliness is not fully obtained with the above
interaction methodology: the IES annotation capability always
refers to rules learned by using the entire annotated corpus but the
last document. This means that the IES is not able to help when
two similar documents are annotated in sequence. From the user
point of view such a situation is equivalent to train on batches of
two texts, with all the disadvantages of batch training mentioned
above (even if a batch of size two is quite small). In this respect
the collaboration between the system and the user fails in being
effective. Timeliness is a matter of perception from the user side,
not an absolute feature, therefore the only important matter – we
believe – is that users perceive it. In this respect we start from the
consideration that in many applications the order in which
documents are annotated is random. Generally users adopt criteria
such as date of creation or file name order in directories. In such
cases it is possible to organize the annotation order so to avoid the
possibility of presenting similar documents in sequence and
therefore to hide the lack of timeliness. In order to implement such
a feature we need a measure of similarity of texts from the
annotation point of view. The IES can be used to work out such a
measure. At the end of each learning session all the induced rules
are applied to the whole unannotated corpus. As result two main
subsets in the corpus are detected: texts were the available rules
fire (i.e. annotations can be added: positive subset) and texts were
they do not fire at all (uncovered texts: negative subset). Each text
in the positive subset can be associated with a score given by the
number of annotations that can be added. The score can be used as
an approximation of similarity among texts: inserted annotations
mean similarity with respect to the part of the corpus annotated so
far, no inserted annotation means actual difference. Such
information can be used to make the timeliness more effective: a
completely uncovered document is always followed by a fairly
covered document. In this way a difference between successive
documents is very likely and therefore the probability that similar
documents are presented in turn within the batch of two (i.e. the
blindness window of the system) is very low. Incidentally this
strategy also tackles another major problem in annotation, i.e. user
boredom. This is the major reason why the level of user
productivity and effectiveness falls proportional to time.
Presenting users with radically different documents should avoid
the boredom that comes from coping with very similar documents
in sequence. In the next section a first implementation of the
discussed interaction model is presented. We introduce both the
IES used (Amilcare) and the annotation interface (Melita). Finally
we discuss how the current implementation meets the
requirements described.

4. ADAPTIVE IE IN AMILCARE
Amilcare is a tool for adaptive Information Extraction from
text (IE) designed for supporting active annotation of
documents for the Semantic Web. It performs IE by
enriching texts with XML annotations, i.e. the system
marks the extracted information with XML annotations.
The only knowledge required for porting Amilcare to new
applications or domains is the ability of manually
annotating the information to be extracted in a training
corpus. No knowledge of Human Language Technology is
necessary. Adaptation starts with the definition of a tag-set
for annotation possibly organized as an ontology where
tags are associated to concepts and relations. Then users
have to manually annotate a corpus for training the learner.
An annotation interface is to be connected to Amilcare for
annotating texts using XML mark ups. As mentioned
Amilcare has been integrated with a number of annotation
tools so far, including MnM[4], Ontomat[6]. For example
the annotation interface in Ontomat is used to annotate
texts in a user-friendly manner. Ontomat automatically
converts the user annotations into XML tags to train the
learner. Amilcare's learner induces rules that are able to
reproduce the text annotation. Amilcare can work in two
modes: training, used to adapt to a new application, and
extraction, used to actually annotate texts. In both modes,
Amilcare first of all preprocesses texts using Annie, the
shallow IE system included in the Gate package ([9],
www.gate.ac.uk). Annie performs text tokenization
(segmenting texts into words), sentence splitting
(identifying sentences) part of speech tagging (lexical
disambiguation), gazetteer lookup (dictionary lookup) and
named entity recognition (recognition of people and
organization names, dates, etc.).
When operating in training mode, Amilcare induces rules for
information extraction. The learner is based on (LP)2, a covering
algorithm for supervised learning of IE rules based on Lazy-NLP
[10] [11]. This is a wrapper induction methodology [12] that,
unlike other wrapper induction approaches, uses linguistic
information in the rule generalization process. The learner starts
inducing wrapper-like rules that make no use of linguistic
information, where rules are sets of conjunctive conditions on
adjacent words. Then the linguistic information provided by
Annie is used in order to generalise rules: conditions on words are
substituted with conditions on the linguistic information (e.g.
condition matching either the lexical category, or the class
provided by the gazetteer, etc. [11]). All the generalizations are
tested in parallel by using a variant of the AQ algorithm [13] and
the best k generalizations are kept for IE. The idea is that the
linguistic-based generalization is used only when the use of NLP
information is reliable or effective. The measure of reliability here
is not linguistic correctness (immeasurable by incompetent users),
but effectiveness in extracting information using linguistic

