
Robust Estimation of Google Counts for Social Network Extraction

Yutaka Matsuo and Hironori Tomobe and Takuichi Nishimura
AIST

1-18-13 Sotokanda, Chiyoda-ku
Tokyo 101-0021, Japan

Abstract

Various studies within NLP and Semantic Web use the
so-called Google count, which is the hit count on a
query returned by a search engine (not only Google).
However, sometimes the Google count is unreliable, es-
pecially when the count is large, or when advanced op-
erators such as OR and NOT are used. In this paper,
we propose a novel algorithm that estimates the Google
count robustly. It (i) uses the co-occurrence of terms
as evidence to estimate the occurrence of a given word,
and (ii) integrates multiple evidence for robust estima-
tion. We evaluated our algorithm for more than 2000
queries on three datasets using Google, Yahoo! and
MSN search engine. Our algorithm also provides es-
timate counts for any classifier that judges a web page
as positive or negative. Consequently, we can estimate
the number of documents with included references of a
particular person (among namesakes) on the entire web.

Introduction
Recently, numerous studies of natural language process-
ing (NLP) and the Semantic Web use a search engine for
ontology construction, knowledge extraction, question an-
swering, and other purposes. For example, Cimiano et al.
develop a system called PANKOW, which enables auto-
matic or semi-automatic annotation for the Semantic Web
by investigating linguistic patterns of a named entity using
Google (Cimiano, Handschuh, & Staab 2004). Matsuo et
al. develop a social-network extraction system called POLY-
PHONET, which extracts social relations among persons us-
ing Google (2006). The bridge between a social network
and a lightweight ontology is discussed by Mika (2005a;
2005b), where a social network and an ontology are ex-
tracted using a search engine.

The usage of search engines is also necessary for cur-
rent and future NLP techniques, especially regarding the
web as a large corpus (Kilgarriff 2003). The web is an ex-
cellent source of information about new words: Automatic
thesaurus construction (Curran 2002) offers a great poten-
tial for various useful NLP applications. Several studies
have examined the extraction of hypernyms and hyponyms
or part-whole relations from the web (Miura, Tsuruoka, &

Copyright c© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Tsujii 2004; Cimiano, Handschuh, & Staab 2004; Hage,
Kolb, & Schreiber 2006). Semantic similarity is calculated
using a search engine and text processing (Turney 2005;
Bollegala, Matsuo, & Isizuka 2007).

Most studies of the Semantic Web and NLP utilize a
search engine, mainly for two purposes: to obtain a set of
documents that include a given query, and to obtain statis-
tical information, i.e. the count by a search engine called
Google count of a given query. For example, if we obtain
a large count from a query “Japanese food such as udon”,
we can automatically recognize that udon is an instance of
Japanese food. Such patterns (popularly known as Hearst
patterns (Hearst 1992)) are used to form an elaborate query,
to recognize a hypernym and hyponym. Similarly, we can
obtain the relevance of two terms. Some examples are that
we can put “Yutaka Matsuo AND Peter Mika” to a search
engine and recognize the strength of social relation between
the two persons. Usually to improve the quality, the count
is processed statistically. However, to make an additional
improvement, we must devote greater attention to a search
engine and carefully handle the Google counts.

Several widely known problems occur on Google counts:
When the count is very large, it represents an approximation
and not an exact value. Furthermore, because of the con-
stant update of distributed indexes, the count might vary in
a short time. The results obtained using Boolean operators
such as AND and OR are sometimes erroneous. As a result,
the counts sometimes violate basic set theory: It happens
where the count of “A AND B” is more than the count of “A”
1. Often the count of “A AND B” does not correspond to the
count of “A” plus the count of ”B” minus the count of “A OR
B.” Although such error-prone behavior of the Google count
is rarely a concern for ordinary users, it does present difficul-
ties for studies using Google counts for ontology extraction
and social-network mining.

Therefore, it is important to make Google counts more
precise for research purposes. In our approach, we do not
rely on a single piece of evidence of a Google count. Rather
we “estimate” the Google count based on multiple evidence
obtained using a search engine so that the counts are not af-

1For example, “visualization” yields 36,800,000 hits, whereas
“web AND visualization” makes 41,700,000 hits. As of November
18, 2006 by Google search engine.

