
Local Search for Designing Noise-Minimal
Rotorcraft Approach Trajectories

Robert A. Morris
NASA Ames Research Center, USA

K. Brent Venable
University of Padova, Italy

Marco Pegoraro
University of Padova, Italy

James Lindsey
Monterey Technologies, USA

Abstract

NASA and the international community are investing in the
development of a commercial transportation infrastructure
that includes the increased use of rotorcraft, specifically heli-
copters and civil tilt rotors. However, there is significant con-
cern over the impact of noise on the communities surrounding
the transportation facilities. One way to address the rotorcraft
noise problem is by exploiting powerful search techniques
coming from artificial intelligence coupled with simulation
and field tests to design low-noise flight profiles which can
be tested in simulation or through field tests. This paper in-
vestigates the use of simulation based on predictive physical
models to facilitate the search for low-noise trajectories using
local search combined with a robust noise simulator.

Introduction
There is considerable interest in developing a commercial
transportation infrastructure that is based on an increased
use of rotorcraft, specifically helicopters and aircraft such
as a 40-passenger civil tilt rotor. Rotorcraft have a number
of advantages over fixed wing aircraft, primarily in not re-
quiring direct access to the primary fixed wing runways. As
such they can operate at an airport without directly interfer-
ing with major air carrier and commuter aircraft operations.
There is significant concern over the impact of noise on the
communities surrounding the transportation facilities. One
way to address the rotorcraft noise problem is to automati-
cally design flight profiles which can be evaluated with re-
spect to noise in simulation or through field tests.

The problem of designing low noise flight profiles can be
viewed as a trajectory optimization problem (LaValle 2006).
Informally, a trajectory optimization problem consists of a
set of states, a vector of control decisions, a start and goal
state, a cost function, and a set of constraints. A state rep-
resents locations (i.e. points in a 3D space), velocity and
heading. A control decision is a vector representing change
in velocity, altitude, heading, and in turn radius. The prob-
lem, which we adapt here, can, thus, be stated informally as
follows: given a set of states and control actions, find a se-
quence of actions (trajectory) that minimizes a cost function
subject to a set of dynamic constraints, and constraints on

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

start- or end-states. Approximate approaches to optimiza-
tion such as local search (Hoos and Stutzle 2004) have been
shown to be particularly effective in finding solutions of
good quality fast and in high-dimensional spaces. This paper
reports on the use of local search in trajectory optimization.
We assess the performance and effectiveness of local search
using different aggregate evaluation functions.

Background
Noise simulation. Sound can be broken down into fre-
quencies. The ear is more sensitive to mid- and high fre-
quency sounds, so we find noise in these ranges more an-
noying. The so-called A-weighting function (Conner, Bur-
ley, and Smith 2006) approximates the sensitivity of the hu-
man ear and helps to assess the relative loudness of various
sounds. Sound levels vary with time. To take exposure du-
ration into account, the most common measure is the Sound
Exposure Level (SEL). SEL ’summarizes’ the variable en-
ergy level of an event with arbitrary duration by mapping
it to an event of one second duration with the same overall
energy and a constant energy level. SEL provides a compre-
hensive way to describe noise events for use in modeling
and comparing noise environments. Computer noise models
base their computations on SEL values.

Helicopter noise sources include the main rotor, the tail
rotor, the engine(s), and the drive systems. The most notice-
able acoustical property of helicopters is referred to as BVI
(Blade Vortex Interaction) noise. This impulsive noise oc-
curs during high-speed forward flight as a result of blade
thickness and compressible flow on the advancing blade.
This causes the blades airloads to fluctuate rapidly and re-
sults in impulsive noise with shock waves that can propagate
forward. At lower airspeeds, and typically during a descent,
BVI can occur when a blade intersects its own vortex system
or that of another blade (Cox et al. 2009).

The Rotorcraft Noise Model (RNM) (Conner, Burley, and
Smith 2006) is a simulation program that predicts how the
sound of a rotorcraft will propagate through the atmosphere
and accumulate on the ground. RNM is capable of calculat-
ing cumulative noise exposures such as A-weighted SEL.
Given a flight trajectory and other parameters describing the
rotorcraft and the environment, RNM simulation produces
predictive noise data in various formats. Of interest here is
the generation of ground noise contour plots: a set of values

Proceedings of the Twenty-Fourth Innovative Appications of Artificial Intelligence Conference

2311

Figure 1: A sound hemisphere of an MD-900 helicopter.

