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Introduction to Our Handbook for Experimenters 

Design of experiments is a method by which you make purposeful changes to 
input factors of your process in order to observe the effects on the output.  

DOE’s can and have been performed in virtually every industry on the planet—
agriculture, chemical, pharmaceutical, electronics, automotive, hard goods 

manufacturing, etc.  Service industries have also benefited by obtaining data 
from their process and analyzing it appropriately. 

Traditionally, experimentation has been done in a haphazard one-factor-at-a-

time (OFAT) manner.  This method is inefficient and very often yields 
misleading results.  On the other hand, factorial designs are a very basic type 

of DOE, require only a minimal number of runs, yet they allow you to identify 
interactions in your process.  This information leads you to breakthroughs in 

process understanding, thus improving quality, reducing costs and increasing 
profits! 

We designed this Handbook for Experimenters to use in conjunction with our 

Design-Expert software.  However, even non-users can find a 

great deal of valuable detail on DOE.  Section 1 is meant to be 
used BEFORE doing your experiment.  It provides guidelines for 

design selection and evaluation.  Section 2 is a collection of 
guides to help you analyze your experimental data.  Section 3 

contains various statistical tables that are generally used for 
manual calculations. 

-The Stat-Ease Consulting Team 
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DOE Process Flowchart 

 

Define Objective and 

Measurable Responses 

Brainstorm Variables 

Factorial Worksheet (p1-8) 
& Design Selection (p1-9) 

Analysis Guide (p2-1) 

Inputs 
Mix 

+Process 

Begin DOE Checklist 
(p1-1) 

Screen/ 
Characterize 

Optimize 

RSM Worksheet (p1-11) 
& Design Selection (p1-12) 

Analysis Guide (p2-3) 

Mixture Worksheet (p1-16) 
& Design Selection (p1-17) 

Analysis Guide (p2-3) 

Combined Design (p1-18) 
Analysis Guide (p2-6) 

  Stage 

Residual Analysis and 
Diagnostic Plots Guide (p2-9) 

Optimization Guide (p2-15): 
Find Desirable Set-up that 

Hits the Sweet Spot! 

Next page illustrates 
how to fish for these→ 

If some factors are 
hard-to-change (HTC), 
consider a split plot. 
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Cause-and-effect diagram (to fish for factors) 

 

Suggestions for being creative on identifying potential variables: 

➢ Label the five big fish bones by major causes, for example, Material, 
Method, Machinery, People and Environment (spine). 

➢ Gather a group of subject matter experts, as many as a dozen, and  
o Assign one to be leader, who will be responsible for maintaining a 

rapid flow of ideas. 

o Another individual should record all the ideas as they are 
presented. 

❖ Alternative: To be more participative, start by asking 
everyone to note variables on sticky notes that can then be 
posted on the fishbone diagram. 

Choosing variables to experiment on and what to do with the others: 
➢ For the sake of efficiency, pare the group down to three or so key 

people who can then critically evaluate the collection of variables and 
chose ones that would be most fruitful to experiment on. 

o Idea for prioritizing variables: Give each evaluator 100 units of 

imaginary currency to ‘invest’ in their favorites.  Tally up the 
totals from top to bottom. 

➢ Note factors that are hard to change.  Consider either blocking them out 
or including them for effects assessment via a split plot design. 

➢ Variables not chosen should be held fixed if possible. 

➢ Keep a log of other variables that cannot be fixed but can be monitored. 

“It is easier to tone down a wild idea than to think up a new one.” 

- Alex Osborne 

Response (Effect): 

______________ 

______________

______________ 
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Section 1: 

Designing Your Experiment 
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DOE Checklist 

 Define objective of the experiment. 

 Identify response variables and how they will be measured. 

 Decide which variables to investigate (brainstorm—see fishbone in 
the Handbook preface). 

 Choose low and high level of each factor (or component if a mixture). 

o Estimate difference  (delta) generated in response(s) 

o Be bold, but avoid regions that might be bad or unsafe. 

 Choose a model based on subject matter knowledge of the 

relationship between factors and responses. 

 Select design (see details in Handbook).  Specify: 

o Replicates. 

o Blocks (to filter out known source of variation, such as 
material, equipment, day-to-day differences, etc.). 

o Center points (or centroid if a mixture). 

 Evaluate design (see details in Handbook): 

o Check aliasing among effects of primary interest. 

o Determine the power (or size by fraction of design space—
FDS—if an RSM and/or mixture). 

 Go over details of the physical setup and design execution. 

 Determine how to hold non-DOE variables constant. 

 Identify uncontrolled variables: Can they be monitored? 

 Establish procedures for running an experiment. 

 Negotiate time, material and budgetary constraints. 

o Invest no more than one-quarter of your experimental budget 
(time and money) in the first design.  Take a sequential 

approach.  Be flexible! 

 Discuss any other special considerations for this experiment. 

 Make plans for follow-up studies. 

 Perform confirmation tests. 
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Factorial DOE Planning Process 

This four-step process guides you to an appropriate factorial DOE.  Based 

on a projected signal-to-noise ratio, you will determine how many runs to 
budget. 

1. Identify opportunity and define objective. 

2. State objective in terms of measurable responses. 

a. Define the change (y) that is important to detect for each 

response. This is your “signal.” 

b. Estimate experimental error () for each response.  This is 

your “noise.” 

c. Use the signal to noise ratio (y/) to estimate power. 

This information is needed for EACH response.  See the next page for 

an example on how to calculate signal to noise. 

3. Select the input factors to study.  (Remember that the factor levels 
chosen determine the size of y.) 

The factor ranges must be large enough to (at a minimum) generate 
the hoped-for change(s) in the response(s). 

4. Select a factorial design (see Help System for details).  

• Are any factors hard-
to-change (HTC)?  If so 

consider a split-plot 
design. 

• If fractionated and/or 

blocked, evaluate 
aliases with the order 

set to a two-factor 
interaction (2FI) 
model. 

• Evaluate power (ideally greater than 80%).  If the design is a 
split-plot, consider the trade-off in power versus running a 

completely randomized experiment. 

• Examine the design to ensure all the factor combinations are 

reasonable and safe (no disasters!) 
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Power Requirements for Two-Level Factorials  

Purpose: 

Determine how many runs you need to achieve at least an 80% chance 

(power) of revealing an active effect (signal) of size delta (). 

General Procedure: 

1. Determine the signal delta ().  This is the change in the response 

that you want to detect.  Bounce numbers off your management 
and/or clients, starting with a ridiculously low improvement in the 

response and working up from there.  What’s the threshold value that 
arouses interest?  That’s the minimum signal you need to detect.  
Just estimate it the best you can—try something! 

2. Estimate the standard deviation sigma ()—the noise—from: 

• repeatability studies 

• control charts (R-bar divided by d2) 

• analysis of variance (ANOVA) from a DOE. 

• historical data or experience (just make a guess!). 

3. Set up your design and evaluate its power based on the signal-to-
noise ratio (/).  If it’s less than 80%, consider adding more runs or 

even replicating the entire design.*  Continue this process until you 
achieve the desired power.  If the minimum runs exceeds what you 
can afford, then you must find a way to decrease noise (), increase 

the signal (), or both. 

*(If it’s a fraction, then chose a less-fractional design for a better 
way to increase runs—adding more power and resolution.) 

Example: 

What is the ideal color/typeface combination to maximize readability of 

video display terminals?  The factors are foreground (black or 
yellow), background (white or cyan) and typeface (Arial or 
Times New Roman).  A 23 design (8 runs) is set up to minimize 

time needed to read a 30-word paragraph.  Following the 
procedure above, determine the signal-to-noise ratio: 

• A 1-second improvement is the smallest value that arouses interest 
from the client.  This is the signal:  = 1. 

• A prior DOE reveals a standard deviation of 0.8 seconds in readings.  

This is the noise:  = 0.8. 

• The signal to noise ratio (/) is 1/.8 = 1.25. We want the power to 

detect this to be at least 80%. 
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Use Design-Expert to Size a Regular Two-Level Design for Adequate Power: 

1. For a 8-run regular 23 design, enter the delta and sigma.  The 

program then computes the signal-to-noise (/) ratio of 1.25. 

 

The probability of detecting a 1 second difference at the 5% alpha 
threshold level for significance (95% confidence) is only 27.6%, 
which falls far short of the desired 80%. 

2. Go back and add a 2nd replicate (blocked) to the design (for a total of 
16 runs) and re-evaluate the power. 

 

The power increases to 62.5% for the 1.25 signal/noise ratio – not 

good enough.  

3. Add a 3rd replicate (blocked) to the design (for a total of 24 runs) and 
evaluate. 

Power is now over 80% for the ratio of 1.25:  
Mission accomplished! ☺ 
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Impact of Split-Plot (vs Randomized) Design on Power: 

Illustration: 

Engineers need to determine the cause of drive gears becoming 
‘dished’ (a geometric distortion).  Three of the five suspect 

factors are hard to change (HTC).  To accommodate these HTC 
factors in a reasonable number of runs, they select a 16-run 
Split-Plot Regular Two-Level design and assess the power for a signal of 5 

and a noise of 2 with the ratio of whole-plot to split-plot variance at the 
default of 1. 

The program then produces these power calculations: 

• The easy-to-change (ETC) factors D and E (capitalized) increase in 
power (from 88.9% to 98.4%) due to being in the “subplot” part of 

the split-plot design. ☺   
• However, the HTC factors a, b and c (lower-case) lose power by 

being restricted in their randomization to “whole plots”, falling from 
88.9% to 58.8%.    

Fortunately, subject matter knowledge for this example indicates that the 
HTC factors vary far less—by a 1-to-4 ratio—than the ETC.  The 
experimenters therefore decrease the variance ratio from 1 to 0.25.  This 

restores adequate power—85.7% (the benchmark being 80%)—to the HTC 
factors. ☺ 
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Procedure for Handling Response in Proportions: 

Illustration: 

A small bakery develops a new type of bread that their customers love.  
Unfortunately, only half of the loaves come out saleable—

the remainder falling flat.  Perhaps switching to a premium 
flour (expensive!) and/or making other changes to 
ingredients, e.g. yeast, might help.  The master baker sets 

up a two-level factorial design for 5 factors in 16 runs, i.e., 
a high-resolution half-fraction.  He figures on baking 20 loaves per run.  

Here are the steps taken to develop adequate power for this experiment. 

1. Convert the measurement to a proportion (“p”), where 
p = (#of fails or passes) / (#total units). 

2. Check () on the Edit response types. 

3. Determine your current proportion (“p-bar”) and the difference 

(“signal”) you want to detect.  In this case p-bar is 0.5 (half being 
failures).  The baker decides that it would be good to know if 

changing the factors can produce a change the proportion of a 10 
percent or more. The signal is entered as a fraction of 0.1. 

4. Decide a starting point for the “samples per run”—20 being the 

number for this case. 

5. Estimate the run-to-run variation as a percent of the current 

proportion, assuming a very large number of parts were to be 
produced at each setup.  In this case, 5% of p-bar is the estimate. 

Here is Power Wizard entry screen for the bread-baking experiment: 

 

The proportion response power comes out to be 35.3%: not enough 

(80% recommended).  This takes the air out of the baker (this is meant 
to be funny) but his spirits rise (ha ha) when he goes back and chooses 

the full factorial, i.e., 32 runs—this raising the power to 66.3%.  Almost 
there!  The baker comes up with a way to squeeze more loaves into the 
oven and sees his way clear to increasing the samples per run to 30.  

That does the trick: power increasing to 82.2%. ☺ 
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Special Procedure for Handling Standard Deviation 

In many situations, you will produce a number (n) of parts or samples per 

run in your experiment.  Then we recommend you compute the standard 
deviation of each response so you can find robust operating conditions by 

minimizing variability.  If you go this route, we advise an n of 5 to 10 to get 
a decent estimate of variation.  The more parts or samples per run the 
better, but with diminishing returns—there being little value in going 

beyond an n of 20. 

The standard power calculations for two-level factorials will work in this 

case, but you must come up with an estimate of the standard deviation of 
the within run variability. 

Illustration: 

When filling packages in the food industry, manufacturers must put in at 
least the amount listed on label.  By minimizing the variability 

in package weight, specifications can be tightened closer to 
the stated label amount weight, thus saving money without 
shorting consumers (and risking costly penalties imposed by 

regulatory authorities!). 

For example, let’s say that at current operating conditions for the packager, 

the fill-to-fill standard deviation is about 1.2 grams (gm).  At a minimum, a 
0.35 gm change in the standard deviation would be an important difference.  

The standard deviation from run-to-run varies, of course.  Over a period of 
time the filler is shut down and started up a number for times, from which 
the food-processing engineer calculates a standard deviation of 0.2 in the 

fill-to-fill variations.  Thus, Power Wizard entry is: 

 

For a two-level factorial design with 16 runs, this produces a power of 

88.3%--plenty good. ☺  Note that the sigma entered is 0.2—not 1.2.  This 
incorrect level of noise, being many-fold higher, would require hundreds of 
runs to overpower.  Do not make this mistake when calculating power for a 

response that is the standard deviation of your response. 
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Factorial Design Worksheet 

Identify opportunity and define objective: ________________________ 

______________________________________________________ 

______________________________________________________ 

State objective in terms of measurable responses: 

• Define the change (Δy - signal) you want to detect. 

• Estimate the experimental error (σ - noise) 

• Use Δy/σ (signal to noise) to check for adequate power. 

Name Units Δy σ Δy/ σ Power Goal* 

R1:       

R2:       

R3:       

R4:       

*Goal: minimize, maximize, target=x, etc. 

Select the input factors and ranges to vary within the experiment: 

Remember that the factor levels chosen determine the size of Δy. 

Name Units Type HTC*? Low (−1) High (+1) 

A:      

B:      

C:      

D:      

E:      

F:      

G:      

H:      

J:      

K:      

*Hard-to-change (versus easy-to-change—ETC) 

Choose a design: Type:____________________________________ 

Replicates: ____,  Blocks: _____,    Center points: ____ 
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Factorial Design Selection 

Regular Two-Level:  Selection of full and fractional factorial designs 
where each factor is run at 2 levels.  These designs are color-coded in  

Stat-Ease software to help you identify their nature at a glance.   

 White: Full factorials (no aliases).  All possible combinations of factor 

levels are run.  Provides information on all effects. 

◼ Green: Resolution V designs or better (main effects (ME’s) aliased with 
four factor interactions (4FI) or higher and two-factor interactions (2FI’s) 

aliased with three-factor interactions (3FI) or higher.)  Good for estim-
ating ME’s and 2FI’s.  Careful: If you block, some 2FI’s may be lost! 

◼ Yellow: Resolution IV designs (ME’s clear of 2FI’s, but these are aliased 
with each other [2FI – 2FI].)  Useful for screening designs where you 

want to determine main effects and the existence of interactions. 

◼ Red:  Resolution III designs (ME’s aliased with 2FI’s.)  Good for 
ruggedness testing where you hope your system will not be sensitive to 

the factors.  This boils downs to a go/no-go acceptance test.  Caution: 
Do not use these designs to screen for significant effects. 