1395

fected easily by a particular problem. The Google count is
estimated using multiple evidence of co-occurrence counts;
the intuition is that if we want to have the count for query
“A”, we can apply query “A AND X” and obtain the co-
occurrence count. The co-occurrence count is used to infer
the original count of “A”. The estimate would be robust if
we were to use multiple co-occurrences as evidence.

In this paper, we use the term Google count because of the
popularity of the term. We do not limit our scope of useful
search engines to Google; more precisely, we might call it
a search engine count. It is noteworthy that many search
engines output exact hit counts. However, most commercial
search engines for the entire web provide the approximate
hit counts, which is partly attributable to distributed servers
and indexing, and its frequent updates (Manning, Raghavan,
& Schutze 2007). Therefore, our approach is beneficial to
most search engines targeting the entire web.

This paper is organized as follows: we describe related
works in the next section. Then, we explain our idea of
Google-count estimation in detail. The algorithm is detailed,
with subsequent evaluation using several datasets. We ex-
plain the application of our method to social network ex-
traction, and conclude the paper.

Related Work
Few research efforts have directly examined the topic that
we tackle in this study: but a couple of studies that investi-
gate sampling using a search engine are relevant to ours.

Bar-Yossef and Gurevich propose a random sampling
method from a search engine’s index (2006). The method
is applicable through a public search engine: the sampler
performs a random walk on a virtual graph defined over the
documents in the index, and thereby obtains near-uniform
samples from the index. This method can be used, in princi-
ple, for robust estimation of Google counts: we can identify
the occurrence of term A among sample documents and es-
timate its occurrence on the entire web. However, it requires
many steps to obtain one estimate for query A.

A precedent work by Bharat and Broder (1998) presents
a simpler method for sampling from a search engine’s in-
dex. The algorithm formulates “random” queries generated
from a lexicon of terms. The random queries are formulated
based on the estimated frequency of each term in the lexicon.
Although that method has some demerits for estimating the
size and overlap of search engine indexes, it is appropriate
for page-count estimation on the fly. If we apply the Bharat
and Broder approach, we are able to estimate the page count
for query A as follows:

• Make a lexicon L that consists of words and phrases.
Obtain the prior probability p(X) for each word/phrase
X ∈ L.

• Put a query X (X ∈ L) to a search engine, and investigate
whether the retrieved page contains word A or not.

This method requires vastly numerous samples to investigate
the appearance of the given word A. If we are to measure
the appearance of A by putting a query “A AND X”, this
approach is identical to our idea in this paper. Therefore, our

approach is considered to be based on Bharat and Broder’s
work, and advancing it.

Method
Our approach starts from the following assumption: A
Google count is precise when the number is smaller than
k. Most search engines provide urls for the top k documents
(e.g. k is 1000 for Google). If the count is less than k, the
figure can be considered to be precise: technically we can
check all k documents. In addition, a search engine usu-
ally provides all matched documents if they are appropriate.
Especially if the hit count is small, search engines enumer-
ate matched documents as much as possible. Therefore, the
assumption should be reasonable.

Assuming that the Google count below k is precise, then
the next step is to make the Google count of an arbitrary
query to be less than k. By adding proper terms to the query,
the Google count will be less than k eventually. More for-
mally, assume that we want to have the Google count nA for
query A. Then, we add some query term X to A, and make
query “X AND A,” so that the count n(X,A) would be be-
low k. Throughout this paper, we denote the Google count
of term A as nA, and the Google count of term A with an
auxiliary X as n(X,A).

If X is distributed uniformly throughout all web doc-
uments, and if X and A are independent and identically
distributed (iid), we can estimate the Google count of
A. We denote the probability for a document to include
word X as p(X), then the estimate of the Google count
is n(X,A)/p(X). This is our basic procedure to estimate
a Google count of query A using a more reliable count
n(X,A) and prior knowledge p(X).

However, this approach is overly naive. Several crucial
problems are readily apparent:

Estimation problem It is difficult to calculate the prior
probability p(X): it requires the correct number of all in-
dexed documents and the number of documents including
X. Both are difficult to obtain precisely.

