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Abstract 

Background:  Fast and accurate forest aboveground biomass (AGB) estimation and mapping is the basic work of 
forest management and ecosystem dynamic investigation, which is of great significance to evaluate forest quality, 
resource assessment, and carbon cycle and management. The Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2), as 
one of the latest launched spaceborne light detection and ranging (LiDAR) sensors, can penetrate the forest canopy 
and has the potential to obtain accurate forest vertical structure parameters on a large scale. However, the along-track 
segments of canopy height provided by ICESat-2 cannot be used to obtain comprehensive AGB spatial distribution. 
To make up for the deficiency of spaceborne LiDAR, the Sentinel-2 images provided by google earth engine (GEE) 
were used as the medium to integrate with ICESat-2 for continuous AGB mapping in our study. Ensemble learning 
can summarize the advantages of estimation models and achieve better estimation results. A stacking algorithm 
consisting of four non-parametric base models which are the backpropagation (BP) neural network, k-nearest neigh-
bor (kNN), support vector machine (SVM), and random forest (RF) was proposed for AGB modeling and estimating in 
Saihanba forest farm, northern China.

Results:  The results show that stacking achieved the best AGB estimation accuracy among the models, with an 
R2 of 0.71 and a root mean square error (RMSE) of 45.67 Mg/ha. The stacking resulted in the lowest estimation error 
with the decreases of RMSE by 22.6%, 27.7%, 23.4%, and 19.0% compared with those from the BP, kNN, SVM, and RF, 
respectively.

Conclusion:  Compared with using Sentinel-2 alone, the estimation errors of all models have been significantly 
reduced after adding the LiDAR variables of ICESat-2 in AGB estimation. The research demonstrated that ICESat-2 has 
the potential to improve the accuracy of AGB estimation and provides a reference for dynamic forest resources man-
agement and monitoring.
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Background
As the largest carbon storage in the biosphere, the forest 
ecosystem is an important part of the terrestrial ecosys-
tem and plays an indispensable role in the global carbon 
cycle [1, 2]. A timely understanding of the current situa-
tion and dynamic change of forest ecosystem is of great 
significance for human beings to cope with global climate 
change, study the global carbon cycle, environmental 
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monitoring, and realize human sustainable development. 
Accurate evaluation of carbon cycle capacity and car-
bon storage of forest ecosystem is an important link in 
quantitative analysis of carbon sink [3, 4]. Forest above-
ground biomass (AGB) is one of the main components of 
forest carbon storage because of its large volume, long-
term and large-scale impact on carbon balance [5]. As 
an important index to evaluate forest quality and forest 
ecosystem service function, AGB can directly measure 
carbon sequestration capacity [6]. Rapid and accurate 
acquisition of large-scale AGB is the basic work of forest 
resource management and ecosystem dynamic monitor-
ing, which is of great significance for studying ecosystem 
interaction and formulating relevant policies in the pro-
cess of achieving carbon neutralization [7, 8].

Remote sensing technology has the potential to quickly 
obtain the growth status of large-scale vegetation, which 
provides an effective reference for the monitoring and 
management of forest resources [9]. Extracting vegeta-
tion information from remote sensing images and com-
bining it with a small amount of ground-measured data 
for modeling has become an effective and popular way 
of obtaining regional AGB [10]. Spectral reflectance can 
reflect the differences between ground objects, which is 
the theoretical basis of remote sensing inversion of forest 
parameters. Optical images are remote sensing data with 
the widest coverage, the most types and the richest time 
series in the world [11]. The rich spectral information of 
optical images can effectively reflect the distribution and 
growth of vegetation and has been widely used in veg-
etation classification and forest resources monitoring 
[12, 13]. Moderate-resolution Imaging Spectroradiom-
eter (MODIS), as a representative of low spatial resolu-
tion optical images, has periodic land surface coverage 
on a large scale, which enables national and even global 
monitoring of land and vegetation changes. However, the 
coarse spatial resolution leads to an excessive amount of 
mixed features in the pixels, which makes the accuracy 
of identifying ground objects limited [14]. Remote sens-
ing images with high spatial resolution have the potential 
to recognize surface objects more accurately. However, 
cloud cover, coverage, and high price lead to limitations 
in applications over large areas [15]. Due to the moder-
ate spatial resolution, complete coverage and short revisit 
period, the medium spatial resolution data represented 
by Sentinel-2 and Landsat is still the most popular and 
widely used optical remote sensing image. Compared 
with Landsat data, Sentinel-2 carries more than three 
red edge bands which are more sensitive to vegetation 
growth, so it can provide more accurate land change 
and vegetation growth information [16]. In addition, the 
time-series data provided by Sentinel-2 makes it possi-
ble to obtain high-quality seasonal forest change, which 