Min-Run Characterize (Resolution V):  Balanced (equireplicated) two-level 
designs containing the minimum runs to estimate all ME’s and 2FI’s.  Check 
the power of these designs to make sure they can estimate the size effect 

you need.  Caution: If any responses go missing, then the design degrades 
to Resolution IV. 

Irregular Res V*:  These special fractional Resolution V designs may be a 
good alternative to the standard full or Res V two-level factorial designs. 
*(A “Miscellaneous” design—not powers of two, e.g.; 4 factors in 12 runs.) 

Min-Run Screen (Resolution IV):  Estimates main effects only (the 2FI’s 
remain aliased with each other).  Check the power.  Caution: even one 

missing run or response degrades the aliasing to Resolution III.  To avoid 
this sensitivity, accept the Stat-Ease software design default adding two 
extra runs (Min Run +2). 

Plackett-Burman:  A “Miscellaneous” design suited only for ruggedness 
testing due to complex Resolution III aliasing.  Not good for screening. 

Taguchi OA (Orthogonal Array):  A “Miscellaneous” Resolution III design 
typically run saturated - all columns used for ME’s.  ‘Linear graphs’ lead to 
estimating certain interactions.  We recommend you not use these designs. 

Multilevel Categoric:  A general factorial design good for categoric factors 
with any number of levels: Provides all possible combinations.  If too many 

runs, use Optimal design.  (Design also available in Split-Plot.) 

Optimal (Custom):  Choose any number of levels for each categoric 
factor.  The number of runs chosen will depend on the model you specify 

(2FI by default). D-optimal factorial designs are recommended.  (Optimal 
designs also available in Split-Plot.) 
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Split-Plot Designs: 

Regular Two-Level: Select the number of total factors and how many of 

these will be hard to change (HTC).  The program may then change the 
number of runs to provide power.*  The HTCs will be grouped in whole 

plots, within which the easy-to-change (ETC) factors will be randomized in 
subplots.  From one group to the next, be sure to reset each factor level 
even if by chance it does not change. 

*(Caution: You may be warned on the power screen that “Whole-plot terms 
cannot be tested…”  Proceed then with caution—accepting there being no 

test on HTC(s)—or go back and increase the runs.) 

Multilevel Categoric:  Change factors to Hard or Easy as shown.  If you 
see the “Cannot test…” warning upon Continue, then increase Replicates. 

 

 

Optimal (Custom):  Change factors to Hard or Easy.  Watch out for low 

power on the HTC factor(s).  In that case go Back and add more Groups as 

shown below.  As noted in screen tips (press 💡), a Variance ratio (whole 

plot to subplot) of 1 is a balance that will work for most cases 
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Response Surface Method (RSM) Design Worksheet 

Identify opportunity and define objective: __________________ 

________________________________________________ 

________________________________________________ 

________________________________________________ 

State objective in terms of measurable responses: 

• Define the precision (d - signal) required for each response. 

• Estimate the experimental error (σ - noise) for each response. 

• Use d/σ (signal to noise) to check for adequate precision using FDS. 

Name Units d Σ FDS Goal 

R1:      

R2:      

R3:      

R4:      

Select the input factors and ranges to vary within the experiment: 

Name Units Type Low High 

A:     

B:     

C:     

D:     

E:     

F:     

G:     

H:     

Quantify any MultiLinear Constraints (MLC’s): 

________________________________________________ 

________________________________________________ 

Choose a design: Type:____________________________________ 

Replicates: ____,  Blocks: _____,    Center points: ____ 
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RSM Design Selection 

Central Composite Designs (CCD): 

 Standard (axial levels () for “star points” are set for rotatability): 

Good design properties, little collinearity, 
rotatable, orthogonal blocks, insensitive to outliers 

and missing data.  Each factor has five levels.  
Region of operability must be greater than region 
of interest to accommodate axial runs.  For 5 or 

more factors, change factorial core of CCD to: 
o Standard Resolution V fractional design, or  

o Min-run Res V. 

 Face-centered (FCD) ( = 1.0): 

Each factor conveniently has only three levels.  Use when region of 

interest and region of operability are nearly the same.  
Good design properties for designs up to 5 factors: little 

collinearity, cuboidal rather than rotatable, insensitive to 
outliers and missing data.  (Not recommended for six or 
more factors due to high collinearity in squared terms.)  

 Practical alpha ( = 4th-root of k – the number of factors): 

Recommended for six or more factors to reduce collinearity in CCD. 

 Small (Draper-Lin) 

A minimal design not recommended being very sensitive to bad data. 

Box-Behnken (BBD):  Each factor has only three levels.  Good design 

properties, little collinearity, rotatable or nearly rotatable, some 
have orthogonal blocks, insensitive to outliers and missing data.  
Does not predict well at the corners of the design space.  Use 

when region of interest and region of operability nearly the 
same. 

 
Miscellaneous designs:  

3-Level Factorial:  Good for three factors at most. Beyond that the 

number of runs far exceeds what’s needed for a good RSM.  
(See table on next page - Number of Design Points for Various 

RSM Designs). Good design properties, cuboidal rather than 
rotatable, insensitive to outliers and missing data.  To reduce 

runs for more than three factors, consider BBD or FCD. 

Hybrid:  Minimal design that is not recommended due being very sensitive 
to bad data but better than the Small CCD.  Runs are oddly 

spaced as shown in the figure) with each factor having four or 
five levels.  Region of operability must be greater than region 

of interest to accommodate axial runs. 

(­ ­1, 1) (+1, 1)­

(+1,+1)

(0, 0)

(0, + )

( , 0)+( , 0)­

( )0, ­

A:A

D
:D

-1.80 -0.90 0.00 0.90 1.80

-1.80

-0.90

0.00

0.90

1.80
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Pentagonal:  For two factors only, this minimal-point design provides an 
interesting geometry with one apex (1, 0) and 4 levels of one factor versus 

5 of the other.  It may be of interest with one categoric factor at two 
levels to form a three-dimensional region with pentagonal faces on 

the two numeric (RSM) factors. 

Hexagonal:  For two factors only, this design is a good alternative to 
the pentagon with 5 levels of one factor versus 3 of the other. 
 

 

Optimal (custom):  Handles any or all input types, e.g., numeric discrete 
and/or categoric, within any constraints for specified polynomial model.  
Choose from these criteria: 

o I - default reduces the average prediction variance. (Best predictions) 
o D - minimizes the joint confidence interval for the model coefficients. 

(Best for finding effects, so default for factorial designs) 
o A - minimizes the average confidence interval. 
o Distance based - not recommended: chooses points as far away from 

each other as possible, thus achieving maximum spread. 
Exchange Algorithms: 

o Best (default) - chooses the best from Point or Coordinate exchange. 
o Point exchange – based on geometric candidate set, coordinates fixed. 
o Coordinate exchange – candidate-set free: Points located anywhere. 

 

Definitive Screen (DSD):  A “Supersaturated” three-level design for RSM 

which aliases squared terms with two-factor interactions (2FI). These 
designs are useful for screening main effects, and may reveal information 
about the second-order model terms. Stat-Ease, Inc. feels that there are 

too many assumptions necessary to make them worthwhile for optimization 
goals. 

 

Split-Plot Central Composite (SPCCD):  Handles hard-to-change (HTC) 
factors using a standard RSM template.  For more than a few factors the 

SPCCD may generate more runs than needed for proper design sizing. If so, 
go to the Optimal alternative for split-plot RSM. 

Split-Plot Optimal (custom):  Good choice when one of more factors are 
HTC (generally better than SPCCD) and only option when factors are 
discrete and/or categoric or when constraints form an irregular 

experimental region. 
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Number of Points for Standard RSM Designs 

Number 
Factors 

CCD 
full 

CCD 
fractional 

CCD 
MR-
5 

Box- 
Behnken 

Small 
CCD 

DSD* Quadratic 
Coefficients† 

2 13 NA NA NA NA NA 6 

3 20 NA NA 17 15 NA 10 

4 30 NA NA 29 21 13 15 

5 50 32 NA 46 26 13 21 

6 86 52 40 54 33 13 28 

7 152 88 50 62 41 17 36 

8 272 154  90 60 120 51 17 45 

9 540 284  156 70 130 61 21 55 

10 X 286  158 82 170 71 21 66 

20 X 562 258 348 X 44 231 

30 X X 532 X X 61 496 

40 X X 908 X X NA 901 

50 X X 1382 X X NA 1376 

X = Excessive runs 

NA = Not Available 

* DSDs do not have enough runs to simultaneously estimate all of the 
terms in the quadratic model. 

† Including the intercept, linear, two-factor interaction, and quadratic 
(squared) terms.  
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Mixture Design Worksheet 

Identify opportunity and define objective: __________________ 

________________________________________________ 

________________________________________________ 

State objective in terms of measurable responses: 

• Define the precision (d - signal) required for each response. 

• Estimate the experimental error (σ - noise) for each response. 

• Use d/σ (signal to noise) to check for adequate precision using FDS. 

Name Units d Σ FDS Goal 

R1:      

R2:      

R3:      

R4:      

Select the components and ranges to vary within the experiment: 

Name Units Type Low High 

A:     

B:     

C:     

D:     

E:     

F:     

G:     

  Mix Total:  

Quantify any MultiLinear Constraints (MLC’s): 

________________________________________________ 

________________________________________________ 

Choose a design:  Type:___________________________________ 

Replicates: ____,  Blocks: _____,    Centroids: ____ 
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Mixture Design Selection 

Simplex designs: Applicable if all components range from 0 to 100 percent 
(no constraints) or they have same range (necessary, but not sufficient, to 

form a simplex geometry for the experimental region). 
 Lattice: Specify degree “m” of polynomial (1 - linear, 2 - quadratic 

or 3 - cubic).  Design is then constructed of m+1 equally spaced 
values from 0 to 1 (coded levels of individual mixture component).  
The resulting number of blends depends on both the number of 

components (“q”) and the degree of the polynomial “m”.  Centroid 
not necessarily part of design. 

 Centroid: Centroid always included in the design comprised of 2q-1 
distinct mixtures generated from permutations of: 

o Pure components: (1, 0, ..., 0) 
o Binary (two-part) blends: (1/2, 1/2, 0, ..., 0) 
o Tertiary (three-part) blends: (1/3, 1/3, 1/3, 0, ..., 0)  

o and so on to the overall centroid: (1/q, 1/q, ..., 1/q) 

 

Simplex Lattice versus Simplex Centroid 

Screening designs:  Essential for six or more components.  Creates design 
for linear equation only to find the components with strong linear effects. 

 Simplex screening 

 Extreme vertices screening (for non-simplex) 

Custom mixture design: 

 Optimal: (See RSM design selection for details.) Use when 
component ranges are not the same, or you have a complex region, 

possibly with constraints. 
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Custom Design Selection 

Optimal (Combined):  These designs combine either two sets of mixture 
components, or mixture components with numerical and/or categoric 

process factors.  For example, if you want to mix your filled cupcake 
and bake it too using two ovens, identify the number of: 

 Mixture 1 components – the cake:  
4 for flour, water, sugar and eggs 

 Mixture 2 components – the filling:  

3 for cream cheese, salt and chocolate 
 Numeric factors – the baking process:  

2 for time and temperature 
 Categoric factors – the oven:  

2 types – Easy-Bake or gas. 

The optional User Defined design option (see below) generates a very large 
candidate set (over 25,000 for the filled cupcakes!). The Optimal (custom) 

design option pares down the runs to the bare minimum needed to fit the 
combined models.*  Design-Expert software will add by default: 

• Lack of fit points (check blends) via distance-based criteria 

• Replicates on the basis of leverage. 

As needed, the Optimal (custom) designs handle hard-to-change (HTC) 

factors and/or components via split-plot tools.  Setting component A to HTC 
makes the entire mixture hard-to change, e.g., mixing up various blueberry 

cornbread muffin batters one batch at a time and baking off each one at 
various times and temperatures in a toaster oven, these process factors 
being easy to change (ETC). 

*The model for categoric factors takes the same order as for the numeric 
(process).  For example, by default the process will be quadratic, a 

second-order polynomial.  Therefore, the second-order two-factor 
interaction (2FI) model will be selected for the categoric factors. 

User-Defined:  Generates points based on geometry of design space. 

Historical:  Allows for import of existing data.  Be sure to evaluate this 
happenstance design before doing the analysis.  Do not be surprised to see 

extraordinarily high variance inflation factors (VIF’s) due to 
multicollinearity.  The resulting models may fit past results adequately but 
remain useless for prediction. 

Simple Sample: Use this design choice as a tool for entering raw data to 
generate basic statistics (mean, standard deviations and intervals) for a 

process where no inputs are intentionally varied.  There are no factors to 
enter—only a specified number of observations (runs containing one or 
more measured responses). 
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Design Evaluation Guide  

1. Select the polynomial model you want to evaluate.  First look for 
aliases. No aliases should be found.  If the model is aliased, 

the program calculates the alias structure -- examine this.  
An aliased model implies there are either not enough unique 

design points, or the wrong set of design points was chosen. 

2. Examine the table of degrees of freedom (df) for the model.  You want: 

a) Minimum 3 lack-of-fit df. 

b) Minimum 4 df for pure error. 

3. Look at the standard errors (based on s = 1) of the coefficients.  They 

should be the same within type of coefficient.  For example, the 
standard errors associated with all the linear (first order) coefficients 

should be equal.  The standard errors for the cross products (second 
order terms) may be different from those for the linear standard errors, 
but they should all be equal to each other, and so on. 

4. Examine the variance inflation factors (VIF) of the coefficients: 

VIF =  
1

1- Ri

2
 

 VIF measures how much the lack of orthogonality in the design 

inflates the variance of that model coefficient.  (Specifically the 
standard error of a model coefficient is increased by a factor equal 

to the square root of the VIF, when compared to the standard error 
for the same model coefficient in an orthogonal design.) 

 VIF of 1 is ideal because then the coefficient is orthogonal to the 

remaining model terms, that is, the correlation coefficient (Ri
2) is 

0. 

 VIFs above 10 are cause for concern. 

 VIFs above 100 are cause for alarm, indicating coefficients are 
poorly estimated due to multicollinearity. 

 VIFs over 1000 are caused by extreme collinearity 

 

5. For factorial designs: Look at the power calculations to determine if the 
design is likely to detect the effects of interest.  Degrees of freedom for 
residual error must be available to calculate power, so for unreplicated 

factorial designs, specify main effects model only. For more details, see 
Power Calculation Guide.  

 
For RSM and mixture designs: look at fraction of design space (FDS) 
graph to evaluate precision rather than power.  (See FDS Guide.) 
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6. Examine the leverages of the design points.  Consider replicating points 
where leverage is more than 2 times the average and/or points having 

leverage approaching 1. 

Average leverage =  
p

N
 

Where “p” is the number of model terms including the intercept (and any 
block coefficients) and “N” is the number of experiments. 

7. Go to Graphs, Contour (or 3D Surface) Do a plot of the standard error 

(based on s = 1).  The shape of this plot depends 
only on the design points and the polynomial being 

fit.  Ideally the design produces a flat error profile 
centered in the middle of your design space.  For 
an RSM design this should appear as either a circle 

or a square of uniform precision. 