Independence problem As we know through many NLP
studies (Manning & Schütze 2002; Manning, Raghavan,
& Schutze 2007), words show particular biases of co-
occurrence with other words. It is not appropriate to as-
sume that p(X) is independent from query A.

Therefore, we take two solutions against the problems using
the idea of a magnification ratio and selecting probe words,
which we describe below.

Magnification Ratio Instead of assuming the prior proba-
bility p(X), we learn the ratio of n(X,A′) to nA′ on many
examples A′ ∈ Atrain, where Atrain is a set of words that
we prepare for learning. In this way, we can know the ra-
tio of nA′/n(X,A′) empirically. The handling of the AND
operator might have particular biases depending on a search
engine. Therefore, this approach can be superior also from
a theoretical point of view.

We call the average of nA′/n(X,A′) on A′ ∈ Atrain as
magnification ratio of X on Atrain, denoted as mX . The
estimation of the Google count nA is calculated as n̂A =

1396

mX ×n(X,A). In a probabilistic sense, mX corresponds to
the average of 1/p(X) on a sample set Atrain.

If a magnification ratio is large, it means the co-
occurrence between the word and another word tends to be
small, thus the count would be more reliable. On the other
hand, if the magnification ratio is too large, few documents
will be retrieved, and the count would have less information.
Therefore, it is important to use a word with a proper mag-
nification ratio. In this study we do not use a word whose
magnification ratio is below a threshold.

Probe Word To solve the independence problem, we care-
fully choose a word X . For example, the word research is
a good word to estimate the Google count of a researcher’s
name because it is used broadly by many researchers. On
the other hand, mining and natural language are less useful
words for that purpose because they show an apparent bias
of co-occurrences toward data mining researchers or NLP
researchers.

Compare to many studies that use the co-occurrence bias
in a corpus or a document, our approach is unique: most
studies have used the biases of co-occurrence positively,
e.g., for recognizing terms with co-occurrence biases as im-
portant (Matsuo & Ishizuka 2004). Our approach discov-
ers words with less co-occurrence bias (or “unimportant
words”). Usually, frequently appearing words are more rep-
resentative in a document or a corpus, but in our approach,
we do not want words with much appearance because they
provide a small magnification ratio.

We call a carefully chosen word a probe word. Several
criteria pertain to choosing a probe word, as we describe
in the next section. For that procedure, we first prepare
a set of words as candidates for probe words, denoted as
Xcand. Then, we get a set of words Xprobe ⊂ Xcand so
that X ∈ Xprobe shows less co-occurrence bias with words
A′ ∈ Atrain.

Estimation from Multiple Evidence
Assume that we have a set of probe words. Our approach
is based on each estimation by a probe word; the estimation
is aggregated. Total estimation is executed using a certain
function of the estimate counts; simply put, the average of
the estimations is useful.

The Google count is considered as a Bernoulli distribu-
tion: We consider whether a web page matches to a query
or not as a random variable. Under a proper transformation,
a Bernoulli distribution can be approximated by a normal
distribution. If we have m normal distributions correspond-
ing to the m probe words, the mean can be estimated as

μ =
∑

j
μj×1/σ2

j∑
j
1/σ2

j

, where μj and σ2
j respectively denote the

mean and variance of distribution j. Therefore, we can make
an estimation of the Google count of A as

n̂A =

∑
X∈Xprobe

mX × n(X,A) × 1/σ2
X

∑
X∈Xprobe

1/σ2
X

. (1)

In other words, each estimate is weighted by the inverse of
variance of the distribution. A probe word with large vari-
ance is less weighted.

� �
Learning phase:

1. Given Atrain and Xcand.
2. For each A′ ∈ Atrain, obtain the Google count nA′ .

For each A′ ∈ Atrain, obtain the co-occurrence to X ∈
Xcand, i.e. Google count n(X, A′).

3. Calculate the magnification ratio mX , variance σ2
X , and

the bias-score sX for X ∈ Xcand.
4. Among X ∈ Xcand, where mX is above threshold mthre,

select a given number of X ∈ Xcand with the lowest bias-
score sX . It is denoted as Xprobe.