can be effectively used for forest resource monitoring 
and dynamic management [17, 18]. Google earth engine 
(GEE) is a cloud-based geospatial processing platform, 
which can be used for large-scale terrestrial ecosystem 
monitoring. GEE archives a large number of remote 
sensing data for public use, and users can directly apply 
their algorithms to these data [19]. Due to its high effi-
ciency, GEE has been widely used in land cover and land 
use change (LCLUC) assessment, disaster management, 
and forest monitoring [20]. GEE has integrated a variety 
of data including MODIS, Sentinel, Landsat, etc., which 
can be effectively applied to forest resource monitoring. 
Utilization of GEE to acquire and process Sentinel-2 data 
provides the potential to rapidly achieve high-precision 
forest AGB estimation and mapping on a large scale [21, 
22].

Compared with optical remote sensing images, active 
remote sensing data sources such as synthetic aperture 
radar (SAR) and light detection and ranging (LiDAR) can 
penetrate the vegetation canopy to reach the ground sur-
face and obtain information on the vertical structure of 
the forest stand, thus enabling more accurate estimation 
of forest parameters [2324 25]. However, SAR must work 
in bands with specific frequency, and Gleason et al. [10] 
found that these bands are usually not necessarily suit-
able for AGB estimation of all forest types. And because 
most of the forests are located in the complex terrain 
area, how eliminating the influence of the elevation fluc-
tuation terrain on the signal is the one of the critical fac-
tors limiting the SAR data [23]. In addition, saturation in 
high AGB areas limits more applications of SAR [24].

LiDAR is another commonly used active remote sens-
ing method, which obtains object features by transmit-
ting and receiving detection signals to the target [25]. 
Among all LiDAR systems, spaceborne LiDAR, with its 
high orbit and wide observation area, is the only payload 
that can rapidly obtain three-dimensional spatial infor-
mation on large scales or even the global surface [26]. 
ICESat-2 (Ice, Cloud, and Land Elevation Satellite-2) is 
one of the latest spaceborne LiDAR systems with a high 
repetition rate and high sensitivity, which is the first-time 
applying photon-counting LiDAR (PCL) technology to 
a satellite platform [27]. ICESat-2 is equipped with an 
advanced terrain laser altimeter system (ATLAS) using a 
sensitive single-photon detector. It has a high pulse rep-
etition rate and can obtain a small spot and high-density 
photon point cloud data, to achieve more accurate three-
dimensional surface information traction. ICESat-2 can 
provide forest vertical structure parameters and effec-
tively alleviate the saturation of optical remote sensing 
images [28, 29]. Using ICESat-2 to quickly obtain global 
forest dynamic change information provides the poten-
tial to reveal vegetation canopy height, AGB distribution, 
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and change pattern in a large area. However, the space-
borne LiDAR data are not spatially continuous, it is nec-
essary to combine optical or other continuous remote 
sensing data to obtain the continuous spatial distribution 
of AGB [30, 31].