Figure 2: A Noise Contour Plot.

representing ground noise exposure using A-weighted SEL
over a designated grid of x-y points around the evaluated
trajectory. Figure 2 shows an example of such a plot, where
each color corresponds to a dB level (redder and lighter col-
ors noisier). These plots provide the data used to compute
the aggregate cost functions used during search.

RNM combines a model of sound propagation through the
atmosphere with a database of noise data either experimen-
tally or analytically generated. The database is comprised of
a set of sound spheres. Points on the sphere are described in
terms of a radius from the source and two spherical angles.
A sphere is associated with one noise source and one flight
condition (flight path angle, nacelle angle (for tilt-rotors) and
airspeed). Figure 1 shows an example sound hemisphere.

Local search. Local search (Hoos and Stutzle 2004) is one
of the fundamental paradigms for solving computationally
hard combinatorial problems. Given a problem instance, the
basic idea underlying local search is to start from an ini-
tial search position in the space of all possible assignments
(typically a randomly or heuristically generated assignment,
which may be infeasible, sub-optimal or incomplete), and to
improve iteratively this assignment by means of minor mod-
ifications. At each search step we move to a new assignment
selected from a local neighborhood, chosen via a heuristic

evaluation function. The evaluation function typically maps
the current candidate solution to a real number and it is such
that its global minima correspond to solutions of the given
problem instance. The algorithm moves a the neighbor with
the smallest value of the evaluation function. This process is
iterated until a termination criterion is satisfied. The termi-
nation criterion is usually the fact that a solution is found or
that a predetermined number of steps is reached. To ensure
that the search process does not stagnate, most local search
methods make use of random moves: at every step, with a
certain probability a random move is performed rather than
the usual move to the best neighbor.

Reasons for preferring local search for trajectory opti-
mization include (1) Anytime performance, since, on av-
erage, local search behaves well in practice, yielding low-
order polynomial running times (Hoos and Stutzle 2004);
(2) flexibility and ease of implementation, as deployment-
related deadlines suggest the use of techniques which are
easy to implement; and (3) simulator compatibility, since,
running RNM is heavy from a computational point of view.
This last issue, in particular, means that the repetitive evalua-
tion of partial trajectories, required by complete incremental
solving paradigms (e.g. Branch and Bound), may be unac-
ceptably time consuming.

In this paper we use a specific variant of local search
known as hill-climbing. In hill-climbing search (Selman and
Gomes 2006), we select any local change that improves the
current value of the objective function.

The Trajectory Noise Optimization Problem
We focus on approach trajectories because that is virtually
where all the community noise problems arise and the prob-
lem for take-off trajectories is very similar. We will focus on
A-weighted SEL as our noise exposure metric for the rea-
sons explained in the background section. RNM simulation
provides a black box scoring function for candidate trajecto-
ries. Specifically, RNM produces an output file that assigns
predicted noise for a set of ground points arranged in a two-
dimensional grid on the X-Y plane. The grid size is defined
in terms of the values of the corner nodes and the distance
between nodes.

Upon this grid our model superimposes an organization
of nodes associated with the state of the aircraft and the con-
trol decisions being made by the pilot. We introduce state
variables X,Y, Z, V,H and associated domains for, respec-
tively, location (X,Y), altitude (Z), airspeed (V), and head-
ing (H). We use normal conventions for heading, whereby 0
is north, 90 is east, 180, south, and 270 west. Given a state
variable Q we write q, to refer to domain elements of the
variable. A state of the system is a 5-tuple s = 〈x, y, z, v, h〉.

Similarly, we introduce decision variables
∆V,∆Z,∆H,∆R for change in velocity, change in
altitude, change in heading, and change in turn radius, also
with associated domains, and we write ∆v to denote a value
in the domain of ∆V , etc. Change in heading involves
addition modulo 360. Change in radius involves one action
to initiate the change (e.g. ∆R = 180 to start a 180 degree
radius turn) and a complementary action to come out of the
turn (e.g. ∆R = −180 to restore straight flight). A decision

2312

Figure 3: A “box”-like approach pattern.

vector (or simply decision) is a tuple d of values for each
decision variable.