 

Repeat the “design evaluation – design modification” 
cycle until satisfied with the results.  Then go ahead and run the 
experiment. 
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Matrix Measures (for more thorough evaluation by statistical researchers) 

1. Evaluate measures of your design matrix: 

a. Condition Number of Coefficient Matrix (ratio of max to min 
eigenvalues, or roots, of the X'X matrix): 

 = max/min 

•  = 1   no multicollinearity, i.e., orthogonal 

•  < 100  multicollinearity not serious  

•  < 1000  moderate to strong multicollinearity 

•  > 1000  severe multicollinearity 

{Note:  Since mixture designs can never be orthogonal, the matrix 

condition number can’t be evaluated on an absolute scale.} 

b. Maximum, Average, and Minimum mean prediction variance of the 
design points.  These are estimated by the Fraction of Design 

Space sample.  They are the variance multipliers for the prediction 
interval around the mean. 

c. G Efficiency – this is a simple measure of average prediction 
variance as a percentage of the maximum prediction variance. If 
possible, try to get a G efficiency of at least 50%.  Note:  Lack-of-

fit and replicates tend to reduce the G efficiency of a design. 

d. Scaled D-optimality - this matrix-based measure assesses a 

design’s support of a model in terms of prediction capability.  It is 
a single-minded criterion which often does not give a true measure 
of design quality.  To get a more balanced assessment, look at all 

the measures presented during design evaluation.  The D-
optimality criterion minimizes the variance associated with the 

coefficients in the model.  When scaled the formula becomes: 

N((determinant of (X'X)-1)1/p) 

Where N is the number of experiments and p is the number of 

model terms including the intercept and any block coefficients.  
Scaling allows comparison of designs with different number of 

runs.  The smaller the scaled D-optimal criterion the smaller the 
volume of the joint confidence interval of the model coefficients. 

e. The determinant, generalized equivalence condition, trace and I-

score are relative measures (the smaller the better!) used to 
compare designs having the same number of runs, primarily for 

algorithmic point selection.  It is usually not possible to minimize 
all three simultaneously. 

• The determinant (related to D-optimal) measures the volume of 

the joint confidence interval of the model coefficients. 

• The trace (related to A-optimal) represents the average variance 

of the model coefficients. 

• The I-score (related to I-optimal) measures the integral of the 

prediction variance across the design space. 
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2. Examine the correlation matrix of the model coefficients (derived from 
(X'X)-1).  In an orthogonal design all correlations with other coefficients 

are zero.  How close is your design to this ideal? 

{Note:  Due to the constraint that the components sum to a constant, 

mixture designs can never be orthogonal.} 

3. Examine the correlation matrix of the independent factors (comes 
directly from the X matrix itself).  In an orthogonal design none of the 

factors are correlated.  Mixture designs can never be orthogonal. 

4. Modify your design based on knowledge gained from the evaluation: 

a. Add additional runs manually or via the design tools in Stat-Ease 
software for augmenting any existing set of runs. 

b. Choose a different design. 
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Fraction of Design Space (FDS) Guide 

FDS evaluation helps experimenters size constrained response surface 
(RSM) and mixture designs, for which the normal power calculations lose 

relevance.  Supply the 
“signal” and the “noise” and 

the graph will show the 
amount of the design region 
that can estimate with that 

precision. An FDS greater 
than 80 percent is generally 

acceptable to ensure that 
the majority of the design 

space is precise enough for 
your purpose. 

The FDS graph can be 

produced for four different 
types of error: mean, 

prediction, difference, or 
tolerance. 

• Mean – used when the goal of the experiment is to optimize responses 

using the model calculated during analysis; optimization is based on 
average trends. 

• Pred – best when the goal is to verify individual outcomes.  Note: More 
runs are required to get similar precision with “Pred” than “Mean”. 

• Diff – recommended when searching for any change in the response, such 

as for verification DOE’s.  Smaller changes are more difficult to detect. 
• Tolerance –useful for setting specifications based on the experiment. 

FDS is determined by four parameters:  the polynomial used to model the 
response, “a” or alpha significance level, “s” 
or estimated standard deviation, and “d”.  

The meaning of “d” changes relative to the 
error type selected.  For Mean it’s the half-

width of the confidence interval; for Pred it’s 
the half-width of the prediction interval; for 
Tolerance it’s the half-width of the tolerance 

interval; and when using Diff it’s the 
minimum change in the response that is 

important to detect. 

There is also the option to create the FDS by using either One-Sided or 
Two-Sided intervals. 
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Factorial Analysis Guide 

1. Compute effects.  Use half-normal probability plot to select model.  Click 
the biggest effect (point furthest to the right) and continue right-to-left 

until the line runs through points nearest zero.  Alternatively, on the 
Pareto Chart pick effects from left to right, largest to smallest, until all 

other effects fall below the Bonferroni and/or t-value limit. 

  

2. Choose ANOVA* (Analysis of Variance) and check the selected model: 

*(For split plots via REML—Restricted Maximum Likelihood—with p-
values fine-tuned via Kenward-Roger method.) 

a) Review the ANOVA results. 

 P-value < 0.05: significant. 

 P-value > 0.10: not significant. 

b) Examine the F tests on the regression coefficients.  Look for terms 
that can be eliminated, i.e., terms having (Prob > F) > 0.10.  Be 

sure to maintain hierarchy. 

c) Examine the F tests for the lack of fit (available only with 

measures of pure error from replicated runs). If insignificant 
continue with the analysis. If lack of fit tests significant, look at 
the graphs to determine if a more complex model is necessary. If 

the model is useful as is, use it. 

d) Check for “Adeq Precision” > 4.  This is a signal to noise ratio (see 

formula in Response Surface Analysis Guide). 
(Not available for split plots.) 

3. Refer to the Residual Analysis and Diagnostic Plots Guide. 

Verify the ANOVA assumptions by looking at the residual plots. 
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4. Explore the region of interest: 

a) One Factor plot (don’t use  b) Interaction plot (with  

for factors involved in       95% Least Significant 
interactions):        Difference (LSD) bars): 

       
c) Cube plot (especially useful if three factors are significant): 

 
d) Contour plot and 3D surface plot: 
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Response Surface/Mixture Analysis Guide 
1. Select a model (skip this step for split plots): 

a) “WARNING”:  Note which models are aliased, these can not be 

selected. 

b) “Fit Summary”:  Focus on the “Suggested” model. 

c) “Sequential Model Sum of Squares”:  Select the highest order 
polynomial where the additional terms are significant and the 
model is not aliased. 

p-value < 0.05  ☺  p-value > 0.10   

d) “Model Summary Statistics”:  Focus on the model with high 

“Adjusted R-Squared” and high “Predicted R-Squared”. 

e) “Lack of Fit Tests”:  Want the selected model to have insignificant 

lack-of-fit. 

p-value < 0.05    p-value > 0.10  ☺ 

No lack-of-fit reported?  If so, the design lacks: 

i. Excess unique points beyond the number of model terms (to 
estimate variation about fitted surface), and/or 

ii. Replicate runs to estimate pure error (needed to statistically 
assess the lack of fit). 

2. Check the selected model: 

a) Review the ANOVA (for split plots use REML—Restricted Maximum 
Likelihood—with p-values fine-tuned via Kenward-Roger method).  

The F-test is for the complete model, rather than just the 
additional terms for that order model as in the sequential table.  

Model should be significant (p-value < 0.05) and lack-of-fit 
insignificant (P-value > 0.10). 

b) Examine the F tests on the regression coefficients - can the 

complexity of the polynomial be reduced?  Look for terms that can 
be eliminated, i.e., coefficients having p-values > 0.10.  Be sure 

to maintain hierarchy. If there are many such terms, consider 
using Auto Select. 

c) Check for “Adeq Precision” > 4 (not available for split plots).  This 

is a signal to noise ratio given by the following formula: 

( ) ( )
( )

( ) ( )
=

==












 − n

i n

p
YV

n
YV

YV

YY

1

2

ˆ1ˆ4
ˆ

ˆminˆmax 
 

p = number of model parameters (including intercept (b0) 
and any block coefficients) 

2 = residual MS from ANOVA table 

n = number of experiments 
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d) Check that "Pred R-Squared" (not available for split plots) falls no 
more than 0.2 below the "Adj R-Squared".  If so, consider model 

reduction. 

3. Refer to the Residual Analysis and Diagnostics Plots Guide.  Verify 

the ANOVA assumptions by looking at the residual plots. 

4. Explore the region of interest: 

a) Perturbation/Trace plots to choose the factor(s)/component(s) to 

“slice” through the design space.  Choose ones having small 
effects (flat response curve) or components having linear effects 

(straight).  In the RSM and mixture examples below, take slices of 
factor “A”.   

➢ RSM perturbation plot 

              

➢ Mixture trace plot (view Piepel’s direction for broadest paths) 

  

 

Perturbation/Trace plots are particularly useful after finding optimal points.  

They show how sensitive the optimum is to changes in each factor or 
component. 
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b) Contour plots (shown below for a mixture design) to explore your 
design space, slicing on the factors/components identified from 

the perturbation/trace plots as well as any categorical factors. 

    

5. Perform “Numerical” optimization to identify most desirable factor 

(component) levels for single or multiple 
responses.  View the feasible window 

(‘sweet spot’) via “Graphical” 
optimization (‘overlay’ plot).  See 
Optimization Guide for details. 

 

 

 

 

 

6. See the Confirmation node under the Post Analysis branch for the 
prediction interval (PI) expected for individual confirmation runs. 

Perform a number—six is good—of confirmation runs, enter them in to 
generate their mean in comparison to the PI recalculated for the sample 
size.  Ideally it will fall within range. ☺  If not, consider what may have 

changed between the time you did the experiment and the subsequent 
confirmation runs.  
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Combined Mixture/Process Analysis Guide 

1. Select a model (skip this step for split plots): Look for what’s suggested 
in the Fit Summary table, in this case: quadratic mixture by linear 

process (QxL).  Often, as in this case, it’s the one with the highest 
adjusted and predicted R-squared (row [12] 0.9601 and 0.9240). 

Combined Model Fit Summary Table 

 Mixture 

Order 

Process 

Order 

Mixture 

p-value 

Process 

p-value 

Adjusted 

R² 

Predicted 

R² 

 

1 M M 
     

2 M L 
 

< 0.0001 0.3916 0.3329 
 

3 M 2FI 
 

0.9883 0.3561 0.2507 
 

4 M Q * * 0.3561 0.2507 *Aliased 

5 M C * 0.8488 0.3432 0.2198 *Aliased 

6 L M < 0.0001 
 

0.4460 0.3919 
 

7 L L < 0.0001 < 0.0001 0.9211 0.8889 
 

8 L 2FI < 0.0001 0.6237 0.9177 0.8341 
 

9 L Q < 0.0001 
 

0.9177 0.8341 Aliased 

10 L C < 0.0001 0.9176 0.9113 0.7729 Aliased 

11 Q M 0.5401 
 

0.4373 0.3487 
 

12 Q L 0.0003 < 0.0001 0.9601 0.9240 Suggested 

13 Q 2FI 0.0028 0.1129 0.9736 0.8796 
 

14 Q Q 0.0028 * 0.9736 0.8796 *Aliased 

15 Q C 0.0389 0.7158 0.9683 -0.9445 Aliased 

16 SC M 0.6426 
 

0.4284 0.3348 
 

17 SC L 0.4611 < 0.0001 0.9598 0.9181 
 

18 SC 2FI 0.2567 0.1212 0.9802 0.8391 
 

19 SC Q 0.2567 * 0.9802 0.8391 *Aliased 

20 SC C * * 
  

*Aliased 
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This sequential table shows the significance of terms added layer-by-layer 
to the model above.  For example, in this case starting with the mean by 

mean (MxM) model (row [1]): 

 Linear (L) process terms provide significant information beyond 
the mean (M) model (p<0.0001 in row [2]). 

 Adding 2FI process terms provides no benefit ([3] p=0.9883). 

 The next two models (rows [4] and [5]), MxQ and MxC are aliased 
– do not pick them!   

 Start again from MxM. 

 Linear (L) mixture terms are significant ([6] p<0.0001). 

 L process terms are a significant addition ([7] p<0.0001). 

 2FI process terms do not add significantly ([8] p=0.6237). 

 The next two models ([9] and [10]), LxQ and LxC are aliased. 

 Adding the Q-Mix terms provides no benefit ([11] p=0.5401). 

 Add L process terms to significantly improve the model fit ([12] 
p<0.0001). 

 Adding the 2FI terms provide little benefit ([13] p=0.1129) and 
they reduce the predicted R2. 

Thus, the QxL combined mixture-by-process model is suggested. 

2. Due to the complexity of combined models, try Automatic Model 
Selection to remove unnecessary terms from the model. 

See the next page for the details of automatic model selection. 
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Automatic Model Selection 

Automatic Model Selection is used to algorithmically choose the terms to 
keep in the model. There are four criterion that can be used: AICc, BIC, p-

value, and Adjusted R-Squared. There are four selection methods: Forward, 
Backward, Stepwise and All Hierarchical. The table below shows the eight 

available combinations.  

  Selection 

  
Forward Backward Stepwise All Hierarchical 

C
ri

te
ri

o
n

 

AICc Yes* Yes* No No 

BIC Yes* Yes* No No 

p-value Yes Yes* Yes No 

Adjusted R-Squared No No No Yes 

* Best selection method for the given criterion 

Automatic Model Selection cannot substitute for your judgment based on 

subject-matter knowledge. Please take the time to review the results on the 
ANOVA and Diagnostics before using the analysis to make decisions. 

You are encouraged to use multiple combinations of the criterion and 

selection directions to help decide which terms form the best model. AICc 
with forward selection is the default and best general method for selecting 

the model. We suggest you also try a backward AICc selection. P-value 
using backward selection is also recommended and may be more familiar. 

Details on Criterion: 

• AICc stands for Akaike Information Criterion corrected for a small 
design. Akaike is pronounced (ah kah ee Kay). 

• BIC stands for Bayesian Information Criterion. It is an alternative to 
AICc and is usually better for larger designs and models. 

• p-value is the standard method looking for significant terms to keep 
and/or insignificant terms to remove from the model. 

• Adjusted R-squared is a statistic related to how well the current 

model explains the data with an adjustment to prevent too many 
terms. 

Details on Selection: 
• Forward selection seeks to add terms to a model that improve the 

criterion. 

• Backward selection seeks to remove terms from a model that are 
detrimental to the criterion. 

• Stepwise selection works by first including terms that improve the 
criterion, then rechecks to see if any terms need to be removed. It is 
a combination of forward and backward. 

• All Hierarchical selection checks all possible models that maintain 
hierarchy, keeping the one with the best criterion score. 
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Residual Analysis and Diagnostic Plots Guide 

Residual analysis is necessary to confirm that the assumptions for the 
ANOVA are met.  Other diagnostic plots may provide interesting information 

in some situations.  ALWAYS review these plots! 

A. Diagnostic plots 

1. Plot the (externally) studentized residuals: 

a) Normal plot - should be straight line. 

     

                  BAD:  S shape                  GOOD: Linear or Normal 

b) Residuals (ei) vs predicted - should be random scatter. 

     

          BAD: Megaphone shape                GOOD: Random scatter 
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c) Residuals (ei) vs run - should be random scatter, no trends. 