Parametric and nonparametric methods are commonly 
used for forest parameter estimation [18]. Parametric 
models are simple in form and easy to implement, but 
poor in fitting in complex forest parameter estimation 
[17]. Nonparametric methods such as backpropagation 
(BP) neural networks, k-nearest neighbors (kNN), sup-
port vector machines (SVM), and random forests (RF) 
do not require assumptions about sample distribution 
and can suppress overfitting, and have been shown to be 
effective for forest AGB estimation [31, 32]. However, due 
to the complexity of the forest environment, the applica-
bility of these models is inconsistent for different forest 
types. In addition, the estimation accuracy of these mod-
els being used individually is always limited due to fac-
tors such as sample distribution, modeling variables, and 
hyperparameters [32]. Ensemble learning, represented by 
the stacking algorithm, integrates the advantages of mul-
tiple base models and can be effective in achieving higher 
accuracy forest parameters estimation [31]. However, the 
effectiveness of stacking constructed with nonparametric 
models as base models for AGB estimation still needs to 
be validated. The study aimed to propose a stacking algo-
rithm for AGB estimation and continuous AGB mapping 
in Northern China. Non-parametric methods including 
the BP, kNN, SVM, and RF models were used as the base 
model to construct stacking and to perform the compari-
son of AGB estimation. The Sentinel-2 images provided 
by google earth engine (GEE) were used as the medium 
to synergize with ICESat-2 and measured AGB collected 
in Saihanba forest farm was used for results validation of 
the models. In addition, the influence of ICESat-2 vari-
ables on the accuracy of AGB estimation was tested and 
discussed.

Methods
Study area
This study was conducted in Saihanba Mechanical Forest 
Plantation, which is the largest forest farm of plantation 
in China. Saihanba is located in Hebei province, northern 
China (116°51′–117°39′ E, 42°02′–41°36′ N) (Fig. 1). The 
altitude of Saihanba ranges from 1010 to 1940  m, with 
a temperate continental monsoon climate. The annual 
average temperature, frost-free period, and average 
annual precipitation in Saihanba are −  1.3  °C, 68  days, 
and 490 mm, respectively. Larch (Larix ologensis), Scots 
pine (Pinus sylvestris), Birch (Betula platyphylla Suk), 
and Spruce (Picea asperata Mast) are the dominant tree 
species. Saihanba forest farm has a forest coverage rate of 

more than 80% and a total forest stock volume of 10.12 
million  m3, which is one of the main sources of timber 
provided in China.

Remote sensing data acquisition and processing
ICESat-2 was launched on September 15, 2018, which 
is equipped with the ATLAS that emits three pairs of 
beams. The distance between each pair of beams is about 
3.3 km, and the distance between the two ground tracks 
in one beam pair is 90 m [27]. The ATL08 products (Ver-
sion 3) of ICESat-2 covering the study area from 2018 to 
2019 were downloaded from the National Ice and Snow 
Data Center (NSIDC) (https://​nsidc.​org/​data/​ATL08/) 
(Fig.  2a). The Differential, Regression, and Gaussian 
Adaptive Nearest Neighbor (DRAGANN) methods have 
been developed to identify and eliminate noisy photons 
for ATL08 production [33]. The ATL08 directly provides 
height estimate segments s with an interval of 100  m 
along the track. Each segment has a radius of 8.5 m and 
contains information on center coordinates, altitude, 
height metrics, and apparent surface reflectance (ASR). 
Height metrics in ATL08 include minimum, mean, 
median, maximum, and multiple height profile quantile 
of the vegetation canopy height [30, 31]. All segments 
were masked using the boundary of the study area, and 
the segments marked as valid in ALT08 were selected. 
In our study, segments with canopy height greater than 
50 m and less than 5 m were excluded to ensure the sta-
bility and validity of the data. Most trees below 5 m are in 
a rapid growth age cycle. Finally, a total of 5396 segments 

Fig. 1  Location and boundary of the study area

https://nsidc.org/data/ATL08/
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were selected as sample plots for AGB estimation in 
Saihanba (Fig. 2b).