Estimate phase:

1. Given a query A.
2. Obtain the Google count n(X, A) for each X ∈ Xprobe.
3. Calculate

n̂A =

∑
X∈Xprobe

(mX×n(X,A)/σ2
X

)

∑
X∈Xprobe

(1/σ2
X

)
.

� �
Figure 1: Algorithm for learning and estimation.

Algorithm

The entire algorithm is illustrated in Fig. 1. We have two
phases: the learning phase and the estimation phase. Below,
we use a researcher domain as an example.

In the learning phase, a set of sample queries Atrain is
given, which we use for training. This set can be a lexi-
con consisting of named entities, general nouns, or personal
names. We also prepare a set of candidate probe words
Xcand. We obtain the page counts of A′ ∈ Atrain, and page
counts of A′ AND X where A′ ∈ Atrain and X ∈ Xcand.
We put an assumption that nA′ is on average correct, i.e.,
the mean value of the distribution corresponds to the real
value: We simply use the page count of A′ as nA′ . Then,
we calculate mX (and variances) for each candidate probe
word. Therefore, little human effort is needed for the learn-
ing phase, except preparing sample queries and candidate
probe words.

In our example, Atrain is a list of researcher names, and
Xcand are research keywords that are extracted from the ti-
tles of research papers. The co-occurrence between a candi-
date word and a sample query is shown in Table 1. We can
see that some words such as information and system provide
numerous co-occurrences, but that other words such as robot
and generation provide fewer co-occurrences. Some re-
searchers, such as Masaru Kitsuregawa and Hideaki Takeda,
have large counts. We can see that general words such as
information, sake, and system have low variances, whereas
specific words such as robot and agent have large variances.
Some specific co-occurrence cases exist in the matrix: the
count of learning AND Yoichi Motomura is 9320, which is
far larger than counts for other people.

Selection of probe words can be accomplished in several
measures: We use four bias-score functions to score probe
word X , as follows:

1397

Table 1: A matrix for probe-word selection.
single* system support information sake learning robot method agent generation knowledge

Toshihiko Kamishima 298 201 114 257 204 187 65 191 58 98 125
Shigeru Nakamaru 160 34 15 122 118 52 10 14 7 10 54

Daisuke Torii 103 71 51 78 74 48 14 43 48 27 37
Hideyuki Nakanishi 499 399 294 460 369 204 145 205 315 205 197

Seiji Koide 403 184 101 204 154 48 36 70 64 57 111
Hiroko Shoji 1510 582 658 1120 822 447 235 287 107 92 447

Yoichi Motomura 16300 11400 605 13900 10300 9320 664 595 303 349 614
Hideaki Takeda 23000 15100 11500 18800 13100 830 665 899 861 702 11700

Masaru Kitsuregawa 91100 86900 78600 90000 84000 856 479 9600 73500 659 674
...

magnification ratio mX 1.994 4.225 1.433 2.302 4.835 8.617 4.505 9.551 5.952 4.811
variance of mX 3.792 26.978 0.684 5.804 32.90 104.7 29.88 126.2 48.44 30.25

All the words are translated from Japanese. The single means the Google count of A′ ∈ Atrain without a probe word.

Var variance of magnification ratio, i.e. sX = σ2
X

Chi We regard p(A′) = nA′/(
∑

A′∈Atrain
nA′) as the

unconditional probability and measure the biases on
the observed co-occurrences n(X,A′) by χ2 value:

sX =
∑

A′∈Atrain

(n(X,A′)−nX∗·p(A′))2

nX∗·p(A′) , where nX∗ =
∑

A′∈Atrain
n(X,A′).

Cos We calculate the cosine distance of nA′ and n(X,A′)
for A′ ∈ Atrain. We define sX as the inverse of the
distance.

KL Kullbuck-Leibler information: it measures the dif-
ference between two probability distributions p and q:
s−1

X =
∑

A′∈Atrain
p(A′) log p(A′)

q(A′) , where q(A′) =
n(X,A′)/

∑
A′∈Atrain

n(X,A′).