information as opposed to using shallower approaches. Lazy NLP-
based learners learn which is the best strategy for each
information/context separately. For example they may decide that
using the result of a part of speech tagger is the best strategy for
recognizing the speaker in seminar announcements, but not to spot
the seminar location. This strategy is quite effective for analyzing
documents with mixed genres, quite a common situation in web
documents [14].
The learner induces two types of rules: tagging rules and
correction rules. A tagging rule is composed of a left hand side,
containing a pattern of conditions on a connected sequence of
words, and a right hand side that is an action inserting an XML tag
in the texts. Each rule inserts a single XML tag, e.g.
</speaker>. This makes the approach different from many
adaptive IE algorithms, whose rules recognize whole pieces of
information (i.e. they insert both <speaker> and
</speaker>[7]), or even multi slots [15]. Correction rules
shift misplaced annotations (inserted by tagging rules) to the
correct position. They are learnt from the mistakes made in
attempting to re-annotate the training corpus using the induced
tagging rules. Correction rules are identical to tagging rules, but
(1) their patterns match also the tags inserted by the tagging rules
and (2) their actions shift misplaced tags rather than adding new
ones. The output of the training phase is a collection of rules for
IE that is associated to the specific scenario.
When working in extraction mode, Amilcare receives as input a
(collection of) text(s) with the associated scenario (including the
rules induced during the training phase). It preprocesses the text(s)
by using Annie and then it applies its rules and returns the original
text with the added annotations. The Gate annotation schema is
used for annotation [9].

5. THE MELITA FRAMEWORK
Melita is an ontology-based demonstrator for text annotation. The
goal of Melita is not to produce a further annotation interface, but
a demonstrator of how it is possible to actively interact with the
IES in order to meet the requirements of timeliness and tunable
pro-activity mentioned above. Melita’s main control panel is
depicted in figure 3. It is composed of three main areas:
1. The ontology (left) representing the annotations that can be

inserted; annotations are associated to concepts and relations. A
specific colour is associated to each node in the ontology (e.g.
“speaker is depicted in blue).

2. The document to be annotated (centre-right). Selecting the
portion of text with the mouse and then clicking on the node in
the ontology insert annotations. Inserted annotations are shown
by turning the background of the annotated text portion to the
colour associated to the node in the hierarchy (e.g. the
background of the portion of text representing a speaker
becomes blue).

3. The IES suggestion area (bottom) where some of the
suggested annotations are presented.

Melita does not differ in appearance from other annotation
interfaces such as the Gate annotation tool, or MnM or Ontomat.
This is because – as mentioned – it is a demonstrator to show how
a typical annotation interface could interact with the IES. The
novelty of Melita is the possibility of (1) tuning the IES so to
provide the desired level of proactivity and (2) scheduling texts so
to provide timeliness in annotation learning. The typical
annotation cycle in Melita follows the two-phase cycle based on
training and active annotation described in the previous section.
Users may not be aware of the difference between the two phases.
They just will notice that at some point the annotation system will
start suggesting annotations and that they have a way to influence
when and with which modalities this will happen. Suggestions can
be presented in the suggestion area or in the document area
according to a number of criteria. When presented in the
suggestion area an explicit selection (on the tick box) is required
to the user to accept the suggestion, otherwise the suggestion is
not inserted. When presented directly into the document under
annotation suggestions are displayed using the same colour code
(e.g. blue background for speaker), but they are made
recognizable as suggestions because of a special coloured border.
The assumption here is that annotations are considered correct
unless the user removes them explicitly. The presentation strategy
adopted displays unstable tags (i.e. tags not yet fully reliable) in
the suggestion area, while tags considered reliable by the system
are displayed directly in the document. Note that reliability is
independent for each piece of information. For example a system
can become quite reliable in a short time in recognizing some
information (e.g. seminar start time) requiring more training
examples for others (e.g. speaker). In this case there will be a
moment in which the suggested annotations for the time will be
inserted in the document pane while the annotations for the
speaker will go into the suggestion panel.

