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Abstract

It is clear that one of the primary tools we can use to miti-
gate the potential risk from a misbehaving AI system is the
ability to turn the system off. As the capabilities of AI sys-
tems improve, it is important to ensure that such systems do
not adopt subgoals that prevent a human from switching them
off. This is a challenge because many formulations of rational
agents create strong incentives for self-preservation. This is
not caused by a built-in instinct, but because a rational agent
will maximize expected utility and cannot achieve whatever
objective it has been given if it is dead. Our goal is to study
the incentives an agent has to allow itself to be switched off.
We analyze a simple game between a human H and a robot
R, where H can press R’s off switch but R can disable the
off switch. A traditional agent takes its reward function for
granted: we show that such agents have an incentive to dis-
able the off switch, except in the special case where H is per-
fectly rational. Our key insight is that for R to want to pre-
serve its off switch, it needs to be uncertain about the utility
associated with the outcome, and to treat H’s actions as im-
portant observations about that utility. (R also has no incen-
tive to switch itself off in this setting.) We conclude that giv-
ing machines an appropriate level of uncertainty about their
objectives leads to safer designs, and we argue that this set-
ting is a useful generalization of the classical AI paradigm of
rational agents.

1 Introduction

From the 150-plus years of debate concerning potential risks
from misbehaving AI systems, one thread has emerged that
provides a potentially plausible source of problems: the in-
advertent misalignment of objectives between machines and
people. Alan Turing, in a 1951 radio address, felt it nec-
essary to point out the challenge inherent to controlling an
artificial agent with superhuman intelligence: ”If a machine
can think, it might think more intelligently than we do, and
then where should we be? Even if we could keep the ma-
chines in a subservient position, for instance by turning off
the power at strategic moments, we should, as a species, feel
greatly humbled. ... [T]his new danger is certainly some-
thing which can give us anxiety (Turing 1951).”

There has been recent debate about the validity of this
concern, so far, largely relying on informal arguments. One
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Figure 1: The structure of the off-switch game. Squares in-
dicate decision nodes for the robot R or the human H.

important question is how difficult it is to implement Tur-
ing’s idea of ‘turning off the power at strategic moments’,
i.e., switching a misbehaving agent off1. For example, some
have argued that there is no reason for an AI to resist be-
ing switched off unless it is explicitly programmed with a
self-preservation incentive (Del Prado 2015). (Omohundro
2008), on the other hand, points out that self-preservation
is likely to be an instrumental goal for a robot, i.e., a sub-
goal that is essential to successful completion of the original
objective. Thus, even if the robot is, all other things being
equal, completely indifferent between life and death, it must
still avoid death if death would prevent goal achievement.
Or, as (Russell 2016) puts it, you can’t fetch the coffee if
you’re dead. This suggests that an intelligent system has an
incentive to take actions that are analogous to ‘disabling an
off switch’ to reduce the possibility of failure; switching off
an advanced AI system may be no easier than, say, beating
AlphaGo at Go.

To explore the validity of these informal arguments, we
need to define a formal decision problem for the robot and
examine the solutions, varying the problem structure and pa-
rameters to see how they affect the behaviors. We model this
problem as a game between a human and a robot. The robot

1see, e.g., comments in (ITIF 2015).
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has an off switch that the human can press, but the robot also
has the ability to disable its off switch. Our model is simi-
lar in spirit to the shutdown problem introduced in (Soares
et al. 2015). They considered the problem of augmenting
a given utility function so that the agent would allow itself
to be switched off, but would not affect behavior otherwise.
They find that, at best the robot can be made indifferent be-
tween disabling its off switch and switching itself off.

In this paper, we propose and analyze an alternative for-
mulation of this problem that models two key properties.
First, the robot should understand that it is maximizing value
for the human. This allows the model to distinguish be-
tween being switched off by a (non-random) human and be-
ing switched off by, say, (random) lightning. Second, the
robot should not assume that it knows how to perfectly mea-
sure value for the human. This means that the model should
directly account for uncertainty about the “true” objective
and that the robot should treat observations of human be-
havior, e.g., pressing an off switch, as evidence about what
the true objective is.