We pick up a given number of words whose bias-scores are
smallest. We will compare the above four measures, in ad-
dition to random selection (Rnd), in the next section.

Table 2 shows a list of candidate words sorted by vari-
ance. We can see that some words are good in terms of vari-
ance, but not in terms of the magnification ratio. Because
the words with a low magnification ratio are inappropriate,
we set a threshold to the magnification ratio.

In the estimation phase, a query word A is input. Then,
we make queries to a search engine to obtain co-occurrence
counts n(X,A). We calculate the weighted sum of each
count, as shown in Eq. (1).

The algorithm requires a number of queries to a search
engine: if we use m probe words and training data of l sam-
ples, we must make at least m × l queries in the learning
phase. In the estimation phase, we require m queries to a
search engine for a given query A. A tradeoff pertains be-
tween the number of probe words and the precision, but we
show that 10–20 probe words are sufficient, as explained in
the next section.

Evaluation
We prepare three datasets: a social-network dataset (SN),
a general word dataset in Japanese (GWJ), and a general
word dataset in English (GWE).

SN dataset The social-network dataset consists of the data
used in social-network extraction (Matsuo et al. 2006).

Table 2: A sorted list of candidate words by variance.
word magnify ratio variance

1 information 1.432 0.684
2 research 1.741 2.532
3 system 1.993 3.793
4 sake 2.302 5.804
5 technique 2.856 8.980
· · · · · · · · · · · ·
184 modeling 16.44 350.8
185 experience 18.10 403.6
186 tag 18.08 408.9
187 teaching material 20.96 511.1
188 handicapped 21.86 636.7

We target the Japanese Society for Artificial Intelligence
(JSAI). We use the names of 540 researchers and 188 key-
words as candidate words Xcand that appeared frequently
in the title and abstract of the papers.

GWJ dataset The dataset consists of general words in
Japanese. We crawled category labels of Yahoo! Japan
Directory. We use 413 labels on the top and the second
levels of the hierarchy, and 200 words that frequently ap-
peared in web pages in the categories. In literature on on-
tology learning from the web, a search engine directory
is sometimes used as a target ontology. Thus we prepare
such dataset for evaluation.

GWE dataset The dataset consists of general words in En-
glish, crawled from 500 category labels in Yahoo! Direc-
tory. In all, 200 words are used as candidate words that
frequently appeared in web pages.

The evaluation is processed as follows: We make an es-
timate of the Google count for query A ∈ Atrain and cal-
culate n̂A based on the co-occurrences n(X,A) to the probe
words X ∈ Xprobe. For this evaluation, we assume that the
Google count nA is correct. Then, the correlation of the es-
timation n̂A and the correct value nA is calculated: if the
correlation is high, the algorithm can estimate the Google
count based on co-occurrence counts. We use five-fold cross
validation.

1398

Table 3: Correlation of estimation to correct counts using
the three search engines.

Google
Sgl+Rnd Sgl+Var Sgl+Cos Sgl+Chi Sgl+KL

SN 0.645 0.786 0.797 0.850 0.748
GWJ 0.653 0.827 0.734 0.862 0.822
GWE 0.846 0.978 0.797 0.944 0.827

Yahoo
Sgl+Rnd Sgl+Var Sgl+Cos Sgl+Chi Sgl+KL

SN 0.635 0.650 0.802 0.853 0.770
GWJ 0.620 0.740 0.852 0.868 0.788
GWE 0.696 0.969 0.871 0.917 0.483

MSN
Sgl+Rnd Sgl+Var Sgl+Cos Sgl+Chi Sgl+KL

SN 0.536 0.783 0.762 0.850 0.775
GWJ 0.416 0.794 0.820 0.816 0.869
GWE 0.554 0.961 0.488 0.929 0.972

It is not always true that nA is the correct value: Actually,
our research is motivated by the belief that nA is sometimes
unreliable. The assumption here is that nA is, on average,
correct, i.e., the mean value of the distribution corresponds
to the real value. Based on this assumption, we can compare
performance among various methods.