A node is a pair 〈s, d〉 of a state and decision, repre-
senting the state of the rotorcraft when the pilot or au-
tomated system begins to apply decision d. Given node
Ni = 〈si, di〉, we will denote with 〈xi, yi, zi, vi, hi〉 and
〈∆vi,∆zi,∆hi,∆ri〉 its components.

A path (trajectory) is a sequence of k nodes. Between two
adjacent nodes Nj , Nj+1 there is an edge labeled with the
distance flown distj (in feet), between the locations corre-
sponding to the nodes. For a turn, it measures the portion of
the circumference of the circle flown. A consistent path is
one in which, for all j = 1 . . . k− 1, node Nj+1 is the result
of applying dj at sj for the entire length distj . We express
this as a transition function T : N → N , where N is the set
of nodes.

We assume we are given two nodes designated as start
and finish, with fixed state and control vectors and that a
solution is any consistent flyable trajectory between them.
To control the size of this space we initially start by limit-
ing the paths to those that would be considered ’standard’
by pilots. One example of a standard approach is a box pat-
tern, as the one shown in Figure 3. This trajectory is repre-
sented by 6 nodes, N0 . . . N5, where two 90o turns start, re-
spectively, at N2 and N3. The goal is to find an assignment
(s0, . . . , s5, d0, . . . , d5) to the state and control vectors of
the nodes not fixed by initial and final conditions, such that
the noise simulated by RNM on the corresponding trajectory
is minimal.

All the trajectories considered in this work are either hand
crafted by pilots and or randomly generated by a program
designed to generate only standard trajectories.

Flyability Constraints
Conditions that make a trajectory suitable to fly are usu-
ally expressed in terms of constraints over the glide slope
angle and deceleration. In particular, any part of a tra-
jectory should be characterized by an angle of descent
γ ∈ [0o, 12o] and a deceleration a ∈ [0g, 0.1g] (or
a ∈ [40ft/sec2, 201ft/sec2]). Such restrictions induce
constraints on the change of velocity and altitude as follows.
Given a pair of nodes Ni, Nj and a path between them of
distance distij we have:
• the deceleration constraint (dec): ∆vi ∈ {δv‖∃a ∈

[0, 0.1], δv =
√
v2i + 2a× distij − vi}, where a is ex-

pressed in gs.

• the angle-of-decent constraint (aod): ∆zi ∈ {δz‖∃γ ∈
[0o, 12o], tan(γ) = δz

distij
}.

In addition, there are a minimal velocity and altitude
(vmini, zmini) that a rotorcraft must have when starting the
final part of the approach (that is at the, so called, landing
decision point). Such values are a function of the distance
of the landing decision point from the landing site. A tra-
jectory is said to be flyable if it satisfies all the deceleration
and angle-of-decent constraints along its path, and does not
violate the bounds defined by vmini and zmini.

A Trajectory Noise Optimization Problem (TNOP) is a
tuple 〈S,D, s0, sf , aod, dec, vmini, zmini〉, where S is a set
of states, D s set of decisions, s0, sf are initial and fi-
nal states, aod, dec are deceleration and descent angle con-
straints, and vmini and zmini are as just defined. A fea-
sible solution to a TNOP is a path P = N0, N1, . . . , Nk
where N0 = 〈s0, d0〉, Nk = 〈sf , 0d〉, where 0d represents
the decision of leaving everything unchanged, and for all
j = 2 . . . k, Nj = T (Nj−1), and where P satisfies the flya-
bility constraints.

Cost Functions
We introduce two natural ways of ’aggregating’ RNM con-
tour noise data into scalar valued functions. One cost func-
tion identifies ranges of values that correspond to various
levels ’high’, ’medium’ and ’low’ noise, and creates ’bins’
that store the number of grid noise data points in that range.
Each bin is assigned a weight indicating its importance in
determining solution quality, and the trajectory is evaluated
as the weighted sum of the bin values.