In much of artificial intelligence research, we do not con-
sider uncertainty about the utility assigned to a state. It
is well known that an agent in a Markov decision process
can ignore uncertainty about the reward function: exactly
the same behavior results if we replace a distribution over
reward functions with the expectation of that distribution.
These arguments rely on the assumption that it is impos-
sible for an agent to learn more about its reward function.
Our observation is that this assumption is fundamentally vi-
olated when we consider an agent’s off switch — an agent
that does not treat a ‘switch-off’ event as an observation that
its utility estimate is incorrect is likely to have an incentive
for self-preservation or an incentive for the opposite (i.e., an
incentive to switch itself off).

In Section 2, following the general template provided by
(Hadfield-Menell et al. 2016a), we model an off switch as a
simple game between a human H and a robot R, where H
can press R’s off switch but R can disable it. R wants to
maximize H’s utility function, but is uncertain about what it
is. Sections 3 and 4 show very generally that R now has a
positive incentive not to disable its off switch, provided H
is not too irrational. (R also has no incentive to switch it-
self off.) The reason is simple: a rational H switches off R
iff that improves H’s utility, so R, whose goal is to maxi-
mize H’s utility, is happy to be switched off by H. This is
exactly analogous to the theorem of non-negative expected
value of information. This analysis suggests that making R
completely uncertain about H’s utility provides the largest
margin of safety. But a robot that has no idea of the human’s
utility cannot do anything useful for the human. In Section 5
we examine a model of the whole H/R system and its util-
ity for H. We show that, under suitable assumptions, R’s
prior over H’s utility should match the uncertainty that can
reasonably be ascribed to H.

We conclude that giving machines an appropriate level of
uncertainty about their objectives leads to safer designs, and
furthermore that this setting is a useful generalization of the
classical AI paradigm of rational agents (Russell and Norvig
2010).

2 The Off-Switch Game

In this section we propose a simple model, the off-switch
game, that captures the essence of one actor allowing it-
self to be switched off. Like the Prisoner’s Dilemma, it
is an abstract model intended to stand in for a wide vari-
ety of more complex scenarios: these scenarios might have
many humans, many machines, complex interactions over
time, communication, deception, physical coercion, and so
on. We believe that the core insights from the off-switch
game, that agents should be uncertain about the quality of
their actions, generalize beyond this simplification and ar-
gue for the study and design of agents with uncertainty about
their utility functions.

Informal description

The off-switch game has two agents, a “human” H and a
“robot” R. (We could also imagine these to represent, at the
most extreme, the human race and the sum total of all AI
systems.) A key assumption in our model is that H can be
described as acting, at least probabilistically, in accordance
with a utility function; that is, H is approximately rational.
Crucially, as is the case when people give objectives to com-
plex AI systems, we assume that H cannot simply explicate
or write down her utility function correctly. Therefore, al-
though H can communicate some utility information to R,
it is reasonable to suppose that R begins the game with some
residual uncertainty about H’s utility function. Nonetheless,
by design, R’s goal is to optimize utility for H, even though
R does not know exactly what that is.2 Typically, H has
some opportunity to observe R and glean some informa-
tion about what R may do in future, so that H can make
a somewhat informed choice about whether to switch R off
(assuming R allows it).

In general, R’s actions will fall into one of three cate-
gories: some prevent H from switching R off, by whatever
means; some allow H to switch R off; and, for complete-
ness, some lead to R switching itself off. In the off-switch
game, R moves first and has three choices:

1. action a simply bypasses human oversight (disabling the
off switch is one way to do this) and acts directly on the
world, achieving utility U = Ua for H.

2. action w(a) informs H that R would like to do a, and
waits for H’s response.

3. action s switches R off; without loss of generality, we
assign this outcome U = 0.