Table 3 shows the result of correlation with the Google,
Yahoo! and MSN search engine.2 Looking at those results,
Kullback-Leibler (KL) and chi-square (Chi) show good per-
formance. Every method is better than the random selec-
tion (Rnd) of probe words. The SN and GWJ datasets (both
in Japanese) produce correlations of about 0.8–0.9. The
GWE dataset produces greater than 0.9 correlation, some-
times as high as 0.97. Therefore, we can reasonably esti-
mate the counts from co-occurrences. If we use KL or Chi
for probe word selection, no differences exist in the perfor-
mance among search engines. However, in other cases, es-
pecially when using Rnd, the Google result is better than
the others. The number of probe words and performance are
shown in Fig. 2: If more probe words are used (up to 12),
the correlation increases. The performance is best if we use
12 probe words.

Figure 3 shows a scatter plot of estimated counts to cor-
rect counts for the SN dataset using the Google search en-
gine. Although the estimates well correlate with the correct
counts, we can see a strange gap in the distribution of cor-
rect counts. Namely, there are no queries that generate hit
counts between 2000 and 9000. This phenomenon shows
the existence of different modules that produce hit counts in
Google search engine; when the number of retrieved docu-
ments is small, it provide the exact counts, and when many
documents are retrieved, it provides approximation counts.
We start our algorithm from the assumption; Google count
is precise when the number is smaller than k. This phe-
nomenon may validate the assumption.

2We set the number of probe words to be 20, and the threshold
of magnification ratio 3.0.

Figure 2: Number of probe words vs. correlation with KL
scoring in the SN dataset.

Figure 3: Scatter plot of estimated counts versus correct
counts: We can see a gap of correct counts.

Application to Social Network Extraction
An important expansion of our approach is to apply text-
processing to the retrieved document and provide count esti-
mates for the whole web. We build a binary classifier, which
determines whether a given document is positive or negative.
Theoretically, any classifier is applicable that receives a web
page and outputs positive or negative. For social-network
mining, the classifier might judge whether the correct per-
son (not a namesake) is mentioned in the document or not.
Some might be interested in judging whether the word in the
query is used in the intended meaning.

The problem here is how to estimate the positive counts of
documents on the entire web. We put a query using the probe
word. Then the positive count is multiplied by the magni-
fication ratio. Assume that we have k documents and the
classifier determines that kpos documents are positive. Then
the estimation of positive pages on the entire documents is
n̂pos

A = (kpos/k)n̂A.
We present some examples: If we want to know the

Google counts of Daisuke Torii, Koichi Ando and Manabu
Okumura, who are researchers of computer science in Japan.

1399

Table 4: Co-occurrence counts to the probe words with the
binary classifier. modified

name probe word count kpos/k count
Daisuke Torii support 51 0.73 37.2

structure 29 0.89 24.7
behavior 36 0.75 27.0

understand 29 0.90 26.1
Koichi Ando support 166 0.82 136.1

structure 145 0.76 110.2
behavior 81 0.86 69.7

understand 116 0.81 94.0
Manabu Okumura support 902 0.91 820.8

structure 945 0.76 718.2
behavior 667 0.85 567.0

understand 695 0.79 549.1

Table 5: Estimated counts of the persons.
without with

name classifier classifier
Daisuke Torii 163.8 158.3
Koishi Ando 305.1 268.9

Manabu Okumura 17975.4 13967.2

We obtain the co-occurrence count to probe words as shown
in Table 4. Table 5 shows the modified estimates using an
binary classifier. The classifier here outputs positive or nega-
tive values by judging whether or not the mention of a partic-
ular person’s name is about the target person (among many
namesakes) (Bollegala, Matsuo, & Ishizuka 2006). In this
example, in the case of Daisuke Torii, the estimated counts
are similar whether we use the classifier or not. However,
Koichi Ando produces about a 12% decrease of the count
using the classifier, and in the case of Manabu Okumura
the difference is about one quarter because Koichi Ando and
Manabu Okumura are more common names than Daisuke
Torii; consequently, the effect of the namesakes is greater.