Google earth engine (GEE) platform was used to obtain 
Sentinel-2 images and preprocess. And images during 
the growing season in 2017 with cloud cover less than 
5% were obtained. To ensure the stability and reliability 
of the images, median synthesis was performed for all 
pixels [34]. Sentinel-2 carries more than three red edge 
bands which are extremely sensitive to the change of veg-
etation chlorophyll and have been proved to be effective 
for forest AGB estimation [17, 18]. Band reflectance and 
vegetation index are the basic variables for AGB estima-
tion, which can effectively represent the growth status 
and health level of vegetation [10]. Bands with spatial 
resolution better than 20  m were selected. Vegetation 
indices (VIs) are obtained by band combinations and 
calculations, and can be used to quantitatively describe 
the growth status of vegetation. In addition, the red-edge 
vegetation indices from the combination of red-edge 
bands, which are extremely sensitive to vegetation chlo-
rophyll, can accurately reveal the vegetation health. Veg-
etation indices are closely related to forest AGB and have 
been shown to be used as variables for forest parameter 
modeling and estimation [29–31]. Eight vegetation indi-
ces including Normalized Difference Vegetation Index 
(NDVI), Enhanced Vegetation Index (EVI), Red-green 
vegetation Index (RGVI), Atmospherically Resistant Veg-
etation Index (ARVI), Red Edge Normalized Difference 
Vegetation Index (RENDVI), Red Edge Chlorophyll Index 

(RECI) and Red Edge Simple Ratio (RESR) [30, 31, 35, 36] 
were also extracted in the study to establish the coupling 
relationship with ICESat-2 for continuous AGB mapping 
(Table 1).

Statistics of measured AGB values
The measured AGB used in the study was obtained from 
the forest management inventory (FMI) database in 
Saihanba. The FMI is conducted every ten years in China 
with annual supplementary surveys to update the data-
base, which is one of the main ways to capture dynamic 
changes in forest resources. FMI can provide scientific 

Fig. 2  a The altitude distribution with the ICESat-2 data and b the selected ATL08 segments covering within forest land in Saihanba

Table 1  The spectral variables extracted from Sentinel-2 used in 
this study

Spectral variable Description

Band reflectance B2-Blue, B3-Green, B4-Red, B5-Red Edge1, B6-Red 
Edge2, B7-Red Edge3, B8-NIR, B8A-Red Edge4, B11-
SWIR1, B12-SWIR2

Vegetation index Normalized Difference Vegetation Index (NDVI)

Enhanced Vegetation Index (EVI)

Red-Green Vegetation Index (RGVI)

Atmospherically Resistant Vegetation Index (ARVI)

Red Edge Normalized Difference Vegetation Index 
(RENDVI)

Red Edge Chlorophyll Index (RECI)

Red Edge Simple Ratio (RESR)
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data for the quality evaluation of forest resources and 
the formulation of management policies [37]. Irregu-
lar subcompartments containing measured forest data 
are established in the forest resource database for forest 
resource management and the database is updated every 
year by auxiliary investigation. The subcompartments 
mainly include the attributes of tree species, average 
canopy height, and tree diameter at breast height (DBH). 
Tree height was measured by laser altimeter and the 
diameter tape was used to measure the DBH. The aver-
age of three measurements was used as the final result. 
The updated database of Saihanba forest farm in 2017 
was obtained, and the forest data were extracted for AGB 
calculation.

In our study, blocks of FMI covered by ICESat-2 seg-
ments were selected for forest attribute extraction. 
Finally, 5396 sample plots composed of seven tree species 
were determined in Saihanba (Fig.  2). Larch and Birch 
are the most widely distributed tree species, separately 
accounting for 56.1% and 22.4% of the total sample plots. 
Allometric equations based on different tree species 
summarized by Li et  al. [38] were used to calculate the 
AGB values of the plots (Table 2). The AGB values of all 
the samples ranged from 5.14 to 522.68 Mg/ha, and the 
mean value, standard deviation and coefficient of varia-
tion were 135.30 Mg/ha, 82.13 Mg/ha and 60.7% respec-
tively. Among the seven tree species, the mean AGB 
value of the Chinese Pine was the maximum while the 
Oak was the minimum (Fig. 3).