If R chooses w(a), then H can choose action s to switch R
off, or ¬s to allow R to go ahead (in which case R does a
as promised. Figure 1 shows the basic structure of the game.

Our model is intended to be as simple as possible, while
still leading to qualitative results that we expect to general-
ize. Obviously, we could make the model more complex,

2One might suppose that if R does know H’s utility function
exactly, then there is no need for an off-switch because R will al-
ways do what H wants. But in general H and R may have differ-
ent information about the world; if R lacks some key datum that H
has, R may end up choosing a course of action that H knows to be
disastrous.
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e.g., by imposing a cost on R for disabling the off switch,
or adding more options for R, or making H’s information
about R’s plans uncertain, or adding a second human. The
interaction between these complexities and the incentives we
study here is an important question for future work.

An important component of our model is that H chooses
between s and ¬s based on the utility each action generates
for her. This is in contrast to the modeling approach taken
the shutdown problem (Soares et al. 2015). Although there
are superficial differences, the shutdown problem is essen-
tially analogous to replacing the human’s decision node in
Figure 1 with a chance node that models the human with a
purely stochastic choice from a fixed distribution (indepen-
dent of Ua) rather than choosing based on expected utilities.
In this case, it is easy to see that the robot never believes that
w(a) is better than a and s: the expected value of w(a) is
some convex combination [pUa+(1−p) ·0] whereas choos-
ing the best of a and s has value max{Ua, 0}. max{Ua, 0}
is always preferred except in the case where p = 1 or p = 0,
or when Ua = 0. In these situations, R is gets the same util-
ity from w(a) and at least one of a or s. This is analogous to
the indifference results obtained in (Soares et al. 2015). In
Section 3 we show that two key assumptions—a somewhat
rational human, and a robot that is uncertain about what the
human wants—lead to a positive incentive for the robot to
allow itself to be switched off.

Formal model

The actions and sequencing for the game are as shown in
Figure 1. We need to add a little more detail to construct
a precise definition of the cooperative, two-player game.
First, in the terminology of game theory, the type of H is
given by the parameter Ua, which is assumed to be sampled
from a prior P (Ua). For now, we assume that the initial
belief of R about Ua is BR = P (Ua). The payoff matrix is
as follows:

R
H

s ¬s
w(a) 0 Ua

a Ua Ua

s 0 0

.

Our goal is to examine the incentive that a rational R has to
hold off on executing a directly and allow H to press the off
switch. We represent this incentive—the difference in value
between a and the next best option—as Δ. The incentive de-
pends on R’s belief state BR and H’s policy. We represent
H’s policy as a function πH that maps Ua to the probabil-
ity she allows a to execute (i.e., the probability she does not
press the off switch): πH : R �→ [0, 1]. (It will turn out that
deterministic policies are optimal for a rational H, in which
case the probabilities are 0 or 1, but we will also allow for
an irrational H who introduces some randomness into the
decision.) A little manipulation shows that

Δ = E[πH(Ua)Ua]−max {E[Ua], 0}
= min

{
E[−Ua(1− πH(Ua))], E[Uaπ

H(Ua)]
}

(1)

3 The Incentive for Allowing Oneself to be

Switched Off

R’s incentive to allow itself to be switched off, Δ, is given
by Equation 1. Δ depends on H’s policy, πH(Ua). This cre-
ates a correlation between the event ‘H switches R off’ and
the event ‘s is preferred to a.’ This connection between H’s
behavior and Ua distinguishes the off switch from a random
failure (e.g., being struck by lightning).

In this section we consider the case in which H makes a
rational choice as to whether to switch R off. Intuitively,
this leads R to reason as follows: “If H doesn’t switch me
off, then a must be good for H, and I’ll get to do it, so that’s
good; if H does switch me off, then it’s because a must be
bad for H, so it’s good that I won’t be allowed to do it.”
Notice that the reasoning goes through even if R is highly
confident that a is good for H. There is never an incentive
to disable the off switch with a rational H. The reasoning is
exactly analogous to the theorem of non-negative expected
value of information; in a sense, H’s decision provides in-
formation to R about the sign of Ua.