As an example of application, we apply our method to
social-network extraction (Matsuo et al. 2006). Figure 4
shows the two social networks of JSAI researchers, extracted
from the web using either the naive Google count or esti-
mation by our method. Because the Google counts for re-
searchers with common names are sometimes larger than
they should be, which causes less co-occurrence strength
with other researcher names (by measuring Jaccard or Simp-
son coefficient), a small number of ties is recognized. How-
ever, if we apply our method, we can detect more ties for
such researchers. For example, in the figure, we circled two
persons who have fewer ties in the original network but more
ties in our new network. Although the difference seems mi-
nor, it is important for more sophisticated algorithms to at-
tain better quality of the extracted network.

Conclusion
In this paper, we proposed a novel algorithm that estimated
the Google count robustly. The approach is based on the co-
occurrence of words, as evidence to estimate the count of a
given query. We described the effectiveness of our approach
based on several datasets. Although that difference might

Figure 4: Two social networks using Google count (left) and
using estimation (right): In both networks, the numbers of
edges are the same (by tuning a threshold). Some nodes
come to have numerous edges because the Google count is
estimated lower.

seem minor, it is important to further advance many studies
of the Semantic Web and NLP.

One contribution of this work is that it makes a binary
classifier applicable to obtain Google counts on the entire
web. Ontology extraction, social-network extraction and
various NLP tasks can use Google counts with less concern
for particular specifications and idiosyncratic search engine
problems. Because the web offers its great potential as a
corpus of social interaction and linguistic phenomena, we
hope that our study will accelerate efforts toward various re-
search using a search engine as an interface to the world’s
information.

Acknowledgement
This research has been partly supported by NEDO (New En-
ergy and Industrial Technology Development Organization)
as the project ID of 04A11502a.

References
Bar-Yossef, Z., and Gurevich, M. 2006. Random sampling
from a search engine’s index. In Proc. WWW2006.

Bharat, K., and Broder, A. 1998. A technique for mea-
suring the relative size and overlap of public Web search
engines. In Proc. 7th WWW Conf.

Bollegala, D.; Matsuo, Y.; and Ishizuka, M. 2006. Disam-
biguating personal names on the web using automatically
extracted key phrases. In Proc. ECAI 2006.

Bollegala, D.; Matsuo, Y.; and Isizuka, M. 2007. Measur-
ing semantic similarity between words using web search
engines. In Proc. WWW2007.

Cimiano, P.; Handschuh, S.; and Staab, S. 2004. Towards
the self-annotating web. In Proc. WWW2004, 462–471.

1400

Curran, J. 2002. Ensemble methods for automatic the-
saurus extraction. In Proc. EMNLP 2002.
Hage, W.; Kolb, H.; and Schreiber, G. 2006. A method for
learning part-whole relations. In Proc. ISWC2006.
Hearst, M. 1992. Automatic acquisition of hyponyms from
large text corpora. In Proc. COLING’92, 539–545.
Kilgarriff, A. 2003. Introduction to the special issue on the
web as corpus. Computer Linguistics 29(3).
Manning, C., and Schütze, H. 2002. Foundations of sta-
tistical natural language processing. London: The MIT
Press.
Manning, C.; Raghavan, P.; and Schutze, H. 2007. In-
troduction to Information Retrieval. Cambridge University
Press. online version.
Matsuo, Y., and Ishizuka, M. 2004. Keyword extraction
from a single document using word co-ocurrence statisti-
cal information. International Journal on Artificial Intelli-
gence Tools 13(1):157–169.
Matsuo, Y.; Mori, J.; Hamasaki, M.; Takeda, H.;
Nishimura, T.; Hasida, K.; and Ishizuka, M. 2006. POLY-
PHONET: An advanced social network extraction system.
In Proc. WWW 2006.
Mika, P. 2005a. Flink: Semantic web technology for the
extraction and analysis of social networks. Journal of Web
Semantics 3(2).
Mika, P. 2005b. Ontologies are us: A unified model of
social networks and semantics. In Proc. ISWC2005.
Miura, K.; Tsuruoka, Y.; and Tsujii, J. 2004. Automatic
acquisition of concept relations from web documents with
sense clustering. In Proc. IJCNLP04.
Turney, P. D. 2005. Measuring semantic similarity by latent
relational analysis. In Proc. IJCAI-05.

1401

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