Variable selection
An appropriate variable combination can significantly 
improve the accuracy of the AGB estimation model. 
Nonlinear variable selection methods can better describe 
the relationship between remote sensing variables and 
AGB under complex conditions compared to linear 
methods [10]. The importance evaluation based on the 
random forest algorithm can provide the contribution of 

all variables to the model, to calculate the relative impor-
tance of variables [39]. The main idea is that if the out-
of-bag accuracy decreases significantly after adding noise 
to a feature randomly, it means that this feature has a 
great impact on the prediction result of the sample, i.e., 
it indicates that its importance is relatively high [17, 31]. 
Importance ranking can be effective in screening vari-
ables and has been shown to be effective for AGB estima-
tion [40].

To determine the validity of LiDAR variables extracted 
from ICESat-2 for AGB estimation, the importance rank-
ing, and error change trends were conducted to deter-
mine the variable combination of: (1) spectral variables, 
and (2) spectral variables and LiDAR variables. Finally, 
the variable combination that obtained the minimum 
RMSE was used for further modeling. The “randomFor-
est” package [41] in R 4.0.2 was used in the study to cal-
culate the importance of all the feature variables.

AGB estimation models
The Backpropagation (BP) neural network is a multilayer 
feedforward neural network trained according to the 
error backpropagation algorithm. It is one of the most 
widely used neural network models [42]. However, it is 
easy to fall into local minimum and result in low learn-
ing efficiency, which limits the application of BP in for-
est parameter estimation. The number of hidden nodes 
can significantly affect the prediction effect of BP [43]. 
The range of the parameter was set from 2 to 500 and 
the number of hidden nodes with minimum RMSE was 

Table 2  Allometric growth equation based on different tree 
species for AGB calculation

Tree Specie Plot number Allometric equation

Birch 1210 0.0278601(D2H)0.993386

Larch 3027 0.046238(D2H)0.905002

Poplar/Oak 218 0.044(D2H)0.9169 + 0.023(D2H)0.7115 + 0.0104
(D2H)0.9994 + 0.0188(D2H)0.8024

Chinese Pine 19 0.027639(D2H)0.9905 + 0.0091313(D2H)0.982 
+ 0.0045755(D2H)0.9894

Spruce 60 0.067732(D2H)0.865949

Scots Pine 862 0.3364D2.0067 + 0.2983D1.144 + 0.2931D0.8486

Total 5396 –

Fig. 3  The mean and standard deviation of AGB values under seven 
tree species in Saihanba
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determined for AGB estimation. The Support vector 
machine (SVM) can realize regression and classification 
through a variety of kernel functions, which is sparse and 
robust. However, when estimating forest parameters, it 
is complex to determine the specific kernel function and 
model parameters [31, 44]. And the linear kernel, poly-
nomial kernels, and radial basis function in SVM were 
constructed to compare the validity of AGB estimation. 
The kNN uses the k nearest neighbors to represent the 
attributes of the samples to be tested, which is more suit-
able for the automatic classification of class domains with 
large sample sizes [45]. The Mahalanobis distance has 
been shown to be the most appropriate calculation metric 
of kNN for vegetation parameter estimation. In addition, 
the number of nearest neighbors k directly influences the 
prediction results of kNN [18]. In the study, k was set 
from 2 to 50, and the k achieving the minimum RMSE 
was used to determine the final kNN model parameters. 
Random forest is one of the ensemble algorithms, which 
constructs a large number of decision trees for predic-
tion [39]. Nonparametric models have been proved to 
be effective in estimating vegetation parameters. How-
ever, for forest ecosystems, the estimation accuracy of 
these models when used independently is still limited 
[31]. Random forests have strong noise immunity and 
can effectively handle high-dimensional data, and have 
been shown to achieve satisfactory accuracy and robust-
ness for vegetation parameter estimation such as leaf 
area index (LAI), growing stem volume (GSV), etc., [40]. 
The mtry and ntrees are the main parameter groups that 
affect the effect of RF modeling and estimation. mtry rep-
resents the bifurcation number of the constructed deci-
sion tree, and ntrees is the number of decision trees [39].