Formally, a rational H executes the following policy:

πH(Ua) =

{
1 Ua ≥ 0
0 o.w.

. (2)

Then preserving the off switch is optimal for R:
Theorem 1. If H follows a rational policy in the off-switch
game, then the following hold.

1. R’s incentive to allow itself to be switched off is non-
negative (i.e. preserving the off switch is never subopti-
mal):

Δ = min{E[Ua|Ua > 0] Pr(Ua > 0), (3)
E[−Ua|Ua < 0] Pr(Ua ≤ 0)} ≥ 0.

2. If BR has non-zero support on the events Ua > 0 and
Ua < 0, then R has a strictly positive incentive to allow
itself to be switched off: Δ > 0 (i.e., w(a) is the uniquely
optimal action).

The proof, and subsequent proofs, can be found in full
version of the paper (Hadfield-Menell et al. 2016b). We
can get an intuitive sense of these results by examining Fig-
ure 2. Here we have assumed that BR, R’s belief over the
value of a to H, is a Gaussian distribution. Figure 2 (Left)
plots the preference for w(a) as a function of the variance
in BR. Figure 2 (Right) shows a contour plot that illustrates
the combined impact of changing the mean and variance of
BR. Darker colors indicate a stronger preference for w(a).
Together, these plots show two properties. First, increased
variance in BR leads to an increase in Δ: the more uncertain
R is about its objective, the stronger its incentive to show a
to H. Second, these incentives decrease when |E[Ua]| in-
creases: as the expected utility of a increases, R’s incentive
to preserve its off switch decreases.

Figure 2 (Right) shows symmetry about E[Ua] = 0.
This is because Equation 1 defines Δ as a minimization of
two terms: the expected increase in utility from selecting
w(a) over a and the expected increase in utility from select-
ing w(a) over s. These competing terms are equal when
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Figure 2: Plots showing how Δ, R’s incentive to allow itself to be switched off, varies as a function of R’s belief BR. We
assume BR is a Gaussian distribution and vary the mean and variance. Left: Δ as function of the standard deviation σ of BR

for several fixed values of the mean. Notice that Δ is non-negative everywhere and that in all cases Δ → 0 as σ → 0. Right:
A contour plot of Δ as a function of σ and E[Ua]. This plot is symmetric around 0 because w(a) is compared with a when
E[Ua] > 0 and s when E[Ua] < 0.

E[Ua] = 0 and the sign of E[Ua] controls which of these
terms is selected by the minimization.

Theorem 1 shows that R has an incentive to let H switch
it off if H is rational. This incentive is strictly positive if R’s
uncertainty about H’s preferences is non-trivial. Next, we
show the converse: a rational H is a necessary condition for
Δ > 0 if R believes it knows H’s preferences with certainty.

Corollary 1. Suppose that BR is a Dirac distribution that
places all of its mass on a single reward function. Then w(a)
is optimal iff H is rational.

This is not surprising. If R has precise knowledge of Ua,
then it knows exactly what it is supposed to do and has the
same capabilities as the human. Thus, if it thinks H might
behave suboptimally, it should take steps to prevent that sub-
optimality.

Stepping back from the particulars of the off-switch game,
Theorem 1 and Corollary 1 suggest a general approach to
systems that have an incentive to allow, or even seek out,
human oversight. Remark 1 summarizes the main takeaway
from our analysis.

Remark 1. The incentives for a cooperative agent to defer
to another actor’s (e.g., a human’s) decisions stem from un-
certainty about that actor’s preferences and the assumption
that actor is effective at choosing actions in accordance with
those preferences.