5.1 Controlling Proactivity
Users can customize the behaviour of the IES tuning the level of
IES proactivity thus changing the level of intrusiveness by using a
special slidebar (fig.4). It allows to set two thresholds that divide

Figure 4: the slidebar for tuning system’s intrusivity

the accuracy space in three areas: the first level decides which is
the minimum accuracy the IES must be able to reach in order to
start inserting annotation in the suggestion panel. The second

threshold defines the minimum accuracy the system must reach
before starting suggesting in the document panel. In the example
in figure 4 the system will suggest in the suggestion panel when
its accuracy is between 43 and 75% and in the document panel
when greater than 75%. When accuracy is less than 43% the IES
does not suggest (i.e. it is still in training mode). This general
default holds for all the nodes in the ontology, but it can be
overridden for specific tags by using the same kind of window.
Changing the default for specific tags is useful because users can
have different feelings about intrusiveness for different kinds of
information depending on the effort required to identify and select
that piece of information. It is worth noting that the same slidebar
shows the accuracy currently reached by the IES for the specific
information: it is the blue filler mark that grows from the bottom
(around 10% in figure 4). It is a feedback on the current status of
the IES, e.g. if it is in training mode, if it is suggesting in the
suggestion panel, etc. Moreover such feedback should support an
intuitive changing of the current IES behaviour, e.g. turn off the
IES suggestions by lifting up the two arrows beyond the blue
maximum level. Note that the same information is presented near
each node in the ontology panel: a small square is divided in three
parts (corresponding to the three areas above). The small square
fills in the same way the slidebar fills. In this way the user has
always a feedback on the current status for each piece of relevant
information.

6. EVALUATING IE’S CONTRIBUTION
We performed a number of experiments for demonstrating how
fast the IES can converge to an active annotation status and to
quantify its contribution to the annotation task, i.e. its ability to
suggest correctly. We selected the CMU seminar announcements
corpus, where 483 emails are manually annotated with speaker,
starting time, ending time and location of seminars. Such corpus
was already used for evaluating a number of adaptive algorithms
[10]. In our experiment the annotation in the corpus was used to
simulate human annotation in the methodology described above.
We have evaluated the potential contribution of the IE system at
regular intervals during corpus tagging, i.e. after the annotation of
5, 10, 20, 25, 30, 50, 62, 75, 100 and 150 documents (each subset
fully including the previous one). Each time we tested the
accuracy of the IES on the following 200 texts in the corpus (so
when training on 25 texts, the test was performed also on the
following 25 texts that will be used for training on 50). The ability
to suggest on the test corpus was measured in terms of precision
and recall. Recall represents here an approximation of the
probability that the user receives a suggestion in tagging a new
document. Precision represents the probability that such
suggestion is correct. The maximum gain comes in annotating
stime and etime. This is not surprising as they present quite
regular fillers. After training on only 20 texts, the system is
potentially able to propose 368 stimes (out of 491), 303 are
correct, 18 partially correct

2
, 47 wrong, leading to Precision=84

Recall=61. With 30 texts the recognition reaches P=91, R=78,
with 50 P=92, R=80. The situation is very similar for etime, while
it is more complex for speaker and location, where 80% f-measure
is reached only after about 100 texts. This is due to the fact that
locations and speakers are much more difficult to learn than time
expressions because they are much less regular. Note that in the

2
 Where the proposed and correct annotations partially overlap. They

count as half correct in calculating precision and recall.

experiment we did not use a Named Entity Recogniser. A NERC
would have allowed reducing the needs of examples for speaker.
We performed the same type of analysis on other corpora such as
the Austin TX Jobs announcement corpus and found similar
results.