   

                   BAD: Trend                              GOOD: No pattern 

Also, look for externally 

studentized residuals outside 
limits.  These runs are statistical 

outliers that may indicate: 

 a problem with the model,  

 a transformation, 

 a special cause that merits 
ignoring the result or run. 

 

 

 

2. View the predicted vs actual plot whose points should be randomly 
scattered along the 45-degree line.  Groups of points above or below the 

line indicate areas of over or under prediction. 

            

               Poor Prediction Better Prediction 

Actual
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36.80 49.22 61.65 74.08 86.50



Rev 4/9/19 

 2-11 

3. Use the Box-Cox plot to determine if a power law transformation might 
be appropriate for your data.  The blue line indicates the current 

transformation (at Lambda =1 for none) and the green line indicates the 
best lambda value.  Red lines indicate a 95% confidence interval 

associated with the best lambda value.   
Stat-Ease software recommends the standard transformation, such as 
log, closest to the best lambda value unless the confidence interval 

includes 1, in which case the recommendation will be “None.” 

    

 Before Transformation   After Transformation 

4. Residuals (ei) vs factor – especially useful with blocks. Should be split 
by the zero-line at either end of the range – no obvious main effect (up 
or down).  If you see an effect, go back, add it to the predictive model 

and assess its statistical significance. Relatively similar variation 
between levels. Watch ONLY for very large differences. 

    

 BAD: More variation at one end GOOD: Random scatter both ends 
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Influence plots 

1. Cook’s Distance helps if you see more than one outlier in other 

diagnostic plots.  Investigate the 
run with the largest Cook’s 

Distance first.  Often, if this run is 
ignored due to a special cause, 
other apparent outliers can be 

explained by the model. 

 

 

 

2. Watch for leverage vs run values at or beyond twice the average 

leverage.  These runs will unduly influence at least one model 
parameter.  If identified prior to running the experiment, it can be 

replicated to reduce leverage.  Otherwise all you can do is check the 
actual responses to be sure they are as expected for the factor settings.  
Be especially careful of any leverages at one (1.0).  These runs will be 

fitted exactly with no residual! 

  

 BAD: Some at twice the average GOOD: All the same 

3. Deletion diagnostics – statistics calculated by taking each run out, one 
after the other, and seeing how this affects the model fit. 

a) DFFITS (difference in fits) is another statistic helpful for detecting 
influential runs.  Do not be overly alarmed at points outside of 
limits: Just check that they are not extraordinary.  If earlier 
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diagnostics show outliers that do not go out of bounds on DFFITS, 
then these do not create a significant difference in fits and thus 

you need not be overly concerned. ☺ 
b) DFBETAS (difference in beta coefficients) breaks down the impact 

of any given run on a particular 
model term.  If you see an excessive 

value, consider whether a factor in 
the term falls beyond a reasonable 
range (for example, it may be that an 

axial (star) point in a CCD projects 
outside of the feasible operating 

region) and, if so, try ignoring this 
particular run. 

 

 

 

Statistical Details on Diagnostic Measures 

Residual (
i i îe=y-y ): 

Difference between the actual individual value (
iy ) and the value predicted 

from the model (
iŷ ). 

Leverage ( ( ) i

1TT
iii xXXxh

−

=  where x is factor level and X is design matrix): 

Numerical value between 0 and 1 that indicates the potential for a case to 

influence the model fit.  A leverage of 1 means the predicted value at that 
particular case will exactly equal the observed value of the experiment 
(residual=0.)  The sum of leverage values across all cases (design points) 

equals the number of coefficients (including the constant) fit by the model.  
The maximum leverage an experiment can have is 1/k, where k is the 

number of times the experiment is replicated.  Values larger than 2 times 
the average leverage are flagged. 

Internally Studentized Residual (
( )

i
i

ii

e
r

s 1 h
=

−
):  

The residual divided by the estimated standard deviation of that residual 
(dependent on leverage), which measures the number of standard 
deviations separating the actual from predicted values. 

Externally Studentized Residual ( i
i

1 ii

e
t

s 1 h
−

=
−

): 

This “outlier t” value is calculated by leaving the run in question out of the 
analysis and estimating the response from the remaining runs.  It 
represents the number of standard deviations between this predicted value 
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and the actual response.  Runs with large t values (rule-of-thumb: |t| > 
3.5) are flagged and should be investigated. 

Note: For verification runs, this is calculated using the predicted error (an 
expansion of the hat matrix). 

DFFITS (
i i, i

i

1 ii

ˆ ˆy y
DFFITS

s h

−

−

−
= , alternatively 

1/2

ii
i i

ii

h
DFFITS t

1 h

 
=  

− 
):  

DFFFITS measures the influence each individual case (i) has on the 
predicted value (see Myers2 page 284.)  It is a function of leverage (h).  
Mathematically it is the studentized difference between the predicted value 

with and without observation “i”.  As shown by the alternative formula, 
DFFITS represents the externally studentized residual (ti) magnified by high 

leverage points and shrunk by low leverage points.  Note that DFFITs 
becomes undefined for leverages of one (h=1).   

DFBETAS ( j j, i

j,i

1 jj

ŷ
DFBETAS

s c

−

−

 −
= , cjj is the jth diagonal element of (X’X)-1):  

DFBETAS measures the influence each individual case (i) has on each model 
coefficient (βj).  It represents the number of standard errors that the jth 

beta-coefficient changes if the ith observation is removed.  Like DFFITS, this 
statistic becomes undefined for leverages of one (h=1).  DFBETAS are 

calculated for each beta-coefficient, so make sure to use the pull-down 
menu and click through the terms (the down arrow is a good shortcut key – 
also, try the wheel if you have one on your mouse). 

Cook's Distance ( 2 ii
i i

ii

h1
D r

p 1 h

 
=  

− 
): 

A measure of how much the regression would change if the case is omitted 
from the analysis (see Weisberg1 page 118).  Relatively large values are 

associated with cases with high leverage and large studentized residuals.  
Cases with large Di values relative to the other cases should be 

investigated.  Look for mistakes in recording, an incorrect model, or a 
design point far from the others. 

References: 

1. Weisberg, Stanford: Applied Linear Regression, 3rd edition, 2005, 
John Wiley & Sons, Inc. 

2. Myers, Raymond: Classical and Modern Regression with Applications, 
2nd edition, 2000, Duxbury Press. 
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Optimization Guide 

Numerical Optimization: 

1. Analyze each response separately and establish an appropriate 

transformation and model for each.  Be sure the fitted surface 
adequately represents your process.  Check for: 

a) A significant model, i.e., a large F-value with p<0.05. 

b) Insignificant lack-of-fit, i.e., an F-value near one with p>0.10. 

c) Adequate precision, i.e., greater than 4. 

d) Well-behaved residuals. 

2. Set the following criteria for the desirability optimization: 

a) Goal: “maximize”, “minimize”, “target”, “in-range” and “Cpk”.  
Responses-only: “none” (default).  Factors-only (default “in 

range”): “equal-to”. 

b) Limits lower and upper: Both ends required to establish the 
desirability from 0 or 1. 

c) Weight (optional): Enter 0.1 to 10 or drag the desirability ramp 
up (lighter) or down (heavier). The default of 1 keeps it linear.  

Weights >1 give more emphasis to the goal and vice-versa. 

d) Importance (optional): Changes goal’s importance less (+) to 
more (+++++) relative to the others (default +++). 

3. Run the optimization (press Solutions). 

 Report shows settings of the factors, response values, and 

desirability for each solution from top to bottom. 

 Ramps show settings for all factors and the resulting predicted 
values for responses and where these fall on their desirability ramps.  

Cycle through rank of solution from top to bottom. 

 Bar Graph displays how well each variable satisfied their criterion. 

4. Graph the desirability (shown) and the 
individual . 
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Graphical Optimization: 

1. Criteria require at least one limit for at least one response: 

2. Lower only if maximized 
(unlike numerical 

optimization where you 
must enter both lower and 
upper limits!) 

 Upper only if minimized 

 Lower and upper 

(specification range) if 
goal is target. 

3. Graph the optimal point 

identified in the numerical 
optimization by clicking 

the #1 solution.  It 
overlays all responses – 
shaded areas do not meet 

the specified criteria.  The 
flagged window shows the “sweet spot”.  For a more conservative result, 

put in the confidence interval (CI) shown here or, for quality by design 
(QbD), the tolerance interval (TI). 

Suggestions for achieving desirable outcome: 

Numerical optimization provides powerful insights when combined with 
graphical analysis.  However, it cannot substitute for subject matter 

knowledge.  For example, you may define what you consider to be 
optimum, only to find zero desirability everywhere!  To avoid finding no 

optimums, set broad optimization criteria and then narrow down as you 
gain knowledge.  Most often, multiple passes are needed to find the “best” 
factor levels to simultaneously satisfy all operational constraints. 
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Inverses, 1st & 2nd Derivatives of Transformations 

Transform 
Square root 

counts 

Loge 

variation 

Log10 

variation 

Inverse  

square root 

Power  

(lambda) 
0.5 0 0 -0.5 

Formula y = y+k  ( )y ln y k = +  ( )y log y k = +  
1

y =
y+k

  

Inverse 
2y y k= −  yy e k

= −  yy 10 k
= −  2y y k−= −  

1st 

Derivative 

y
2y

y


=


 ( ) y yy

ln e e e
y

 
= =


 ( ) yy

ln 10 10
y


=


 3y

2y
y

−
= −


 

2nd 

Derivative 

 


=



2

2

y
2

y '
 


=



2
y '

2

y
e

y'
 ( )( )


=



2
2 y '

2

y
ln 10 10

y '
 −

=


2
4

2

y
6y'

y '
 

      

Transform 
Inverse 

Rates 

Power 

when all else fails 

ArcSin Square Root 

Binomial data 

y is a fraction (0-1) 

y’ in radians 

Logit 

Asymptotically 

bounded data 

LL=lower limit 

UL=upper limit 

Power  

(lambda) 
-1 λ NA NA 

Formula 
1

y =
y+k

  ( )y = y+k


  -1y =sin y  
y LL

y =ln
UL y

 −
  

− 
 

Inverse 
1y y k−= −  ( )

1

y y k= +  ( ) 2y=(sin y )  ( )y

y

UL e LL
y

1 e





+
=

+
 

1st 

Derivative 

2y
y

y

−
= −


 ( )

1
1y 1

y
y

 
− 

 


=
 

 ( ) ( )
y

2sin y cos y
y


 =


 

( )

( )

y

2
y

e UL LLy

y 1 e





−
=

 +
 

2nd  

Derivative 

 

−
=



2
3

2

y
2y'

y '
 ( )

 
− 

 
  

= − 
   

2 1
2

2

y 1 1
1 y'

y'
 ( )


=



2

2

y
2cos 2y'

y'
 

( )( )

( )

− −
=

 +

y ' y '2

32
y '

e 1 e UL LLy

y' 1 e
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Z-Table: 

Tail area of unit normal distribution  

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 

0.0 0.5000 0.4960 0.4920 0.4880 0.4840 0.4801 0.4761 0.4721 0.4681 0.4641 

0.1 0.4602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 0.4286 0.4247 
0.2 0.4207 0.4168 0.4129 0.4090 0.4052 0.4013 0.3974 0.3936 0.3897 0.3859 
0.3 0.3821 0.3783 0.3745 0.3707 0.3669 0.3632 0.3594 0.3557 0.3520 0.3483 

0.4 0.3446 0.3409 0.3372 0.3336 0.3300 0.3264 0.3228 0.3192 0.3156 0.3121 
0.5 0.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0.2843 0.2810 0.2776 
0.6 0.2743 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0.2514 0.2483 0.2451 

0.7 0.2420 0.2389 0.2358 0.2327 0.2296 0.2266 0.2236 0.2206 0.2177 0.2148 
0.8 0.2119 0.2090 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922 0.1894 0.1867 
0.9 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 0.1611 

1.0 0.1587 0.1562 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 0.1379 

1.1 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 0.1190 0.1170 
1.2 0.1151 0.1131 0.1112 0.1093 0.1075 0.1056 0.1038 0.1020 0.1003 0.0985 
1.3 0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823 

1.4 0.0808 0.0793 0.0778 0.0764 0.0749 0.0735 0.0721 0.0708 0.0694 0.0681 
1.5 0.0668 0.0655 0.0643 0.0630 0.0618 0.0606 0.0594 0.0582 0.0571 0.0559 
1.6 0.0548 0.0537 0.0526 0.0516 0.0505 0.0495 0.0485 0.0475 0.0465 0.0455 

1.7 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 0.0392 0.0384 0.0375 0.0367 
1.8 0.0359 0.0351 0.0344 0.0336 0.0329 0.0322 0.0314 0.0307 0.0301 0.0294 
1.9 0.0287 0.0281 0.0274 0.0268 0.0262 0.0256 0.0250 0.0244 0.0239 0.0233 

2.0 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0183 

2.1 0.0179 0.0174 0.0170 0.0166 0.0162 0.0158 0.0154 0.0150 0.0146 0.0143 
2.2 0.0139 0.0136 0.0132 0.0129 0.0125 0.0122 0.0119 0.0116 0.0113 0.0110 
2.3 0.0107 0.0104 0.0102 0.0099 0.0096 0.0094 0.0091 0.0089 0.0087 0.0084 

2.4 0.0082 0.0080 0.0078 0.0075 0.0073 0.0071 0.0069 0.0068 0.0066 0.0064 
2.5 0.0062 0.0060 0.0059 0.0057 0.0055 0.0054 0.0052 0.0051 0.0049 0.0048 
2.6 0.0047 0.0045 0.0044 0.0043 0.0041 0.0040 0.0039 0.0038 0.0037 0.0036 

2.7 0.0035 0.0034 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028 0.0027 0.0026 
2.8 0.0026 0.0025 0.0024 0.0023 0.0023 0.0022 0.0021 0.0021 0.0020 0.0019 
2.9 0.0019 0.0018 0.0018 0.0017 0.0016 0.0016 0.0015 0.0015 0.0014 0.0014 

3.0 0.0013 0.0013 0.0013 0.0012 0.0012 0.0011 0.0011 0.0011 0.0010 0.0010 

3.1 0.0010 0.0009 0.0009 0.0009 0.0008 0.0008 0.0008 0.0008 0.0007 0.0007 
3.2 0.0007 0.0007 0.0006 0.0006 0.0006 0.0006 0.0006 0.0005 0.0005 0.0005 
3.3 0.0005 0.0005 0.0005 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0003 

3.4 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0002 
3.5 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 
3.6 0.0002 0.0002 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 

3.7 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 
3.8 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 
3.9 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 



Rev 4/9/19 

 3-2 

 

One-tailed / Two-tailed t-Table 
Probability points of the t-distribution 
with df degrees of freedom 

 tail area probability 

1-tail 0.40 0.25 0.10 0.05 0.025 0.01 0.005 0.0025 0.001 0.0005 

2-tail 0.80 0.50 0.20 0.10 0.050 0.02 0.010 0.0050 0.002 0.0010 

df=1 0.325 1.000 3.078 6.314 12.706 31.821 63.657 127.32 318.31 636.62 
2 0.289 0.816 1.886 2.920 4.303 6.965 9.925 14.089 22.326 31.598 
3 0.277 0.765 1.638 2.353 3.182 4.541 5.841 7.453 10.213 12.924 
4 0.271 0.741 1.533 2.132 2.776 3.747 4.604 5.598 7.173 8.610 