Formally, we define a Binning Heuristic function (Bin)
as follows. Given in input a solution t, RNM computes the
A-weighted SEL value for each of the grid points. Let us
denote with SEL(t, x, y) such a value for the grid point
(x, y) given trajectory t. We define a sequence of decreas-
ing ranges, 〈r1, r2, . . . , rn〉 partitioning the SEL values of
the grid points. Given a trajectory t let us denote by Si(t) =
{(x, y)|SEL(t, x, y) ∈ ri}. We define the following vector
b(t) = 〈b1(t), b2(t), . . . , bn(t)〉 where bi(t) = |Si(t)|. The
bin-score of solution t is Bin(t) = Σi=1...nwibi(t) where
wi is the weight associated to the i-th bin, wi > wi+1 and
Σi=1,...,nwi = 1. Depending on how the weights are set
this function can be made to favor either trajectories that as-
sign lower levels of noise to larger regions or trajectories that
avoid, even small, extremely noisy regions. The goal will be
that of minimizing the Bin value.

The other cost function is based on ordering two candidate
solutions based on a notion of ’significant difference’ in their
predicted noise values. One noise data point is significantly
different from another if the human ear can detect a change
in the noise. Counting the number of significantly different
pair of noise values for the same point between two solu-
tions, we can generate a partial ordering of the candidates.

Formally, we define a Significant Improvement Heuristic
function (Diff) as follows. Let s denote a reference solu-
tion and t another solution. Then the significant improve-

2313

ment score of t w.r.t. s is
Diff(s, t) =

|{(x, y)‖SEL(t, x, y)− SEL(s, x, y) ≥ 1.5dB}|
− |{(x, y)‖SEL(s, x, y)− SEL(t, x, y) ≥ 1.5dB}|.

In other words, this heuristic function considers a reference
solution (that, in our case will be seed solution of the lo-
cal search), and then scores all other solutions counting the
number of grid points where they produce a noise that is at
least 1.5dB lower than the one produced by s at the same
point. A 1.5dB threshold has been identified to be the small-
est improvement that can be perceived by a human. The intu-
ition behind this heuristic function is that of promoting solu-
tions that improve significantly in the largest number of grid
points. Given this heuristic function the goal is to minimize
its value.

Local Search for solving TNOPs
The technique we propose here to solve the optimization
problem described in the previous section is a hill-climbing
local search approach. Figure 4 describes the pseudocode of
our algorithm, which we call Box-TNOP-HC.

Box-TNOP-HC(Trajectory σseed, function score, integer threshold)
σcur = σseed // current trajectory
σbest = σseed // best incumbent trajectory
step = 1
do
σ0 = Neighbor(σcur)
neighborhood(σcur) = neighborhood(σcur) \ {σ0}
while neighborhood(σcur) 6= ∅ and score(σ0) ≥ score(σcur)

σ0 = Neighbor(σcur)
neighborhood(σcur) = neighborhood(σcur) \ {σ0}

σcur = σ0

if flyable(σcur) and score(σcur) < score(σbest)
σbest = σcur

step+ +
while step ≤ threshold
return σbest

Neighbor(Trajectory σ)
1 n = random(σ) // randomly pick a node
2 p = partner(n) // randomly choose partner for transfer
3 select c ∈ {∆v,∆z} // randomly choose control variable
4 vc = val(c, p, n) // find an allowable value to transfer
5 σn = transfer(n, p, vc, σ) // add to n and subtract from p
6 (n, p, c, vc) = used // mark quadruple as used
return σn // return the neighbor

Figure 4: Algorithm Box-TNOP-HC.

The inputs to the algorithm are a seed solution σseed; a
scoring function score; and a positive integer threshold,
representing the number of search steps after which the ex-
ecution must terminate. The output of Box-TNOP-HC is a
solution denoted by σbest. During the execution we keep
track of the current solution, the neighborhood of which we
are exploring, denoted by σcur, and the best flyable solution
found so far, denoted with σbest. Both such solutions are ini-
tially assigned the seed solution. Then, the algorithm starts
exploring the neighborhood of σcur. As soon as it finds a

Figure 5: Transferring values between adjacent nodes.

solution that is better than the current one, it checks if it is
flyable and if so it saves as the best incumbent. Box-TNOP-
HC then updates σcur and starts scanning its neighborhood.
Whenever no better solution is found, a random move in the
neighborhood is taken.