The stacking algorithm accomplishes model training by 
constructing and combining multiple base models, which 
often results in significantly superior prediction and 
generalization performance than a single model. First, 
stacking uses the base models for training and mode-
ling to obtain predictions; then, the predictions from all 
base models are integrated as new training samples to 
obtain new predictions. The stacking can integrate and 
balance the outputs of all base models, which can effec-
tively improve prediction accuracy and reduce estimation 
errors. To synthesize the advantages of the nonparamet-
ric models and improve the estimation accuracy, a stack-
ing was proposed for AGB estimation in the study. The 
BP, SVM, kNN, and RF models were regarded as based 
models to estimate AGB, and then their predicted val-
ues were used as new training samples to conduct a new 
model (Fig. 4). The final prediction values were the pre-
diction result of the stacking algorithm integrated with 
the base models. All the models were built and calculated 
in R 4.0.2.

Accuracy assessment
To verify the estimation effect of the model, seventy 
percent of the samples were randomly selected as train-
ing samples (70%, n = 3777) to build the model, and the 
remaining thirty percent (30%, n = 1619) were used for 
validation. The coefficient of determination R2 was used 
to measure the effect of fitting between the predicted and 
observed values and the root mean square error (RMSE) 
was used to calculate the estimation error of the models 
[46]. A larger R2 represents the better fitting between the 
observed value and the predicted value. The smaller the 
RMSE, the smaller the error of model estimation.

where yi is the measured AGB values, ŷi is the estimated 
AGB values, and n is the sample size.

Results
Variable selection and AGB estimation
By ranking the importance of all variables extracted 
from ICESat-2, 98th percentile height achieved the 
highest ranking, indicating that 98th percentile height 
has a significant relationship with AGB. Followed by 
the maximum and 25th percentile height, however, 
85th percentile height got the lowest importance. 
Figure  5 showed the partial importance ranking of 
spectral variables and the combination of spectral var-
iables and LiDAR variables of ICESat-2 respectively. 
In addition, the red-edge vegetation index maintained 
a relatively high importance among the spectral vari-
ables. For the combination of variables in the spectral 

(1)R
2
= 1−

∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2

,

(2)RMSE =

√∑n
i=1(ŷi − yi)

2

n
,

Fig. 4  The basic framework of the stacking method



Page 7 of 13Jiang et al. Carbon Balance and Management           (2022) 17:12 	

variables and the LiDAR variables, the LiDAR vari-
ables provided a higher importance ranking overall.

The RMSE of the estimation model based on spec-
tral variables mainly ranged from 70 to 85  Mg/ha. 
However, after adding the LiDAR variables, RMSE 
had decreased significantly, ranging from 55 to 65 Mg/
ha (Fig. 6). The results showed that when the number 
of variables were 10 and 26, the RMSE respectively 
achieved the smallest value and maintained stability.

Comparison of the AGB estimation results
Estimation models were constructed by the variable 
selection results based on importance evaluation. The 
BP, SVM, kNN, RF, and stacking models were established 
for AGB estimation in Saihanba. Figure 7 showed the fit-
ting effect of AGB estimation using Sentinel-2 only. The 
results of the BP, SVM, kNN, and RF were similar, and the 
determination coefficients were less than 0.3. However, 
after combining ICESat-2, the fitting effect of all models 
has been significantly improved (Fig. 8). Compared with 
only considering the spectral variables of Sentinel-2, add-
ing the LiDAR variables extracted from ICESat-2 can 

Fig. 5  Partial importance ranking of the LiDAR variables extracted from ICESat-2

Fig. 6  RMSE change based on a spectral variables, b spectral variables and LiDAR variables
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significantly reduce the AGB estimation error. The stack-
ing always achieved the highest R2 and the lowest RMSE. 
Compared with BP, SVM, kNN, and RF model, RMSE of 
stacking decreased by 25.7%, 29.3%, 25.1%, and 20.8% 
respectively when combining ICESat-2.