5 0.267 0.727 1.476 2.015 2.571 3.365 4.032 4.773 5.893 6.869 
6 0.265 0.718 1.440 1.943 2.447 3.143 3.707 4.317 5.208 5.959 
7 0.263 0.711 1.415 1.895 2.365 2.998 3.499 4.029 4.785 5.408 
8 0.262 0.706 1.397 1.860 2.306 2.896 3.355 3.833 4.501 5.041 
9 0.261 0.703 1.383 1.833 2.262 2.821 3.250 3.690 4.297 4.781 

10 0.260 0.700 1.372 1.812 2.228 2.764 3.169 3.581 4.144 4.587 
11 0.260 0.697 1.363 1.796 2.201 2.718 3.106 3.497 4.025 4.437 
12 0.259 0.695 1.356 1.782 2.179 2.681 3.055 3.428 3.930 4.318 
13 0.259 0.694 1.350 1.771 2.160 2.650 3.012 3.372 3.852 4.221 
14 0.258 0.692 1.345 1.761 2.145 2.624 2.977 3.326 3.787 4.140 

15 0.258 0.691 1.341 1.753 2.131 2.602 2.947 3.286 3.733 4.073 
16 0.258 0.690 1.337 1.746 2.120 2.583 2.921 3.252 3.686 4.015 
17 0.257 0.689 1.333 1.740 2.110 2.567 2.898 3.222 3.646 3.965 
18 0.257 0.688 1.330 1.734 2.101 2.552 2.878 3.197 3.610 3.922 
19 0.257 0.688 1.328 1.729 2.093 2.539 2.861 3.174 3.579 3.883 

20 0.257 0.687 1.325 1.725 2.086 2.528 2.845 3.153 3.552 3.850 
21 0.257 0.686 1.323 1.721 2.080 2.518 2.831 3.135 3.527 3.819 
22 0.256 0.686 1.321 1.717 2.074 2.508 2.819 3.119 3.505 3.792 
23 0.256 0.685 1.319 1.714 2.069 2.500 2.807 3.104 3.485 3.767 
24 0.256 0.685 1.318 1.711 2.064 2.492 2.797 3.091 3.467 3.745 

25 0.256 0.684 1.316 1.708 2.060 2.485 2.787 3.078 3.450 3.725 
26 0.256 0.684 1.315 1.706 2.056 2.479 2.779 3.067 3.435 3.707 
27 0.256 0.684 1.314 1.703 2.052 2.473 2.771 3.057 3.421 3.690 
28 0.256 0.683 1.313 1.701 2.048 2.467 2.763 3.047 3.408 3.674 
29 0.256 0.683 1.311 1.699 2.045 2.462 2.756 3.038 3.396 3.659 

30 0.256 0.683 1.310 1.697 2.042 2.457 2.750 3.030 3.385 3.646 
40 0.255 0.681 1.303 1.684 2.021 2.423 2.704 2.971 3.307 3.551 
60 0.254 0.679 1.296 1.671 2.000 2.390 2.660 2.915 3.232 3.460 

120 0.254 0.677 1.289 1.658 1.980 2.358 2.617 2.860 3.160 3.373 

 0.253 0.674 1.282 1.645 1.960 2.326 2.576 2.807 3.090 3.291 

  

t
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c2

c2

Area = 

 

Cumulative Distribution of Chi-Square 

Probability of a Greater value 

 df 0.995 0.99 0.975 0.95 0.90 0.75 0.50 0.25 0.10 0.05 0.025 0.01 0.005 

1   0.001 0.004 0.016 0.102 0.455 1.32 2.71 3.84 5.02 6.64 7.88 

2 0.010 0.020 0.051 0.103 0.211 0.575 1.39 2.77 4.61 5.99 7.38 9.21 10.60 

3 0.072 0.115 0.216 0.352 0.584 1.21 2.37 4.11 6.25 7.82 9.35 11.35 12.84 

4 0.207 0.297 0.484 0.711 1.06 1.92 3.36 5.39 7.78 9.49 11.14 13.28 14.86 

5 0.412 0.554 0.831 1.15 1.61 2.68 4.35 6.63 9.24 11.07 12.83 15.09 16.75 

6 0.676 0.872 1.24 1.64 2.20 3.46 5.35 7.84 10.65 12.59 14.45 16.81 18.55 

7 0.989 1.24 1.69 2.17 2.83 4.26 6.35 9.04 12.02 14.07 16.01 18.48 20.28 

8 1.34 1.65 2.18 2.73 3.49 5.07 7.34 10.22 13.36 15.51 17.54 20.09 21.96 

9 1.74 2.09 2.70 3.33 4.17 5.90 8.34 11.39 14.68 16.92 19.02 21.67 23.59 

10 2.16 2.56 3.25 3.94 4.87 6.74 9.34 12.55 15.99 18.31 20.48 23.21 25.19 

11 2.60 3.05 3.82 4.58 5.58 7.58 10.34 13.70 17.28 19.68 21.92 24.73 26.76 

12 3.07 3.57 4.40 5.23 6.30 8.44 11.34 14.85 18.55 21.03 23.34 26.22 28.30 

13 3.57 4.11 5.01 5.89 7.04 9.30 12.34 15.98 19.81 22.36 24.74 27.69 29.82 

14 4.08 4.66 5.63 6.57 7.79 10.17 13.34 17.12 21.06 23.69 26.12 29.14 31.32 

15 4.60 5.23 6.26 7.26 8.55 11.04 14.34 18.25 22.31 25.00 27.49 30.58 32.80 

16 5.14 5.81 6.91 7.96 9.31 11.91 15.34 19.37 23.54 26.30 28.85 32.00 34.27 

17 5.70 6.41 7.56 8.67 10.09 12.79 16.34 20.49 24.77 27.59 30.19 33.41 35.72 

18 6.27 7.02 8.23 9.39 10.87 13.68 17.34 21.61 25.99 28.87 31.53 34.81 37.16 

19 6.84 7.63 8.91 10.12 11.65 14.56 18.34 22.72 27.20 30.14 32.85 36.19 38.58 

20 7.43 8.26 9.59 10.85 12.44 15.45 19.34 23.83 28.41 31.41 34.17 37.57 40.00 

21 8.03 8.90 10.28 11.59 13.24 16.34 20.34 24.94 29.62 32.67 35.48 38.93 41.40 

22 8.64 9.54 10.98 12.34 14.04 17.24 21.34 26.04 30.81 33.92 36.78 40.29 42.80 

23 9.26 10.20 11.69 13.09 14.85 18.14 22.34 27.14 32.01 35.17 38.08 41.64 44.18 

24 9.89 10.86 12.40 13.85 15.66 19.04 23.34 28.24 33.20 36.42 39.36 42.98 45.56 

25 10.52 11.52 13.12 14.61 16.47 19.94 24.34 29.34 34.38 37.65 40.65 44.31 46.93 

26 11.16 12.20 13.84 15.38 17.29 20.84 25.34 30.44 35.56 38.89 41.92 45.64 48.29 

27 11.81 12.88 14.57 16.15 18.11 21.75 26.34 31.53 36.74 40.11 43.20 46.96 49.65 

28 12.46 13.57 15.31 16.93 18.94 22.66 27.34 32.62 37.92 41.34 44.46 48.28 50.99 

29 13.12 14.26 16.05 17.71 19.77 23.57 28.34 33.71 39.09 42.56 45.72 49.59 52.34 

30 13.79 14.95 16.79 18.49 20.60 24.48 29.34 34.80 40.26 43.77 46.98 50.89 53.67 

40 20.71 22.16 24.43 26.51 29.05 33.66 39.34 45.62 51.81 55.76 59.34 63.69 66.77 

50 27.99 29.71 32.36 34.76 37.69 42.94 49.34 56.33 63.17 67.51 71.42 76.15 79.49 

60 35.53 37.49 40.48 43.19 46.46 52.29 59.34 66.98 74.40 79.08 83.30 88.38 91.95 

70 43.28 45.44 48.76 51.74 55.33 61.70 69.33 77.58 85.53 90.53 95.02 100.43 104.22 

80 51.17 53.54 57.15 60.39 64.28 71.15 79.33 88.13 96.58 101.88 106.63 112.33 116.32 

90 59.20 61.75 65.65 69.13 73.29 80.63 89.33 98.65 107.57 113.15 118.14 124.12 128.30 

100 67.33 70.07 74.22 77.93 82.36 90.13 99.33 109.14 118.50 124.34 129.56 135.81 140.17 
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F-Table for 10% 

 

Percentage points of the F-distribution: 
upper 10% points 

dfnum
 

dfden
 

1 2 3 4 5 6 7 8 9 10 15 20 

1 39.863 49.500 53.593 55.833 57.240 58.204 58.906 59.439 59.858 60.195 61.220 61.740 

2 8.526 9.000 9.162 9.243 9.293 9.326 9.349 9.367 9.381 9.392 9.425 9.441 

3 5.538 5.462 5.391 5.343 5.309 5.285 5.266 5.252 5.240 5.230 5.200 5.184 

4 4.545 4.325 4.191 4.107 4.051 4.010 3.979 3.955 3.936 3.920 3.870 3.844 

5 4.060 3.780 3.619 3.520 3.453 3.405 3.368 3.339 3.316 3.297 3.238 3.207 

6 3.776 3.463 3.289 3.181 3.108 3.055 3.014 2.983 2.958 2.937 2.871 2.836 

7 3.589 3.257 3.074 2.961 2.883 2.827 2.785 2.752 2.725 2.703 2.632 2.595 

8 3.458 3.113 2.924 2.806 2.726 2.668 2.624 2.589 2.561 2.538 2.464 2.425 

9 3.360 3.006 2.813 2.693 2.611 2.551 2.505 2.469 2.440 2.416 2.340 2.298 

10 3.285 2.924 2.728 2.605 2.522 2.461 2.414 2.377 2.347 2.323 2.244 2.201 

11 3.225 2.860 2.660 2.536 2.451 2.389 2.342 2.304 2.274 2.248 2.167 2.123 

12 3.177 2.807 2.606 2.480 2.394 2.331 2.283 2.245 2.214 2.188 2.105 2.060 

13 3.136 2.763 2.560 2.434 2.347 2.283 2.234 2.195 2.164 2.138 2.053 2.007 

14 3.102 2.726 2.522 2.395 2.307 2.243 2.193 2.154 2.122 2.095 2.010 1.962 

15 3.073 2.695 2.490 2.361 2.273 2.208 2.158 2.119 2.086 2.059 1.972 1.924 

16 3.048 2.668 2.462 2.333 2.244 2.178 2.128 2.088 2.055 2.028 1.940 1.891 

17 3.026 2.645 2.437 2.308 2.218 2.152 2.102 2.061 2.028 2.001 1.912 1.862 

18 3.007 2.624 2.416 2.286 2.196 2.130 2.079 2.038 2.005 1.977 1.887 1.837 

19 2.990 2.606 2.397 2.266 2.176 2.109 2.058 2.017 1.984 1.956 1.865 1.814 

20 2.975 2.589 2.380 2.249 2.158 2.091 2.040 1.999 1.965 1.937 1.845 1.794 

21 2.961 2.575 2.365 2.233 2.142 2.075 2.023 1.982 1.948 1.920 1.827 1.776 

22 2.949 2.561 2.351 2.219 2.128 2.060 2.008 1.967 1.933 1.904 1.811 1.759 

23 2.937 2.549 2.339 2.207 2.115 2.047 1.995 1.953 1.919 1.890 1.796 1.744 

24 2.927 2.538 2.327 2.195 2.103 2.035 1.983 1.941 1.906 1.877 1.783 1.730 

25 2.918 2.528 2.317 2.184 2.092 2.024 1.971 1.929 1.895 1.866 1.771 1.718 

26 2.909 2.519 2.307 2.174 2.082 2.014 1.961 1.919 1.884 1.855 1.760 1.706 

27 2.901 2.511 2.299 2.165 2.073 2.005 1.952 1.909 1.874 1.845 1.749 1.695 

28 2.894 2.503 2.291 2.157 2.064 1.996 1.943 1.900 1.865 1.836 1.740 1.685 

29 2.887 2.495 2.283 2.149 2.057 1.988 1.935 1.892 1.857 1.827 1.731 1.676 

30 2.881 2.489 2.276 2.142 2.049 1.980 1.927 1.884 1.849 1.819 1.722 1.667 

40 2.835 2.440 2.226 2.091 1.997 1.927 1.873 1.829 1.793 1.763 1.662 1.605 

60 2.791 2.393 2.177 2.041 1.946 1.875 1.819 1.775 1.738 1.707 1.603 1.543 

120 2.748 2.347 2.130 1.992 1.896 1.824 1.767 1.722 1.684 1.652 1.545 1.482 

100K 2.706 2.303 2.084 1.945 1.847 1.774 1.717 1.670 1.632 1.599 1.487 1.421 

K (Multiply this value by 1000) 

F

10%
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F-Table for 5% 

Percentage points of the F-distribution: 
upper 5% points 

dfnum
 

dfden
 

1 2 3 4 5 6 7 8 9 10 15 20 

1 161.45 199.50 215.71 224.58 230.16 233.99 236.77 238.88 240.54 241.88 245.95 248.01 

2 18.513 19.000 19.164 19.247 19.296 19.330 19.353 19.371 19.385 19.396 19.429 19.446 