6.1. Is it Worth Using IE?

The experiments show that the contribution of the IES can be
quite high. Reliable annotation can be obtained with limited
training, especially when adopting high precision IES
configurations. In the case of the CMU corpus, our experiments
show that it is possible to move from bootstrapping to active
annotation after annotating some dozens of texts. In table 1 we
show the amount of training needed for moving to active
annotation for each type of information, given a minimum user
requirement of 75% precision. This shows that the IES
contribution heavily reduces the burden of manual annotation and
that such reduction is particularly relevant and immediate in case
of quite regular information (e.g., time expressions). In user terms
this means that it is possible to focus the activity on annotating
more complex pieces of information (e.g. speaker), avoiding to be
bothered with repetitive ones (such as stime). With some more
training cases the IES is also able to contribute in annotating the
complex cases.

Tag Amount of Texts
needed for training

Prec Rec

stime 30 91 78
etime 20 96 72

location 30 82 61
speaker 100 75 70

Table 1: The amount of training texts needed for reaching
at least 75% precision and 50% recall

7. CONCLUSIONS AND FUTURE WORK
In this paper we have presented a modality of interaction between
an adaptive IES and a classical annotation interface for the
Semantic Web. We have defined a modality in which the interface
and the IES cooperate in order to obtain effective annotation in the
way preferred by a specific user. We have also explained how to
organize learning in order to reduce or avoid any idle time from
the user point of view. Then we have discussed how it is possible
to maintain a reasonable timeliness in learning from examples
while hiding to users the delay necessary for training the
underlying IES. Finally we have presented Melita, a demonstrator
that implements such methodology and we have described how
user configurations in Melita are turned into settings for Amilcare.
We believe that this methodology of interaction between the IES
and the annotation interface allows to fully exploiting the
potentiality of adaptive IE for annotating texts because:
1. It inserts in the usual user environment without imposing

particular requirements on the annotation interface used to
train the IES. (2)

2. It maximizes the cooperation between user and IES: users
insert annotations in texts as part of their normal work and at
the same time they train the IES. The IES in turn simplifies
the user work by inserting annotations similar to those
inserted by the user in other documents; this collaboration is

made timely and effective by the fact that the IES is retrained
after each document annotation.

3. The modality in which the IES system suggests new
annotations is fully tunable and therefore easily adaptable to
the specific user needs/preferences.

4. It allows to timely train the IES without disrupting the user
pace with learning sessions consuming a large amount of
CPU time (and therefore either stop or slow down the
annotation process).

Future work will consider the better formalization of the way in
which Melita’s settings are turned into IES settings. The currently
adopted solution is still under evaluation and it needs further
development and experiments, as currently it is completely
arbitrary and the risk is to produce an opaque effect on the user
with respect to the way in which the IES is influenced.

8. ACKNOWLEDGEMENT
The current work has been carried on in the framework of the
AKT project (Advanced Knowledge Technologies,
http://www.aktors.org), an Interdisciplinary Research
Collaboration (IRC) sponsored by the UK Engineering and
Physical Sciences Research Council (grant GR/N15764/01). AKT
involves the Universities of Aberdeen, Edinburgh, Sheffield,
Southampton and the Open University (www.aktors.org). AKT is
a multimillion pound six year research project that started in 2000.
Its objectives are to develop technologies to cope with the six
main challenges of knowledge management: acquisition,
modelling, retrieval/extraction, reuse, publication and
maintenance. The work on annotation interfaces described in this
work would not have been possible without the discussions and
interactions with Enrico Motta, Mattia Lanzoni and John
Domingue (Open University), Steffen Staab and Siegfried
Handschuh (University of Karlsruhe). Amilcare uses Annie for
preprocessing (www.gate.ac.uk). Thanks to the Gate group for
providing Annie and for help in integrating it into Amilcare.