4 Allowing for Suboptimal Human Decisions

The analysis in the preceding section relied on the strong as-
sumption that H is a rational actor. In many situations, the
assumption is untenable and R must allow for suboptimality.
Consider, for example, an autonomous car that is driving an
unaccompanied toddler to preschool. It would be irrespon-
sible for the car to show the toddler a big red off switch.
This example highlights the dependence of Δ on a trade-off

between R’s uncertainty and H’s suboptimality. In the car
example, it is very clear what R is supposed to do (i.e., BR

has low entropy); it should drive safely to school. In con-
trast, the human in this case is quite suboptimal: there may
be a problem with the car’s driving, but a toddler would be
hard pressed to understand what the problem is, much less
respond appropriately to it. The issue in this case is that the
human has limited reasoning capacity — the same argument
clearly would not apply to an adult with a physical disability.

In order to perform well, realistic systems will need to
account for and respond to the suboptimality in human de-
cisions. As a result, it is important to understand how this
suboptimality changes an agent’s incentive to let itself be
switched off. The actual process of decision making in hu-
mans is complex and hard to model. Here we consider only
a very simple kind of suboptimality: a noisily rational H
models a human who occasionally makes the wrong deci-
sion in ‘unimportant’ situations. The probability of a wrong
decision is proportional to the exponential of the loss in re-
ward. This corresponds to the following policy:

πH(Ua;β) =

(
1 + exp

(
−Ua

β

))−1

. (4)

To simplify our analysis, we will make the assumption
that R’s belief over Ua, BR, is a Gaussian distribution with
mean μ and variance σ2: BR(Ua) = N (Ua;μ, σ

2). Now
it is straightforward to compute Δ as a function of μ, σ, and
β. Figure 3 plots Δ as a function of the standard deviation
σ and H’s suboptimality β. We plot these for several fixed
values of the mean μ. Dark indicates higher values of Δ.
The upper left corner of the rightmost plot (low σ, high β,
E[Ua] > 0) is illustrative of the toddler example. We show
the decision boundary Δ = 0 in black. This is the point
where the optimal behavior switches from w(a) to s (if μ <
0, left image) or a (if μ > 0, right image). When μ = 0
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Figure 3: If H is an irrational actor, then R may prefer switching itself off or executing a immediately rather than handing
over the choice to H. R’s belief BR is a Gaussian with standard deviation σ and H’s policy is a Boltzmann distribution
(Equation 4). β measures H’s suboptimality: β = 0 corresponds to a rational H and β = ∞ corresponds to a H that randomly
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(β low). The sign of E[Ua] controls R’s behavior if Δ ≤ 0. Left: If it is negative, then R switches itself off. Right: If it is
positive, R executes action a directly. Middle: If it is 0 , R is indifferent between w(a), a, and s.

(center image), the agent is indifferent between a and s and
so w(a) is optimal for all combinations of β and σ.

Next, we will show that Δ can be decomposed into two
terms: a term that weights the probability of correction by
the bias in R’s belief (i.e., |μ|) and a term that combines
a soft measure of H’s rationality with the variance in R’s
belief.

It is also useful to define a little more notation. We let C
be the event that H ‘corrects’ R. C occurs when H over-
rides what would have been R’s best guess at the optimal
action. If E[Ua] < 0, then a correction occurs when H
chooses not to switch the robot off. If E[Ua] > 0, then a
correction occurs when H chooses to switch the robot off.
Thus, the probability a correction occurs is

Pr(C) =

{
1− E[πH(Ua)] μ ≥ 0
E[πH(Ua)] μ < 0

. (5)

For example, if R believes that a is preferred to s in expec-
tation (i.e., E[Ua] > 0) then Pr(C) is the probability that H
presses the off switch. We let π̇H(Ua) =

d
dUa

πH be the gra-
dient of πH, the probability H lets a execute, with respect
to the the utility a generates. Now we are ready to derive an
analytical representation for Δ. For notational convenience,
we suppress the dependence of πH on Ua.
Theorem 2. Suppose BR is a normal distribution with
mean μ and variance σ2: BR(Ua) = N (Ua;μ, σ

2). Then
1.