3 10.128 9.552 9.277 9.117 9.013 8.941 8.887 8.845 8.812 8.786 8.703 8.660 

4 7.709 6.944 6.591 6.388 6.256 6.163 6.094 6.041 5.999 5.964 5.858 5.803 

5 6.608 5.786 5.409 5.192 5.050 4.950 4.876 4.818 4.772 4.735 4.619 4.558 

6 5.987 5.143 4.757 4.534 4.387 4.284 4.207 4.147 4.099 4.060 3.938 3.874 

7 5.591 4.737 4.347 4.120 3.972 3.866 3.787 3.726 3.677 3.637 3.511 3.445 

8 5.318 4.459 4.066 3.838 3.687 3.581 3.500 3.438 3.388 3.347 3.218 3.150 

9 5.117 4.256 3.863 3.633 3.482 3.374 3.293 3.230 3.179 3.137 3.006 2.936 

10 4.965 4.103 3.708 3.478 3.326 3.217 3.135 3.072 3.020 2.978 2.845 2.774 

11 4.844 3.982 3.587 3.357 3.204 3.095 3.012 2.948 2.896 2.854 2.719 2.646 

12 4.747 3.885 3.490 3.259 3.106 2.996 2.913 2.849 2.796 2.753 2.617 2.544 

13 4.667 3.806 3.411 3.179 3.025 2.915 2.832 2.767 2.714 2.671 2.533 2.459 

14 4.600 3.739 3.344 3.112 2.958 2.848 2.764 2.699 2.646 2.602 2.463 2.388 

15 4.543 3.682 3.287 3.056 2.901 2.790 2.707 2.641 2.588 2.544 2.403 2.328 

16 4.494 3.634 3.239 3.007 2.852 2.741 2.657 2.591 2.538 2.494 2.352 2.276 

17 4.451 3.592 3.197 2.965 2.810 2.699 2.614 2.548 2.494 2.450 2.308 2.230 

18 4.414 3.555 3.160 2.928 2.773 2.661 2.577 2.510 2.456 2.412 2.269 2.191 

19 4.381 3.522 3.127 2.895 2.740 2.628 2.544 2.477 2.423 2.378 2.234 2.155 

20 4.351 3.493 3.098 2.866 2.711 2.599 2.514 2.447 2.393 2.348 2.203 2.124 

21 4.325 3.467 3.072 2.840 2.685 2.573 2.488 2.420 2.366 2.321 2.176 2.096 

22 4.301 3.443 3.049 2.817 2.661 2.549 2.464 2.397 2.342 2.297 2.151 2.071 

23 4.279 3.422 3.028 2.796 2.640 2.528 2.442 2.375 2.320 2.275 2.128 2.048 

24 4.260 3.403 3.009 2.776 2.621 2.508 2.423 2.355 2.300 2.255 2.108 2.027 

25 4.242 3.385 2.991 2.759 2.603 2.490 2.405 2.337 2.282 2.236 2.089 2.007 

26 4.225 3.369 2.975 2.743 2.587 2.474 2.388 2.321 2.265 2.220 2.072 1.990 

27 4.210 3.354 2.960 2.728 2.572 2.459 2.373 2.305 2.250 2.204 2.056 1.974 

28 4.196 3.340 2.947 2.714 2.558 2.445 2.359 2.291 2.236 2.190 2.041 1.959 

29 4.183 3.328 2.934 2.701 2.545 2.432 2.346 2.278 2.223 2.177 2.027 1.945 

30 4.171 3.316 2.922 2.690 2.534 2.421 2.334 2.266 2.211 2.165 2.015 1.932 

40 4.085 3.232 2.839 2.606 2.449 2.336 2.249 2.180 2.124 2.077 1.924 1.839 

60 4.001 3.150 2.758 2.525 2.368 2.254 2.167 2.097 2.040 1.993 1.836 1.748 

120 3.920 3.072 2.680 2.447 2.290 2.175 2.087 2.016 1.959 1.910 1.750 1.659 

100K 3.842 2.996 2.605 2.372 2.214 2.099 2.010 1.939 1.880 1.831 1.666 1.571 

K (Multiply this value by 1000)

F

5%
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F-Table for 2.5% 

Percentage points of the F-distribution: 
upper 2.5% points 

dfnum
 

dfden
 

1 2 3 4 5 6 7 8 9 10 15 20 

1 647.79 799.50 864.16 899.58 921.85 937.11 948.22 956.66 963.28 968.63 984.87 993.10 

2 38.506 39.000 39.165 39.248 39.298 39.331 39.355 39.373 39.387 39.398 39.431 39.448 

3 17.443 16.044 15.439 15.101 14.885 14.735 14.624 14.540 14.473 14.419 14.253 14.167 

4 12.218 10.649 9.979 9.605 9.364 9.197 9.074 8.980 8.905 8.844 8.657 8.560 

5 10.007 8.434 7.764 7.388 7.146 6.978 6.853 6.757 6.681 6.619 6.428 6.329 

6 8.813 7.260 6.599 6.227 5.988 5.820 5.695 5.600 5.523 5.461 5.269 5.168 

7 8.073 6.542 5.890 5.523 5.285 5.119 4.995 4.899 4.823 4.761 4.568 4.467 

8 7.571 6.059 5.416 5.053 4.817 4.652 4.529 4.433 4.357 4.295 4.101 3.999 

9 7.209 5.715 5.078 4.718 4.484 4.320 4.197 4.102 4.026 3.964 3.769 3.667 

10 6.937 5.456 4.826 4.468 4.236 4.072 3.950 3.855 3.779 3.717 3.522 3.419 

11 6.724 5.256 4.630 4.275 4.044 3.881 3.759 3.664 3.588 3.526 3.330 3.226 

12 6.554 5.096 4.474 4.121 3.891 3.728 3.607 3.512 3.436 3.374 3.177 3.073 

13 6.414 4.965 4.347 3.996 3.767 3.604 3.483 3.388 3.312 3.250 3.053 2.948 

14 6.298 4.857 4.242 3.892 3.663 3.501 3.380 3.285 3.209 3.147 2.949 2.844 

15 6.200 4.765 4.153 3.804 3.576 3.415 3.293 3.199 3.123 3.060 2.862 2.756 

16 6.115 4.687 4.077 3.729 3.502 3.341 3.219 3.125 3.049 2.986 2.788 2.681 

17 6.042 4.619 4.011 3.665 3.438 3.277 3.156 3.061 2.985 2.922 2.723 2.616 

18 5.978 4.560 3.954 3.608 3.382 3.221 3.100 3.005 2.929 2.866 2.667 2.559 

19 5.922 4.508 3.903 3.559 3.333 3.172 3.051 2.956 2.880 2.817 2.617 2.509 

20 5.871 4.461 3.859 3.515 3.289 3.128 3.007 2.913 2.837 2.774 2.573 2.464 

21 5.827 4.420 3.819 3.475 3.250 3.090 2.969 2.874 2.798 2.735 2.534 2.425 

22 5.786 4.383 3.783 3.440 3.215 3.055 2.934 2.839 2.763 2.700 2.498 2.389 

23 5.750 4.349 3.750 3.408 3.183 3.023 2.902 2.808 2.731 2.668 2.466 2.357 

24 5.717 4.319 3.721 3.379 3.155 2.995 2.874 2.779 2.703 2.640 2.437 2.327 

25 5.686 4.291 3.694 3.353 3.129 2.969 2.848 2.753 2.677 2.613 2.411 2.300 

26 5.659 4.265 3.670 3.329 3.105 2.945 2.824 2.729 2.653 2.590 2.387 2.276 

27 5.633 4.242 3.647 3.307 3.083 2.923 2.802 2.707 2.631 2.568 2.364 2.253 

28 5.610 4.221 3.626 3.286 3.063 2.903 2.782 2.687 2.611 2.547 2.344 2.232 

29 5.588 4.201 3.607 3.267 3.044 2.884 2.763 2.669 2.592 2.529 2.325 2.213 

30 5.568 4.182 3.589 3.250 3.026 2.867 2.746 2.651 2.575 2.511 2.307 2.195 

40 5.424 4.051 3.463 3.126 2.904 2.744 2.624 2.529 2.452 2.388 2.182 2.068 

60 5.286 3.925 3.343 3.008 2.786 2.627 2.507 2.412 2.334 2.270 2.061 1.944 

120 5.152 3.805 3.227 2.894 2.674 2.515 2.395 2.299 2.222 2.157 1.945 1.825 

 5.024 3.689 3.116 2.786 2.567 2.408 2.288 2.192 2.114 2.048 1.833 1.709 

F

2.5%
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F-Table for 1% 

Percentage points of the F-distribution: 
upper 1% points 

dfnum
 

dfden
 

1 2 3 4 5 6 7 8 9 10 15 20 

1 4052.2 4999.5 5403.3 5624.6 5763.6 5859.0 5928.3 5981.1 6022.5 6055.8 6157.3 6208.7 

2 98.503 99.000 99.166 99.249 99.299 99.333 99.356 99.374 99.388 99.399 99.433 99.449 

3 34.116 30.817 29.457 28.710 28.237 27.911 27.672 27.489 27.345 27.229 26.872 26.690 

4 21.198 18.000 16.694 15.977 15.522 15.207 14.976 14.799 14.659 14.546 14.198 14.020 

5 16.258 13.274 12.060 11.392 10.967 10.672 10.456 10.289 10.158 10.051 9.722 9.553 

6 13.745 10.925 9.780 9.148 8.746 8.466 8.260 8.102 7.976 7.874 7.559 7.396 

7 12.246 9.547 8.451 7.847 7.460 7.191 6.993 6.840 6.719 6.620 6.314 6.155 

8 11.259 8.649 7.591 7.006 6.632 6.371 6.178 6.029 5.911 5.814 5.515 5.359 

9 10.561 8.022 6.992 6.422 6.057 5.802 5.613 5.467 5.351 5.257 4.962 4.808 

10 10.044 7.559 6.552 5.994 5.636 5.386 5.200 5.057 4.942 4.849 4.558 4.405 

11 9.646 7.206 6.217 5.668 5.316 5.069 4.886 4.744 4.632 4.539 4.251 4.099 

12 9.330 6.927 5.953 5.412 5.064 4.821 4.640 4.499 4.388 4.296 4.010 3.858 

13 9.074 6.701 5.739 5.205 4.862 4.620 4.441 4.302 4.191 4.100 3.815 3.665 

14 8.862 6.515 5.564 5.035 4.695 4.456 4.278 4.140 4.030 3.939 3.656 3.505 

15 8.683 6.359 5.417 4.893 4.556 4.318 4.142 4.004 3.895 3.805 3.522 3.372 

16 8.531 6.226 5.292 4.773 4.437 4.202 4.026 3.890 3.780 3.691 3.409 3.259 

17 8.400 6.112 5.185 4.669 4.336 4.102 3.927 3.791 3.682 3.593 3.312 3.162 

18 8.285 6.013 5.092 4.579 4.248 4.015 3.841 3.705 3.597 3.508 3.227 3.077 

19 8.185 5.926 5.010 4.500 4.171 3.939 3.765 3.631 3.523 3.434 3.153 3.003 

20 8.096 5.849 4.938 4.431 4.103 3.871 3.699 3.564 3.457 3.368 3.088 2.938 

21 8.017 5.780 4.874 4.369 4.042 3.812 3.640 3.506 3.398 3.310 3.030 2.880 

22 7.945 5.719 4.817 4.313 3.988 3.758 3.587 3.453 3.346 3.258 2.978 2.827 

23 7.881 5.664 4.765 4.264 3.939 3.710 3.539 3.406 3.299 3.211 2.931 2.781 

24 7.823 5.614 4.718 4.218 3.895 3.667 3.496 3.363 3.256 3.168 2.889 2.738 

25 7.770 5.568 4.675 4.177 3.855 3.627 3.457 3.324 3.217 3.129 2.850 2.699 

26 7.721 5.526 4.637 4.140 3.818 3.591 3.421 3.288 3.182 3.094 2.815 2.664 

27 7.677 5.488 4.601 4.106 3.785 3.558 3.388 3.256 3.149 3.062 2.783 2.632 

28 7.636 5.453 4.568 4.074 3.754 3.528 3.358 3.226 3.120 3.032 2.753 2.602 

29 7.598 5.420 4.538 4.045 3.725 3.499 3.330 3.198 3.092 3.005 2.726 2.574 

30 7.562 5.390 4.510 4.018 3.699 3.473 3.304 3.173 3.067 2.979 2.700 2.549 

40 7.314 5.179 4.313 3.828 3.514 3.291 3.124 2.993 2.888 2.801 2.522 2.369 

60 7.077 4.977 4.126 3.649 3.339 3.119 2.953 2.823 2.718 2.632 2.352 2.198 

120 6.851 4.787 3.949 3.480 3.174 2.956 2.792 2.663 2.559 2.472 2.192 2.035 

100K 6.635 4.605 3.782 3.319 3.017 2.802 2.640 2.511 2.408 2.321 2.039 1.878 

K (Multiply this value by 1000) 

F

1%
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F-Table for 0.5% 

Percentage points of the F-distribution: 
upper 0.5% points 

dfnum
 

dfden
 

1 2 3 4 5 6 7 8 9 10 15 20 

1 16210.7 19999.5 21614.7 22499.6 23055.8 23437.1 23714.6 23925.6 24091.0 24224.5 24630.2 24836.0 

2 198.50 199.00 199.17 199.25 199.30 199.33 199.36 199.37 199.39 199.40 199.43 199.45 

3 55.552 49.799 47.467 46.195 45.392 44.838 44.434 44.126 43.882 43.686 43.085 42.778 

4 31.333 26.284 24.259 23.155 22.456 21.975 21.622 21.352 21.139 20.967 20.438 20.167 

5 22.785 18.314 16.530 15.556 14.940 14.513 14.200 13.961 13.772 13.618 13.146 12.903 

6 18.635 14.544 12.917 12.028 11.464 11.073 10.786 10.566 10.391 10.250 9.814 9.589 

7 16.236 12.404 10.882 10.050 9.522 9.155 8.885 8.678 8.514 8.380 7.968 7.754 

8 14.688 11.042 9.596 8.805 8.302 7.952 7.694 7.496 7.339 7.211 6.814 6.608 

9 13.614 10.107 8.717 7.956 7.471 7.134 6.885 6.693 6.541 6.417 6.032 5.832 

10 12.826 9.427 8.081 7.343 6.872 6.545 6.302 6.116 5.968 5.847 5.471 5.274 

11 12.226 8.912 7.600 6.881 6.422 6.102 5.865 5.682 5.537 5.418 5.049 4.855 

12 11.754 8.510 7.226 6.521 6.071 5.757 5.525 5.345 5.202 5.085 4.721 4.530 

13 11.374 8.186 6.926 6.233 5.791 5.482 5.253 5.076 4.935 4.820 4.460 4.270 

14 11.060 7.922 6.680 5.998 5.562 5.257 5.031 4.857 4.717 4.603 4.247 4.059 

15 10.798 7.701 6.476 5.803 5.372 5.071 4.847 4.674 4.536 4.424 4.070 3.883 

16 10.575 7.514 6.303 5.638 5.212 4.913 4.692 4.521 4.384 4.272 3.920 3.734 

17 10.384 7.354 6.156 5.497 5.075 4.779 4.559 4.389 4.254 4.142 3.793 3.607 

18 10.218 7.215 6.028 5.375 4.956 4.663 4.445 4.276 4.141 4.030 3.683 3.498 

19 10.073 7.093 5.916 5.268 4.853 4.561 4.345 4.177 4.043 3.933 3.587 3.402 

20 9.944 6.986 5.818 5.174 4.762 4.472 4.257 4.090 3.956 3.847 3.502 3.318 

21 9.830 6.891 5.730 5.091 4.681 4.393 4.179 4.013 3.880 3.771 3.427 3.243 

22 9.727 6.806 5.652 5.017 4.609 4.322 4.109 3.944 3.812 3.703 3.360 3.176 

23 9.635 6.730 5.582 4.950 4.544 4.259 4.047 3.882 3.750 3.642 3.300 3.116 

24 9.551 6.661 5.519 4.890 4.486 4.202 3.991 3.826 3.695 3.587 3.246 3.062 

25 9.475 6.598 5.462 4.835 4.433 4.150 3.939 3.776 3.645 3.537 3.196 3.013 

26 9.406 6.541 5.409 4.785 4.384 4.103 3.893 3.730 3.599 3.492 3.151 2.968 

27 9.342 6.489 5.361 4.740 4.340 4.059 3.850 3.687 3.557 3.450 3.110 2.928 

28 9.284 6.440 5.317 4.698 4.300 4.020 3.811 3.649 3.519 3.412 3.073 2.890 

29 9.230 6.396 5.276 4.659 4.262 3.983 3.775 3.613 3.483 3.377 3.038 2.855 

30 9.180 6.355 5.239 4.623 4.228 3.949 3.742 3.580 3.450 3.344 3.006 2.823 

40 8.828 6.066 4.976 4.374 3.986 3.713 3.509 3.350 3.222 3.117 2.781 2.598 

60 8.495 5.795 4.729 4.140 3.760 3.492 3.291 3.134 3.008 2.904 2.570 2.387 

120 8.179 5.539 4.497 3.921 3.548 3.285 3.087 2.933 2.808 2.705 2.373 2.188 

 7.880 5.299 4.280 3.715 3.350 3.091 2.897 2.745 2.621 2.519 2.187 2.000 

F

0.5%
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F-Table for 0.1% 

Percentage points of the F-distribution: 
upper 0.1% points 

dfnum
 

dfden
 

1 2 3 4 5 6 7 8 9 10 15 20 

1 405.2K 500.0K 540.4K 562.5K3 576.4K 585.9K 592.9K 598.1K 602.3K92 605.6K 615.8K 620.9K 

2 998.50 999.00 999.17 999.25 999.30 999.33 999.36 999.37 999.39 999.40 999.43 999.45 