Continuous AGB mapping
In order to obtain the continuous mapping, the AGB val-
ues predicted by the stacking algorithm were taken as 
the derivative results, and then integrate the continuous 
Sentinel-2 images for continuous mapping. The spectral 
variables extracted from Sentinel-2 were calculated for 
relative importance ranking, and the variable combina-
tion used for AGB mapping was determined. Figure  9 
showed the continuous spatial distribution of AGB in 
Saihanba. The smallest AGB predicted values were dis-
tributed in the west of the study area, while the larger val-
ues were mainly distributed in the northeast and south. 

And the AGB values in the southeast were lower than 
that in the West. The predicted spatial pattern of AGB 
conformed to the actual distribution of Saihanba.

Discussion
Variable selection methods for AGB estimation
The combination of variables can directly affect the esti-
mation accuracy and operation efficiency of the model. 
Linear stepwise regression is one of the most commonly 
used variable selection methods, which can quickly 
screen out variables significantly linearly related to AGB 
[47]. However, due to the complexity and instability 
of the forest ecosystem, the linear method is limited in 
AGB estimation [48]. Importance evaluation provides a 
nonlinear variable selection process with greater poten-
tial than the linear method [49]. In order to verify and 
compare with the variable screening method based on 
importance evaluation, Pearson correlation coefficient 

Fig. 7  Scatter plots of the observed AGB against the predicted values by a BP, b kNN, c SVM, d RF and e stacking using the spectral variables (Mg/
ha)
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was used to test the linear relationship between all vari-
ables and AGB, and the stepwise regression was used to 
screen the variable combination for establishing the lin-
ear model. Figure 10a showed that 98th percentile height 
achieved the highest correlation with AGB in LiDAR var-
iables and showed a positive correlation of 0.59 (P < 0.01). 
And the RMSE of the linear regression model using spec-
tral variables and the combination of spectral variables 
and LiDAR variables were 76.03  Mg/ha and 60.11  Mg/
ha respectively, which was 23.6% and 24% higher than 
stacking respectively. In addition, the linear model also 
showed a significant decrease in RMSE after adding 
LiDAR variables (Fig. 10).

Uncertainty, limitations, and prospects
There are many uncertain factors such as remote sens-
ing image types, modeling variables, estimation models 
that can affect AGB estimation, resulting in uncertainty 
and estimation error [10, 29, 31]. In our study, Senti-
nel-2 images were used for modeling and as a medium 

Fig. 8  Scatter plots of the observed AGB against the predicted values by a BP, b kNN, c SVM, d RF and e stacking using the spectral variables and 
LiDAR variables extracted from ICESat-2 (Mg/ha)

Fig. 9  Continuous spatial distribution of AGB in Saihanba
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for continuous AGB mapping. Sentinel-2 carries more 
than three red bands that are extremely sensitive to for-
est chlorophyll changes, which is very effective for for-
est AGB estimation [32]. Due to cloud cover and revisit 
period, it is difficult to obtain high-quality Sentinel-2 
images that are completely consistent with the measured 
time survey of the sample plot. More importantly, the 
reflectance obtained by Sentinel-2 in a single period may 
not accurately reflect the real forest conditions due to 
sensor errors and the influence of the atmosphere. In the 
study, the google earth engine (GEE) platform was used 
to obtain and preprocess Sentinel-2 images. And images 
during the growing season (from July to September) in 
2017 with cloud cover of less than 5% were obtained. To 
ensure the stability and reliability of the images, median 
synthesis was performed for all pixels. Optical images 
can be used to extract band reflectance, vegetation index, 
and other variables used for AGB modeling and estima-
tion [40]. To reduce invalid information and redundancy, 
we use the importance evaluation was used in the study 
to screen variables to improve the accuracy and efficiency 
of the model. In the study, ICESat-2 was used to extract 
canopy structure variables. The results showed that the 
inclusion of LiDAR-derived canopy structure variables 
can significantly improve the accuracy of AGB estima-
tion model. LiDAR can penetrate the forest canopy to 
obtain the information of forest vertical structure, which 
can alleviate the saturation common with using opti-
cal imagery [25]. ICESat-2 is one of the latest launched 
spaceborne LiDAR, which can obtain global vegeta-
tion height parameters and has the potential for high-
precision and high-efficiency monitoring of large-scale 