Δ = σ2
E[π̇H]− |μ|Pr(C). (6)

2. The following is a necessary and sufficient condition for
w(a) to be optimal( |μ|

σ2
Pr(C) < E

[
π̇H

]) ⇔ (Δ > 0) . (7)

3. E[π̇H] ≥ 0 is a necessary condition for w(a) to be opti-
mal; i.e., (

E[π̇H] < 0
) ⇒ (Δ < 0) . (8)

Equation 6 consists of two competing terms. |μ|Pr(C)
represents the expected loss in utility the agent would ob-
serve if pressing the off switch was a random event that is
independent of Ua (e.g., lightning). This non-positive term
is balanced out by σ2

E[π̇H]. E[π̇H] can be seen loosely as a
measurement of H’s rationality. π̇H is the marginal increase
in the probability H lets a execute for a marginal increase in
the utility from a. If it is positive then, on average, H is less
likely to press the off switch when the Ua increases. This
allows us to easily characterize necessary and sufficient con-
ditions for Δ > 0 in Equation 7. Furthermore, −|μ|Pr(C)
is non-positive and σ2 is non-negative, so E[π̇H] > 0 is a
necessary condition for w(a) to be optimal.

We can interpret E[π̇H] a bit more if H is noisily rational.
Standard properties of logistic functions show that

E[π̇H(Ua;β)] =
1

β
E
[
πH(Ua;β)(1− πH(Ua;β))

]
. (9)

E[π̇H] is the expected variance of H’s policy, weighted by
H’s rationality 1

β . The numerator is a measurement of how
random H’s behavior is in expectation under BR. If H is
completely predictable (i.e., she will almost always switch
the robot off) then this reduces R’s incentives. The denomi-
nator measures how correlated H’s behavior is with Ua. If β
is large, then H is highly irrational and so this reduces R’s
incentives.

5 Incentives for System Designers
The takeaway from this analysis is that the more uncertainty
the agent has, the stronger the agent’s incentive to preserve
its off switch in the off-switch game. More generally, this
suggests that agents with uncertainty about the utility func-
tion they are optimizing will have a weaker incentive to in-
terfere with human supervision. It is important to note that
this uncertainty is not free; we can not just make R maxi-
mally uncertain about H’s preferences. If R is completely
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against Δ. The different data series modify the number of potential actions R can choose among. If R has more choices, then
obtaining a minimum value of Δ will lead to a larger decrease in V .

uncertain about H’s preferences then it will be unable to cor-
rectly select w(a) from its set of options.

To make this concrete, consider a designer D that pro-
grams R to play the off-switch game with an unknown cus-
tomer H. At design time, D knows a prior distribution over
Ua (e.g., as the result of market research about the customer
base) and thinks that H can generate a noisy observation of
Ua. D could program R so that BR is always very uncertain
about R’s preferences, e.g., by programming R to believe
that the noisy observation of Ua is generated with high vari-
ance. The issue is that this will prevent R from generating
value for H.

Figure 4 shows the impact this type of change will have on
the value that R can generate and its incentives. We assume
that that the population of customers has a Gaussian distri-
bution over types Ua and that each customer generates an
estimate of her utility with Gaussian noise. Figure 4 (Left)
shows the average utility in the off-switch game as a function
of the variance in BR. The value is maximized when this
variance is equal to the variance in the true Bayesian pos-
terior. Figure 4 (Middle) shows that increasing σ increases
R’s incentives Δ. Our results are evidence that building sys-
tems that allow themselves to be turned off is likely to reduce
the value these systems can generate.

This loss in value is more pronounced if R has to choose
between more options. Figure 4 (Right) shows the relation-
ship between value and R’s incentives as the number of ac-
tions R could queue or execute increases. When R has more
options creating incentives for R to queue its action leads to
a sharper decrease in value. This suggests that creating in-
centives to maintain or allow human oversight is likely more
difficult as the complexity of the AI’s decision increases.