3 167.03 148.50 141.11 137.10 134.58 132.85 131.58 130.62 129.86 129.25 127.37 126.42 

4 74.137 61.246 56.177 53.436 51.712 50.525 49.658 48.996 48.475 48.053 46.761 46.100 

5 47.181 37.122 33.202 31.085 29.752 28.834 28.163 27.649 27.244 26.917 25.911 25.395 

6 35.507 27.000 23.703 21.924 20.803 20.030 19.463 19.030 18.688 18.411 17.559 17.120 

7 29.245 21.689 18.772 17.198 16.206 15.521 15.019 14.634 14.330 14.083 13.324 12.932 

8 25.415 18.494 15.829 14.392 13.485 12.858 12.398 12.046 11.767 11.540 10.841 10.480 

9 22.857 16.387 13.902 12.560 11.714 11.128 10.698 10.368 10.107 9.894 9.238 8.898 

10 21.040 14.905 12.553 11.283 10.481 9.926 9.517 9.204 8.956 8.754 8.129 7.804 

11 19.687 13.812 11.561 10.346 9.578 9.047 8.655 8.355 8.116 7.922 7.321 7.008 

12 18.643 12.974 10.804 9.633 8.892 8.379 8.001 7.710 7.480 7.292 6.709 6.405 

13 17.815 12.313 10.209 9.073 8.354 7.856 7.489 7.206 6.982 6.799 6.231 5.934 

14 17.143 11.779 9.729 8.622 7.922 7.436 7.077 6.802 6.583 6.404 5.848 5.557 

15 16.587 11.339 9.335 8.253 7.567 7.092 6.741 6.471 6.256 6.081 5.535 5.248 

16 16.120 10.971 9.006 7.944 7.272 6.805 6.460 6.195 5.984 5.812 5.274 4.992 

17 15.722 10.658 8.727 7.683 7.022 6.562 6.223 5.962 5.754 5.584 5.054 4.775 

18 15.379 10.390 8.487 7.459 6.808 6.355 6.021 5.763 5.558 5.390 4.866 4.590 

19 15.081 10.157 8.280 7.265 6.622 6.175 5.845 5.590 5.388 5.222 4.704 4.430 

20 14.819 9.953 8.098 7.096 6.461 6.019 5.692 5.440 5.239 5.075 4.562 4.290 

21 14.587 9.772 7.938 6.947 6.318 5.881 5.557 5.308 5.109 4.946 4.437 4.167 

22 14.380 9.612 7.796 6.814 6.191 5.758 5.438 5.190 4.993 4.832 4.326 4.058 

23 14.195 9.469 7.669 6.696 6.078 5.649 5.331 5.085 4.890 4.730 4.227 3.961 

24 14.028 9.339 7.554 6.589 5.977 5.550 5.235 4.991 4.797 4.638 4.139 3.873 

25 13.877 9.223 7.451 6.493 5.885 5.462 5.148 4.906 4.713 4.555 4.059 3.794 

26 13.739 9.116 7.357 6.406 5.802 5.381 5.070 4.829 4.637 4.480 3.986 3.723 

27 13.613 9.019 7.272 6.326 5.726 5.308 4.998 4.759 4.568 4.412 3.920 3.658 

28 13.498 8.931 7.193 6.253 5.656 5.241 4.933 4.695 4.505 4.349 3.859 3.598 

29 13.391 8.849 7.121 6.186 5.593 5.179 4.873 4.636 4.447 4.292 3.804 3.543 

30 13.293 8.773 7.054 6.125 5.534 5.122 4.817 4.581 4.393 4.239 3.753 3.493 

40 12.609 8.251 6.595 5.698 5.128 4.731 4.436 4.207 4.024 3.874 3.400 3.145 

60 11.973 7.768 6.171 5.307 4.757 4.372 4.086 3.865 3.687 3.541 3.078 2.827 

120 11.380 7.321 5.781 4.947 4.416 4.044 3.767 3.552 3.379 3.237 2.783 2.534 

100K 10.828 6.908 5.422 4.617 4.103 3.743 3.475 3.266 3.098 2.959 2.513 2.266 

K (Multiply entries by 1000 in first row of F values, and last value for df) 
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Factors for Two-Sided Tolerance Limits for Normal Distributions 

Factors K2 such that the probability is γ (gamma) that at least a proportion P 

of the distribution will be included between  2Y K s. 

γ = 0.75 

n P = 0.75 P = 0.90 P = 0.95 P = 0.99 P = 0.999 

2 4.498 6.301 7.414 9.531 11.920 

3 2.501 3.538 4.187 5.431 6.844 

4 2.035 2.892 3.431 4.471 5.657 

5 1.825 2.599 3.088 4.033 5.117 

6 1.704 2.429 2.889 3.779 4.802 

7 1.624 2.318 2.757 3.611 4.593 

8 1.568 2.238 2.663 3.491 4.444 

9 1.525 2.178 2.593 3.400 4.330 

10 1.492 2.131 2.537 3.328 4.241 

11 1.465 2.093 2.493 3.271 4.169 

12 1.443 2.062 2.456 3.223 4.110 

13 1.425 2.036 2.424 3.183 4.059 

14 1.409 2.013 2.398 3.148 4.016 

15 1.395 1.994 2.375 3.118 3.979 

16 1.383 1.977 2.355 3.092 3.946 

17 1.372 1.962 2.337 3.069 3.917 

18 1.363 1.948 2.321 3.048 3.891 

19 1.355 1.936 2.307 3.030 3.867 

20 1.347 1.925 2.294 3.013 3.846 

21 1.340 1.915 2.282 2.998 3.827 

22 1.334 1.906 2.271 2.984 3.809 

23 1.328 1.898 2.261 2.971 3.793 

24 1.322 1.891 2.252 2.959 3.778 

25 1.317 1.883 2.244 2.948 3.764 

26 1.313 1.877 2.236 2.938 3.751 

27 1.309 1.871 2.229 2.929 3.739 

28 1.305 1.865 2.222 2.920 3.728 

29 1.301 1.860 2.216 2.911 3.718 

30 1.297 1.855 2.210 2.904 3.708 

35 1.283 1.834 2.185 2.871 3.667 

40 1.271 1.818 2.166 2.846 3.635 

45 1.262 1.805 2.150 2.826 3.609 

50 1.255 1.794 2.138 2.809 3.588 

75 1.231 1.760 2.098 2.756 3.521 

100 1.218 1.742 2.075 2.727 3.484 

200 1.195 1.709 2.037 2.677 3.419 

500 1.177 1.683 2.006 2.636 3.368 

1000 1.169 1.671 1.992 2.617 3.344 

 1.150 1.645 1.960 2.576 3.291 
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Factors for Two-Sided Tolerance Limits for Normal Distributions 

Factors K2 such that the probability is γ (gamma) that at least a proportion P 

of the distribution will be included between  2Y K s. 

γ = 0.90 

n P = 0.75 P = 0.90 P = 0.95 P = 0.99 P = 0.999 

2 11.407 15.978 18.800 24.167 30.227 

3 4.132 5.847 6.919 8.974 11.309 

4 2.932 4.166 4.943 6.440 8.149 

5 2.454 3.494 4.152 5.423 6.879 

6 2.196 3.131 3.723 4.870 6.188 

7 2.034 2.902 3.452 4.521 5.750 

8 1.921 2.743 3.264 4.278 5.446 

9 1.839 2.626 3.125 4.098 5.220 

10 1.775 2.535 3.018 3.959 5.046 

11 1.724 2.463 2.933 3.849 4.906 

12 1.683 2.404 2.863 3.758 4.792 

13 1.648 2.355 2.805 3.682 4.697 

14 1.619 2.314 2.756 3.618 4.615 

15 1.594 2.278 2.713 3.562 4.545 

16 1.572 2.246 2.676 3.514 4.484 

17 1.552 2.219 2.643 3.471 4.430 

18 1.535 2.194 2.614 3.433 4.382 

19 1.520 2.172 2.588 3.399 4.339 

20 1.506 2.152 2.564 3.368 4.300 

21 1.493 2.135 2.543 3.340 4.264 

22 1.482 2.118 2.524 3.315 4.232 

23 1.471 2.103 2.506 3.292 4.203 

24 1.462 2.089 2.489 3.270 4.176 

25 1.453 2.077 2.474 3.251 4.151 

26 1.444 2.065 2.460 3.232 4.127 

27 1.437 2.054 2.447 3.215 4.106 

28 1.430 2.044 2.435 3.199 4.085 

29 1.423 2.034 2.424 3.184 4.066 

30 1.417 2.025 2.413 3.170 4.049 

35 1.390 1.988 2.368 3.112 3.974 

40 1.370 1.959 2.334 3.066 3.917 

45 1.354 1.935 2.306 3.030 3.871 

50 1.340 1.916 2.284 3.001 3.833 

75 1.298 1.856 2.211 2.906 3.712 

100 1.275 1.822 2.172 2.854 3.646 

200 1.234 1.764 2.102 2.762 3.529 

500 1.201 1.717 2.046 2.689 3.434 

1000 1.185 1.695 2.019 2.654 3.390 

 1.150 1.645 1.960 2.576 3.291 
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Factors for Two-Sided Tolerance Limits for Normal Distributions 

Factors K2 such that the probability is γ (gamma) that at least a proportion P 

of the distribution will be included between  2Y K s. 

γ = 0.95 

n P = 0.75 P = 0.90 P = 0.95 P = 0.99 P = 0.999 

2 22.858 32.019 37.674 48.430 60.573 

3 5.922 8.380 9.916 12.861 16.208 

4 3.779 5.369 6.370 8.299 10.502 

5 3.002 4.275 5.079 6.634 8.415 

6 2.604 3.712 4.414 5.775 7.337 

7 2.361 3.369 4.007 5.248 6.676 

8 2.197 3.136 3.732 4.891 6.226 

9 2.078 2.967 3.532 4.631 5.899 

10 1.987 2.839 3.379 4.433 5.649 

11 1.916 2.737 3.259 4.277 5.452 

12 1.858 2.655 3.162 4.150 5.291 

13 1.810 2.587 3.081 4.044 5.158 

14 1.770 2.529 3.012 3.955 5.045 

15 1.735 2.480 2.954 3.878 4.949 

16 1.705 2.437 2.903 3.812 4.865 

17 1.679 2.400 2.858 3.754 4.791 

18 1.655 2.366 2.819 3.702 4.725 

19 1.635 2.337 2.784 3.656 4.667 

20 1.616 2.310 2.752 3.615 4.614 

21 1.599 2.286 2.723 3.577 4.567 

22 1.584 2.264 2.697 3.543 4.523 

23 1.570 2.244 2.673 3.512 4.484 

24 1.557 2.225 2.651 3.483 4.447 

25 1.545 2.208 2.631 3.457 4.413 

26 1.534 2.193 2.612 3.432 4.382 

27 1.523 2.178 2.595 3.409 4.353 

28 1.514 2.164 2.579 3.388 4.326 

29 1.505 2.152 2.564 3.368 4.301 

30 1.497 2.140 2.549 3.350 4.278 

35 1.462 2.090 2.490 3.272 4.179 

40 1.435 2.052 2.445 3.212 4.103 

45 1.414 2.021 2.408 3.165 4.042 

50 1.396 1.996 2.379 3.126 3.993 

75 1.341 1.917 2.285 3.002 3.835 

100 1.311 1.874 2.233 2.934 3.748 

200 1.258 1.798 2.143 2.816 3.597 

500 1.215 1.737 2.070 2.721 3.475 

1000 1.195 1.709 2.036 2.676 3.418 

 1.150 1.645 1.960 2.576 3.291 
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Factors for Two-Sided Tolerance Limits for Normal Distributions 

Factors K2 such that the probability is γ (gamma) that at least a proportion P 

of the distribution will be included between  2Y K s. 

γ = 0.99 

n P = 0.75 P = 0.90 P = 0.95 P = 0.99 P = 0.999 

2 114.363 160.193 188.491 242.300 303.054 

3 13.378 18.930 22.401 29.055 36.616 

4 6.614 9.398 11.150 14.527 18.383 

5 4.643 6.612 7.855 10.260 13.015 

6 3.743 5.337 6.345 8.301 10.548 

7 3.233 4.613 5.488 7.187 9.142 

8 2.905 4.147 4.936 6.468 8.234 

9 2.677 3.822 4.550 5.966 7.600 

10 2.508 3.582 4.265 5.594 7.129 

11 2.378 3.397 4.045 5.308 6.766 

12 2.274 3.250 3.870 5.079 6.477 

13 2.190 3.130 3.727 4.893 6.240 

14 2.120 3.029 3.608 4.737 6.043 

15 2.060 2.945 3.507 4.605 5.876 

16 2.009 2.872 3.421 4.492 5.732 

17 1.965 2.808 3.345 4.393 5.607 

18 1.926 2.753 3.279 4.307 5.497 

19 1.891 2.703 3.221 4.230 5.399 

20 1.860 2.659 3.168 4.161 5.312 

21 1.833 2.620 3.121 4.100 5.234 

22 1.808 2.584 3.078 4.044 5.163 

23 1.785 2.551 3.040 3.993 5.098 

24 1.764 2.522 3.004 3.947 5.039 

25 1.745 2.494 2.972 3.904 4.985 

26 1.727 2.469 2.941 3.865 4.935 

27 1.711 2.446 2.914 3.828 4.888 

28 1.695 2.424 2.888 3.794 4.845 

29 1.681 2.404 2.864 3.763 4.805 

30 1.668 2.385 2.841 3.733 4.768 

35 1.613 2.306 2.748 3.611 4.611 

40 1.571 2.247 2.677 3.518 4.493 

45 1.539 2.200 2.621 3.444 4.399 

50 1.512 2.162 2.576 3.385 4.323 

75 1.428 2.042 2.433 3.197 4.084 

100 1.383 1.977 2.355 3.096 3.954 

200 1.304 1.865 2.222 2.921 3.731 

500 1.243 1.777 2.117 2.783 3.555 

1000 1.214 1.736 2.068 2.718 3.472 

 1.150 1.645 1.960 2.576 3.291 
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Factors for One-Sided Tolerance Limits for Normal Distributions 

Factors K1 such that the probability is γ (gamma) that at least a proportion P of 

the distribution will be less than + 1Y K s or greater than − 1Y K s. 