Neighborhood Function
The neighbor of a trajectory s is the result of applying one
of two operators that alter the change of speed or altitude
(∆V , ∆Z) at two adjacent nodes of s. Figure 5 illustrates
the general case where a node has two adjacent nodes with
which to swap values.

More specifically, a node Ni is chosen at random to be
the recipient of the transferred value. A node adjacent to
Ni (i.e., Ni−1 or Ni+1, called the partner) and a control
variable, ∆V or ∆Z, are also chosen randomly. An amount
0 < δxc ≤ ∆xi′ is then computed and transferred to Ni;
that is, δxc is added to the appropriate control variable in
Ni and subtracted from the value of the partner. Note that
given a trajectory with L nodes, N1, . . . NL, no transference
is possible for the final node,NL. The first and L−1st nodes
have only one partner; the rest have two.

The transfer value vc to transfer must be chosen in a way
to preserve the feasibility of the new trajectory. Intuitively,
there are two considerations: first, if too much value is trans-
ferred to a node, the trajectory will force the pilot to ether
descend or decelerate too quickly during the segment begin-
ning at Ni, violating the limit constraints on these values.
Second, if too much control is passed backward from Ni+1

to Ni, then more deceleration is applied sooner, and if too
much is transferred earlier the helicopter might end up fly-
ing too low or too slow at Ni+1. This test involves the lower
bound values vmini and zmini defined earlier for the state at
the partner node.

Moreover, since there is an infinite number of choices of
values for vc and changes in the sound levels occur only for
large enough transfers, we have decided to consider only a
fixed set of such values corresponding to relevant percent-
ages (i.e. 25%, 50%, 75%, and 100%) .

Finally, the effects of the transference of control is prop-
agated to the states of the relevant nodes. Specifically, if
control is transferred forward to Ni, then the state of Ni is

2314

changed; if control is transferred backward to Ni, then the
state of Ni+1 changes.

Experiments
The goal of the experiments reported in this section are to
assess the effectiveness and limitations of local search in
solving the TNOP. We were interested in exploiting the dif-
ferent cost functions, as well as the variable data resolution
capabilities of the simulator, in refining and improving local
search. Specifically, we introduce 6 local search variants:

1. Bin: local search using Bin cost function with 7 bins
corresponding to the SEL ranges [125,−], [115, 124],
[105, 114], [95, 104], [85, 94], [75, 84], [0, 74] with
weights respectively (0.2, 0.2, 0.2, 0.1, 0.1, 0.1, 0.1).

2. Diff: local search using Diff cost function.

3. DiffBin: two- phase local search: first, running Diff, then
running Bin starting from the best solution found in the
first phase;

4. BinDiff: same as previous, but using scoring functions in
reversed order;

5. HBin: two-phase variable resolution search: first, running
Bin with coarse resolution (1000 feet per grid element),
followed by search using BIN with finer (200) resolution.

6. HDiff: same as the previous, but with Diff.

We conducted a number of experiments using the 6 differ-
ent approaches defined above. Each of these variants was run
5 times, starting with a different randomly generated seed
each time. The random generator generated paths that con-
formed to the ’box’ pattern of Figure 3 with, possibly, a dif-
ferent location of each node except for the final node. The
threshold value was set to 100 for Bin and Diff, 90 and 50
for the lower and higher resolution search, respectively, of
HBin and HDiff, and 50 for each phase of BinDiff and Diff-
Bin. The resolution (R) chosen for the reported experiments
was 200 (i.e. 200 feet between each element in the grid), ex-
cept for the coarse stages of Hbin and HDiff , where, as
noted, the resolution size was 1000.

Table 1 shows some results of our experiments. The first
column contains the average over the 5 runs of the scores of
the best solution. Recall that, given the way the cost func-
tions are defined, lower is always better and that for Diff
the final score can be a negative integer while for Bin the
score will be a positive natural number. The second column
shows the absolute best score found in the 5 runs and the last
column shows the average required time.