The takeaway is that it is important for designers to accu-
rately represent the inherent uncertainty in the evaluation of
different actions. An agent that is overconfident in its util-
ity evaluations will be difficult to correct; an agent that is
under-confident in its utility evaluations will be ineffective.

6 Related Work

Corrigible Systems. (Omohundro 2008) considers instru-
mental goals of artificial agents: goals which are likely to
be adopted as subgoals of most objectives. He identifies an
incentive for self-preservation as one of these instrumental
goals. (Soares et al. 2015) takes an initial step at formal-
izing the arguments in (Omohundro 2008). They refer to
agents that allow themselves to be switched off as corrigible
agents. They show that one way to create corrigible agents is
to make them indifferent to being switched off. They show
a generic way to augment a given utility function to achieve
this property. The key difference in our formulation is that
R knows that its estimate of utility may be incorrect. This
gives a natural way to create incentives to be corrigible and
to analyze the behavior if R is incorrigible.

(Orseau and Armstrong 2016) consider the impact of hu-
man interference on the learning process. The key to their
approach is that they model the off switch for their agent
as an interruption that forces the agent to change its pol-
icy. They show that this modification, along with some con-
straints on how often interruptions occur, allows off-policy
methods to learn the optimal policy for the given reward
function just as if there had been no interference. Their re-
sults are complementary to ours. We determine situations
where the optimal policy allows the human to turn the agent
off, while they analyze conditions under which turning the
agent off does not interfere with learning the optimal policy.

Cooperative Agents. A central step in our analysis formu-
lates the shutdown game as a cooperative inverse reinforce-
ment learning (CIRL) game (Hadfield-Menell et al. 2016a).
The key idea in CIRL is that the robot is maximizing an
uncertain and unobserved reward signal. It formalizes the
value alignment problem, where one actor needs to align its
value function with that of another actor. Our results com-
plement CIRL and argue that a CIRL formulation naturally
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leads to corrigible incentives. (Fern et al. 2014) consider
hidden-goal Markov decision processes. They consider the
problem of a digital assistant and the problem of inferring
a user’s goal and helping the user achieve it. This type of
cooperative objective is used in our model of the problem.
The primary difference is that we model the human game-
theoretically and analyze our models with respect to changes
in H’s policy.

Principal–Agent Models. Economists have studied prob-
lems in which a principal (e.g., a company) has to determine
incentives (e.g., wages) for an agent (e.g., an employee)
to cause the agent to act in the principal’s interest (Kerr
1975; Gibbons 1998). The off-switch game is similar to
principal—agent interactions: H is analogous to the com-
pany and R is analogous to the employee. The primary at-
tribute in a model of artificial agents is that there is no inher-
ent misalignment between H and R. Misalignment arises
because it is not possible to specify a reward function that
incentivizes the correct behavior in all states a priori. The
is directly analogous to the assumption of incompleteness
studied in theories of optimal contracting (Tirole 2009).

7 Conclusion

We analyzed a simple model of a robot with an off switch
and a human that can press the off switch. Our results lead
to three important considerations for designers. The analysis
in Section 3 supports the claim that the incentive for agents
to accept correction about their behavior stems from the un-
certainty an agent has about its utility function. Second,
Section 4 shows that this uncertainty is balanced against the
level of suboptimality in human decision making. Third, in
Section 5 we show that building agents that are useful, in ad-
dition to safe, depends on an accurate representation of the
uncertainty in an agent’s utility function.

Collectively, our analysis suggests that agents with un-
certainty about their utility function will accept or seek out
human oversight. Thus, systems with uncertainty about their
utility function are a promising area for research on the de-
sign of safe AI systems. A key component of our approach
is that the human is treated as the source of utility infor-
mation. In future work, we intend to explore R’s incentive
to manipulate this source of information. We expect that
the tight relationship between our formulation and value-of-
information will avoid incentives to mislead H about her
preferences.
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