 γ = 0.75 

n P=0.75 P=0.90 P=0.95 P=0.99 P=0.999 

3 1.464 2.501 3.152 4.396 5.805 

4 1.255 2.134 2.681 3.726 4.911 

5 1.152 1.962 2.463 3.421 4.507 

6 1.088 1.859 2.336 3.244 4.273 

7 1.043 1.790 2.250 3.126 4.119 

8 1.010 1.740 2.188 3.042 4.008 

9 0.985 1.701 2.141 2.977 3.924 

10 0.964 1.671 2.104 2.927 3.858 

11 0.947 1.645 2.073 2.885 3.804 

12 0.932 1.624 2.048 2.851 3.760 

13 0.920 1.606 2.026 2.822 3.722 

14 0.909 1.591 2.007 2.797 3.690 

15 0.899 1.577 1.991 2.775 3.661 

16 0.891 1.565 1.976 2.756 3.636 

17 0.883 1.554 1.963 2.739 3.614 

18 0.876 1.545 1.952 2.723 3.595 

19 0.870 1.536 1.941 2.710 3.577 

20 0.864 1.528 1.932 2.697 3.560 

21 0.859 1.521 1.923 2.685 3.546 

22 0.854 1.514 1.915 2.675 3.532 

23 0.849 1.508 1.908 2.665 3.520 

24 0.845 1.502 1.901 2.656 3.508 

25 0.841 1.497 1.895 2.648 3.497 

26 0.838 1.492 1.889 2.640 3.487 

27 0.834 1.487 1.883 2.633 3.478 

28 0.831 1.483 1.878 2.626 3.469 

29 0.828 1.478 1.873 2.620 3.461 

30 0.825 1.475 1.869 2.614 3.454 

35 0.813 1.458 1.849 2.588 3.421 

40 0.803 1.445 1.834 2.568 3.395 

45 0.795 1.434 1.821 2.552 3.375 

50 0.788 1.425 1.811 2.538 3.358 

 0.674 1.282 1.645 2.326 3.090 
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Factors for One-Sided Tolerance Limits for Normal Distributions 

Factors K1 such that the probability is γ (gamma) that at least a proportion P of 

the distribution will be less than + 1Y K s or greater than − 1Y K s 

 γ = 0.90 

n P=0.75 P=0.90 P=0.95 P=0.99 P=0.999 

3 2.603 4.258 5.311 7.340 9.651 

4 1.972 3.188 3.957 5.438 7.129 

5 1.698 2.742 3.400 4.666 6.111 

6 1.540 2.494 3.092 4.243 5.556 

7 1.435 2.333 2.894 3.972 5.202 

8 1.360 2.219 2.754 3.783 4.955 

9 1.302 2.133 2.650 3.641 4.771 

10 1.257 2.066 2.568 3.532 4.629 

11 1.219 2.011 2.503 3.443 4.514 

12 1.188 1.966 2.448 3.371 4.420 

13 1.162 1.928 2.402 3.309 4.341 

14 1.139 1.895 2.363 3.257 4.273 

15 1.119 1.867 2.329 3.212 4.215 

16 1.101 1.842 2.299 3.172 4.164 

17 1.085 1.819 2.272 3.137 4.119 

18 1.071 1.800 2.249 3.105 4.078 

19 1.058 1.782 2.227 3.077 4.042 

20 1.046 1.765 2.208 3.052 4.009 

21 1.035 1.750 2.190 3.028 3.979 

22 1.025 1.737 2.174 3.007 3.952 

23 1.016 1.724 2.159 2.987 3.927 

24 1.007 1.712 2.145 2.969 3.903 

25 1.000 1.702 2.132 2.952 3.882 

26 0.992 1.691 2.120 2.937 3.862 

27 0.985 1.682 2.109 2.922 3.843 

28 0.979 1.673 2.099 2.909 3.826 

29 0.973 1.665 2.089 2.896 3.810 

30 0.967 1.657 2.080 2.884 3.794 

35 0.942 1.624 2.041 2.833 3.730 

40 0.923 1.598 2.010 2.793 3.679 

45 0.907 1.577 1.986 2.761 3.638 

50 0.894 1.559 1.965 2.735 3.604 

 0.674 1.282 1.645 2.326 3.090 
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Factors for One-Sided Tolerance Limits for Normal Distributions 

Factors K1 such that the probability is γ (gamma) that at least a proportion P of 

the distribution will be less than + 1Y K s or greater than − 1Y K s 

 γ = 0.95 

n P=0.75 P=0.90 P=0.95 P=0.99 P=0.999 

3 3.806 6.155 7.656 10.553 13.857 

4 2.618 4.162 5.144 7.042 9.214 

5 2.150 3.407 4.203 5.741 7.502 

6 1.895 3.006 3.708 5.062 6.612 

7 1.732 2.755 3.399 4.642 6.063 

8 1.618 2.582 3.187 4.354 5.688 

9 1.532 2.454 3.031 4.143 5.413 

10 1.465 2.355 2.911 3.981 5.203 

11 1.411 2.275 2.815 3.852 5.036 

12 1.366 2.210 2.736 3.747 4.900 

13 1.328 2.155 2.671 3.659 4.787 

14 1.296 2.109 2.614 3.585 4.690 

15 1.268 2.068 2.566 3.520 4.607 

16 1.243 2.033 2.524 3.464 4.535 

17 1.220 2.002 2.486 3.414 4.471 

18 1.201 1.974 2.453 3.370 4.415 

19 1.183 1.949 2.423 3.331 4.364 

20 1.166 1.926 2.396 3.295 4.318 

21 1.152 1.905 2.371 3.263 4.277 

22 1.138 1.886 2.349 3.233 4.239 

23 1.125 1.869 2.328 3.206 4.204 

24 1.114 1.853 2.309 3.181 4.172 

25 1.103 1.838 2.292 3.158 4.142 

26 1.093 1.824 2.275 3.136 4.115 

27 1.083 1.811 2.260 3.117 4.089 

28 1.075 1.799 2.246 3.098 4.066 

29 1.066 1.788 2.232 3.080 4.043 

30 1.058 1.777 2.220 3.064 4.022 

35 1.025 1.732 2.167 2.995 3.934 

40 0.999 1.697 2.126 2.941 3.866 

45 0.978 1.669 2.092 2.898 3.811 

50 0.960 1.646 2.065 2.862 3.766 

 0.674 1.282 1.645 2.326 3.090 
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Factors for One-Sided Tolerance Limits for Normal Distributions 

Factors K1 such that the probability is γ (gamma) that at least a proportion P of 

the distribution will be less than + 1Y K s or greater than − 1Y K s 

 γ = 0.99 

n P=0.75 P=0.90 P=0.95 P=0.99 P=0.999 

6 2.848 4.411 5.406 7.335 9.550 

7 2.491 3.859 4.728 6.412 8.346 

8 2.253 3.497 4.285 5.812 7.564 

9 2.083 3.241 3.972 5.389 7.015 

10 1.954 3.048 3.738 5.074 6.606 

11 1.853 2.898 3.556 4.829 6.288 

12 1.771 2.777 3.410 4.633 6.035 

13 1.703 2.677 3.290 4.472 5.827 

14 1.645 2.593 3.189 4.337 5.652 

15 1.595 2.522 3.102 4.222 5.504 

16 1.552 2.459 3.028 4.123 5.377 

17 1.514 2.405 2.963 4.037 5.265 

18 1.481 2.357 2.905 3.960 5.167 

19 1.450 2.314 2.854 3.892 5.080 

20 1.423 2.276 2.808 3.832 5.001 

21 1.399 2.241 2.766 3.777 4.931 

22 1.376 2.209 2.729 3.727 4.867 

23 1.355 2.180 2.694 3.681 4.808 

24 1.336 2.154 2.662 3.640 4.755 

25 1.319 2.129 2.633 3.601 4.706 

26 1.303 2.106 2.606 3.566 4.660 

27 1.287 2.085 2.581 3.533 4.618 

28 1.273 2.066 2.558 3.502 4.579 

29 1.260 2.047 2.536 3.473 4.542 

30 1.247 2.030 2.516 3.447 4.508 

35 1.195 1.957 2.430 3.334 4.564 

40 1.154 1.902 2.364 3.249 4.255 

45 1.121 1.857 2.312 3.180 4.168 

50 1.094 1.821 2.269 3.125 4.096 

 0.674 1.282 1.645 2.326 3.090 
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Distribution-Free Two-Sided Tolerance Limits,  = 0.75 & 0.90 

Values (r, s) such that we may assert with at least γ (gamma) confidence that 100P 
percent of the population lies between the rth smallest and the sth largest of a random 
sample of n. 

  = 0.75  = 0.90 

n \ P 0.75 0.90 0.95 0.99 0.75 0.90 0.95 0.99 

50 5, 5 2,1   5,4 1,1   

55 6, 6 2,2 1,1  5,5 2,1   

60 7,6 2,2 1,1  6,5 2,1   

65 7,7 3,2 1,1  6,6 2,2   

70 8,7 3,2 1,1  7,6 2,2   

75 8,8 3,3 1,1  7,7 2,2   

80 8,8 3,3 2,1  8,7 3,2 1,1  

85 10,9 4,3 2,1  8,8 3,2 1,1  

90 10,10 4,3 2,1  9,8 3,2 1,1  

95 11,10 4,3 2,1  9,9 3,3 1,1  

100 11,11 4,4 2,1  10,10 3,3 1,1  

110 12,12 5,4 2,2  11,11 4,3 2,1  

120 14,13 5,5 2,2  12,12 4,4 2,1  

130 15,14 6,5 3,2  13,13 5,4 2,1  

140 16,15 6,6 3,2  14,14 5,5 2,2  

150 17,17 6,6 3,3  16,15 5,5 2,2  

170 20,19 7,7 4,3  18,17 6,6 3,2  

200 23,23 9,8 4,4  21,21 8,7 3,3  

300 35,35 13,13 6,6 1,1 33,32 12,11 5,5  

400 47,47 18,18 9,8 2,1 45,44 16,16 8,7 1,1 

500 59,59 23,22 11,11 2,1 57,56 21,20 10,9 1,1 

600 72,71 28,27 13,13 2,2 68,68 26,25 12,11 2,1 

700 84,83 33,32 16,15 3,2 80,80 30,30 14,14 2,2 

800 96,96 37,37 18,18 3,3 92,92 35,34 16,16 3,2 

900 108,108 42,42 21,20 4,3 104,104 40,39 19,18 3,2 

1000 121, 120 47,47 23,22 4,4 117,116 44,44 21,20 3,3 

When the values of r and s are not equal they are interchangeable. 
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Distribution-Free Two-Sided Tolerance Limits,  = 0.95 & 0.99 

Values (r, s) such that we may assert with at least γ (gamma) confidence that 100P 
percent of the population lies between the rth smallest and the sth largest of a random 
sample of n. 

  = 0.95  = 0.99 

n \ P 0.75 0.90 0.95 0.99 0.75 0.90 0.95 0.99 

50 4, 4 1,1   3, 3    

55 5, 4 1,1   4,3    

60 5,5 1,1   4,4    

65 6,5 2,1   5,4 1,1   

70 6,6 2,1   5,5 1,1   

75 7,6 2,1   5,5 1,1   

80 7,7 2,2   6,5 1,1   

85 8,7 2,2   6,6 2,1   

90 8,8 3,2   7,6 2,1   

95 9,8 3,2 1,1  7,7 2,1   

100 9,9 3,2 1,1  8,7 2,2   

110 10,10 3,3 1,1  9,8 2,2   

120 11,11 4,3 1,1  10,9 3,2   

130 13,12 4,4 2,1  11,10 3,3 1,1  

140 14,13 4,4 2,1  12,11 3,3 1,1  

150 15,14 5,4 2,1  13,13 4,3 1,1  

170 17,16 6,5 2,2  15,15 5,4 2,1  

200 20,20 7,6 3,2  18,18 6,5 2,2  

300 32,31 11,11 5,4  29,29 10,9 4,3  

400 43,43 15,15 7,6  40,40 14,13 6,5  

500 55,54 20,19 9,8 1,1 52,51 18,17 7,7  

600 67,66 24,24 11,10 1,1 63,63 22,22 9,9  

700 78,78 29,28 13,13 2,1 75,74 26,26 11,11 1,1 

800 90,90 33,33 15,15 2,2 86,86 31,30 13,13 1,1 

900 102,102 38,37 18,17 2,2 98,97 35,35 15,15 2,1 

1000 114, 114 43,42 20,19 3,2 110, 
109 

40,39 18,17 2,1 

When the values of r and s are not equal they are interchangeable. 



Rev 4/9/19 

 3-20 

Distribution-Free One-Sided Tolerance Limits 

Values (m) such that with at least γ (gamma) confidence that 100P percent of the 
population lies below the mth largest (or above the mth smallest) of a random sample of n. 

  = 0.75  = 0.90  = 0.95  = 0.99 

n\P 0.75 0.90 0.95 0.99 0.75 0.90 0.95 0.99 0.75 0.90 0.95 0.99 0.75 0.90 0.95 0.99 

50 10 3 1  9 2 1  8 2   6 1   

55 12 4 2  10 3 1  9 2   7 1   

60 13 4 2  11 3 1  10 2 1  8 1   

65 14 5 2  12 4 1  11 3 1  9 2   

70 15 5 2  13 4 1  12 3 1  10 2   

75 16 6 2  14 4 1  13 3 1  10 2   

80 17 6 3  15 5 2  14 4 1  11 2   

85 19 7 2  16 5 2  15 4 1  12 3   

90 20 7 2  17 5 2  16 5 1  13 3 1  

95 21 7 2  18 6 2  17 5 2  14 3 1  

100 22 8 2  20 6 2  18 5 2  15 4 1  

110 24 9 4  22 7 3  20 6 2  17 4 1  

120 27 10 4  24 8 3  22 7 2  19 5 1  

130 29 11 5  26 9 3  25 8 3  21 6 2  

140 31 12 5 1 28 10 4  27 8 3  23 6 2  

150 34 12 6 1 31 10 4  29 9 3  26 7 2  

170 39 14 7 1 35 12 5  33 11 4  30 9 3  

200 46 17 8 1 42 15 6  40 13 5  36 11 4  

300 70 26 12 2 65 23 10 1 63 22 9 1 58 19 7  

400 94 36 17 3 89 32 15 2 86 30 13 1 80 27 11  

500 118 45 22 3 113 41 19 2 109 39 17 2 103 35 14 1 

600 143 55 26 4 136 51 23 3 133 48 21 2 126 44 18 1 

700 167 65 31 5 160 60 28 4 156 57 26 3 149 52 22 2 

800 192 74 36 6 184 69 32 5 180 66 30 4 172 61 26 2 

900 216 84 41 7 208 79 37 5 204 75 35 4 195 70 30 3 

1000 241 94 45 8 233 88 41 6 228 85 39 5 219 79 35 3 
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