The relevant comparisons to make are among the two
groups of rows segmented in the table returning, respec-
tively, a Bin score and a Diff score. Note first that apply-
ing Diff first to the local search improves the outcomes on
both average score and best (comparison of first and second
rows), and the difference in time suggests that convergence
to a better local optimum happens quicker. Using two differ-
ent resolutions for Bin improves the best score, but not the
average, suggesting that the hybrid resolution approach does
allow for more exploration of the solution space. The reason

for the increase in average time is most probably due to the
RNM overhead caused by the resolution change.

In the case of the Diff cost function, the results of
multi-stage search are more promising. Dividing the work
with Bin search providing the seed for Diff search (i.e.
BinDiff) shows better average score and best score, with
lower time cost. The HDiff approach, although again us-
ing more time, found the overall best score. These results,
thus, indicate that improvements can be made with a multi-
stage local search approach.

Table 1: Quality Comparison of 6 Approaches to Local
Search Optimization, plus Random Walk Results.

R=200 Average Best Time(sec)
Bin100 70 66 1060

DiffBin50,50 67.2 57.2 813.8
HBin90.75 73 58.7 1104.9

RW(Bin)100 75.2 74.6 962.3
Diff100 -723 -1097 1412.4

BinDiff50,50 -932.6 -1313 1014.7
HDiff90,75 -880 -1387 1566.5

RW(Diff)100 -695 -729 960.4

To evaluate the effectiveness of local search, we ran a sim-
ple Random Walk (RW) procedure, whereby 100 flyable tra-
jectories were randomly generated, scored, and the overall
best preserved. The last two rows of the two groups of Fig-
ure 1 show these results. While RW is competitive with local
search, the modest extra time required for developing local
search results in better exploration of the solution space and
higher quality trajectories. Moreover, it should be noted that
the hybrid approach does always better than RW either faster
or with an extremely limited increase in time.

If we consider an on-board use of the algorithm where
the critical resource is time, a tradeoff between data resolu-
tion, which allows for better discrimination of noise quality,
with search depth, which allows for more candidate trajec-
tories to be evaluated emerges as an issue to be taken into
account. In our experimental setting we converged on reso-
lution =200 and threshold=100 as a reasonable tradeoff. The
question then arises: could we have obtained significant im-
provement with a slight adjustment to threshold, or can we
be reasonably certain that a ’plateau’ has been reached in
solution quality? Answering this question requires generat-
ing data that reveal aspects of the ’topology’ of the solu-
tion space. In Figure 6 we show the runtime behavior for
the Random Walk runs discussed earlier (using Bin; the be-
havior for Diff is similar). A dramatic improvement early
on followed by smaller, gradual improvements as more of
the search space is examined can be observed. This pattern,
suggests that we could reduce the threshold (say, to 50) and
increase the number of random restarts (say from 5 to 10).
Or we could increase the resolution (say to 100) and again
lower the threshold, increasing the discriminating power of
the cost function while offsetting the cost of running RNM
through reducing the depth of search. A similar trend has
been observed also for the other functions which outperform

2315

Figure 6: Runtime behavior of RW with Bin function.

RW also in terms of the reduced thresholds.

Related and Future Work
The field of trajectory optimization has a long history. In
addition to noise, trajectories have been optimized with re-
spect to time, fuel, path length and obstacle avoidance.
Methods of solving trajectory optimization problems range
from numerical methods (Betts 1998) to non-linear pro-
gramming problems (Goplan et al. 2003) or dynamic pro-
gramming (Hagelauer and Mora-Camino 1998). In addition,
path planning methods from robot motion planning has been
used (P. Cheng and LaValle 2001). Randomized optimiza-
tion methods such as simulated annealing and genetic algo-
rithms have also been applied in the work by Xue and Atkins
(Xue and Atkins 2006). The latter bears the most similarity
to the work described here, but has a number of important
differences. There, the search space in modeled with a k-
ary tree approach where each branch represents a change
in the value of a parameter (e.g. path angle and accelera-
tion) and the branching factor is restricted to at most k. We,
instead, consider box-shaped trajectories, inspired by stan-
dard flying practices, which have a more restricted shape but
yet cannot be modeled in the framework used in (Xue and
Atkins 2006). Moreover, the noise produced by a trajectory
is evaluated in (Xue and Atkins 2006) using a verified noise
database, whereas we use RNM as an evaluation tool. Fi-
nally, the local search techniques employed are different, as
we use a standard hill-climbing procedure whereas in (Xue
and Atkins 2006) simulated annealing was used.