B ibl iography
[1] M. E. Califf, D. Freitag, N. Kushmerick and I. Muslea (eds.):

AAAI-99 Workshop on Machine Learning for Information Extraction
July 19, 1999, Orlando Florida
(http://www.isi.edu/~muslea/RISE/ML4IE/)

[2] F. Ciravegna, R. Basili, R. Gaizauskas (eds.) ECAI2000 Workshop
on Machine Learning for IE, Berlin, 2000,
(www.dcs.shef.ac.uk/~fabio/ecai-workshop.html)

[3] F. Ciravegna, N. Kushmenrick, R. Mooney and I. Muslea (ed.),
IJCAI-2001 Workshop on Adaptive Text Extraction and Mining held in
conjunction with the 17th International Conference on Artificial
Intelligence (IJCAI-01), Seattle, August, 2001
(http://www.smi.ucd.ie/ATEM2001/)

[4] J.B. Domingue, M. Lanzoni, E. Motta, M. Vargas-Vera and F.
Ciravegna: “MnM: Ontology driven semi-automatic or automatic
support for semantic markup”, submitted paper.

[5] BADGER Information Extraction (IE) Software, http://www-
nlp.cs.umass.edu/software/badger.html

[6] S. Handschuh, S. Staab and F. Ciravegna: “S-CREAM - Semi-
automatic CREAtion of Metadata”, submitted paper.

[7] C. A. Thompson, M. E. Califf, and R. J. Mooney: “Active Learning
for Natural Language Parsing and Information Extraction”, Proceedings
of the Sixteenth International Machine Learning Conference (ICML-
99), Bled, Slovenia, pp. 406-414, June 1999.

[8] F. Ciravegna and D. Petrelli: “User Involvement in Adaptive
Information Extraction: Position Paper” in Proceedings of the IJCAI-
2001 Workshop on Adaptive Text Extraction and Mining held in
conjunction with the 17th International Conference on Artificial
Intelligence (IJCAI-01), Seattle, August, 2001

[9] D. Maynard, V. Tablan, H. Cunningham, C. Ursu, H. Saggion, K.
Bontcheva and Y. Wilks: “Architectural Elements of Language
Engineering Robustness”, Journal of Natural Language Engineering --
Special Issue on Robust Methods in Analysis of Natural Language
Data, 2002, forthcoming.

[10] F. Ciravegna: "Adaptive Information Extraction from Text by Rule
Induction and Generalisation" in Proceedings of 17th International
Joint Conference on Artificial Intelligence (IJCAI 2001), Seattle,
August 2001."

[11] F. Ciravegna: "(LP)2, an Adaptive Algorithm for Information
Extraction from Web-related Texts" in Proceedings of the IJCAI-2001
Workshop on Adaptive Text Extraction and Mining held in conjunction
with the 17th International Conference on Artificial Intelligence (IJCAI-
01), Seattle, August, 2001

[12] N. Kushmerick, D. Weld and R. Doorenbos: `Wrapper induction for
information extraction', Proc. of 15th International Conference on
Artificial Intelligence, IJCAI-97.

[13] R. S. Mickalski, I. Mozetic, J. Hong and H. Lavrack: The multi
purpose incremental learning system AQ15 and its testing application
to three medical domains’, in Proceedings of the 5th National
Conference on Artificial Intelligence, Philadelphia: Morgan Kaufmann.

[14] F. Ciravegna: “Challenges in Information Extraction from Text for
Knowledge Management”, IEEE Intelligent Systems and Their
Applications, November 2001.

[15] S. Soderland: `Learning information extraction rules for semi-
structured and free text', Machine Learning, (1), 1-44, 1999.

[16] A. Douthat, “The message understanding conference scoring
software user's manual”, in [17]

[17] 7th Message Understanding Conference Proceedings, MUC-7.
http://www.itl.nist.gov/iaui/894.02/related_projects/muc/

	Is it Worth Using IE?