In this paper we have extended and revised the work pre-
sented in (Morris, Venable, and Lindsay 2012b; 2012a) in
several ways. The box structure of the trajectories has been
extended with turns and the box can now lie in any part of the
grid only constrained by the landing site. The neighborhood
function is fundamentally different as it allows to explore
more than one transfer of deceleration and decent between
two nodes and a random flyable (rather than a manually gen-
erated) trajectory is used as a seed. A new random walk al-
gorithm exploring only flyable trajectories has been imple-
mented and tested. The experimental results show a signifi-

cant improvement both in terms of solution quality and per-
formance1 and we thus foresee our new approach as promis-
ing since the previous one has already been field tested with
a positive outcome.

We are currently exploring trajectories that do not con-
form to the narrowly defined box pattern defined here. The
resulting increase in dimensionality has led to the need for
more robust modeling and search. We are now mapping
TNOP into a 3D path planning problem to which we are ap-
plying sampling-based search methods. Future reports will
document the results of this work.

We believe this line of research in also very promising in
terms of advancing knowledge on the AI side. For example,
this work has emphasized several important issues regarding
the combination of local search techniques with cost func-
tions derived from the output of sophisticated software such
as a simulator.

References
Betts, J. T. 1998. Survey of numerical methods for trajectory opti-
mization. Journal of Guidance, Control and Dynamics 21(2):193–
207.
Conner, D. A.; Burley, C. L.; and Smith, C. D. 2006. Flight acous-
tic testing and data acquisition for the rotor noise model (rnm). In
Proc. of the 62nd Annual Forum of the American Helicopter Soci-
ety, 1–17.
Cox, C.; Schaaf, P.; Syms, R. A.; Tramontana, P.; Orozco, J.; Ben-
net, R.; Brieger, J.; and Jacobs, E. 2009. Fly neighborly guide.
Technical report, Helicopter Association International.
Goplan, G.; Xue, M.; Atkins, E.; and Schmitz, F. H. 2003.
Longitudinal-plane simultaneous non-interfering approach trajec-
tory design for noise minimization. In Proc. of the 59th AHS Inter-
national Forum and Technology Display, 1–18.
Hagelauer, P., and Mora-Camino, F. 1998. A soft dynamic pro-
gramming approach for on-line aircraft 4d-trajectory optimization.
European Journal of Operational Research 107:87–95.
Hoos, H. H., and Stutzle, T. 2004. Stochastic Local Search: Foun-
dations and Applications. Elsevier - Morgan Kaufmann.
LaValle, S. 2006. Planning Algorithms. Cambridge University
Press.
Morris, R.; Venable, K.; and Lindsay, J. 2012a. Automated design
of noise-minimal, safe rotorcraft trajectories. In Proc. of the 68th
American Helicopter Society Annual Forum & Technology Display.
Morris, R.; Venable, K.; and Lindsay, J. 2012b. Simulation to
support local search in trajectory optimization planning. In IEEE
2012 Aerospace Conference.
P. Cheng, S. Z., and LaValle, S. M. 2001. rrt-based trajectory
design for autonomous automobiles and spacecraft. Archives of
Control Sciences 11(3-4):167–194.
Selman, B., and Gomes, C. 2006. Hill-climbing search. In Ency-
clopedia of Cognitive Science. John Wiley & Sons.
Xue, M., and Atkins, E. M. 2006. Terminal area trajectory opti-
mization using simulated annealing. In 44th AIAA Aerospace Sci-
ences Meeting and Exhibit. Reno, Nevada: AIAA.

1Results omitted due to lack of space.

2316

	AAAI12
	Contents
	Index
	Help
	Terms
	AAAI