forests [27–30]. However, the segment diameter of 17 m 
may not be sufficient to accurately describe the ground 
object information inside the segment. Magruder et  al. 
[50] demonstrated that the average effective diameter in 
White Sands Missile Range in New Mexico and along a 
segment of the 88°S line of latitude in Antarctica is about 
10–11  m. For forest ecosystems with complex terrain 
and different vegetation types, the determined and spe-
cific effective diameter is very meaningful and needs to 
be verified. The Global Ecosystem Dynamics Investiga-
tion (GEDI) is another spaceborne LiDAR data source 
that can provide data and services. GEDI provides verti-
cal canopy waveform information between 52°N and 52°S 
latitudes, which further complements the acquisition 
method of spaceborne LiDAR data [51]. Compared to 
ICESat-2, which provides a canopy height product, GEDI 
can acquire waveform data containing physical proper-
ties within the light patch, which allows for more efficient 
detection of different types of forests. However, the GEDI 
segments currently covering the same area are limited 
due to the short duration of satellite launches and revisit 
period. In addition, similar to ICESat-2, the along-track 
segments make it difficult to obtain wall-to-wall AGB 
spatial distribution. Spaceborne LiDAR such as ICESat-2 
and GEDI has great potential in estimating global forest 
height, AGB, and carbon sink [52, 53], but how to syn-
ergize optical data and other spatial continuous environ-
mental variables to achieve higher precision continuous 
mapping is the focus of attention in the future [54, 55].

In complex forest ecosystems, the relationship 
between remote sensing variables and AGB may not 
be simple linear, which limits the effect and application 

Fig. 10  a Correlation coefficient matrix of LiDAR variables and AGB, and scatter plots of the observed AGB against the predicted values by linear 
regression using b the spectral variables, and c spectral variables and LiDAR variables (Mg/ha)
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of the linear variable selection method [48, 49]. The 
nonlinear method based on importance evaluation 
has been proved to be significantly better than the 
linear method in our study. In order to test the influ-
ence of variables on the uncertainty of AGB estimation, 
the T-test was conducted to examine the relationship 
between modeling variables and absolute residuals. 
And the results showed that all variables and residuals 
were not statistically significant, indicating that vari-
ables selected by importance evaluation do not cause 
significant estimation error and uncertainty.

Parametric models and nonparametric models are 
commonly used AGB estimation models [10, 18]. The 
process of parameter model implementation is simple, 
but it is prone to overfitting and has low stability. Non-
parametric models such as machine learning methods 
have gradually become popular in AGB estimation [17, 
56]. However, the application of a single model in the 
complex forest ecosystem is always limited. Ensemble 
learning can summarize the advantages of all base mod-
els, thereby improving estimation efficiency and accuracy 
[57, 58]. Even if one base model gets the wrong predic-
tion, other base models can correct the error to achieve 
better prediction [52]. Jiang et al. [31] demonstrated that 
it is feasible to construct stacking models for estimat-
ing forest canopy height with synergistic data sources of 
ICESat-2 and Sentinel-2. Generally, forest canopy height 
is used as an intermediate variable for forest AGB cal-
culation through the allometric equations. In Saihanba, 
canopy height information extracted from the ATL08 
product of ICESat-2 was used directly for AGB estima-
tion, which can reduce the indirect transfer error. More-
over, the nonparametric models were used to construct 
the stacking, which avoided the overfitting easily caused 
by parametric models, especially MLR. And the over-
all accuracy of nonparametric methods was better than 
MLR in the study, which can effectively improve the 
accuracy of AGB estimation. Compared with the original 
base models, the RMSEs of stacking constructed by non-
parametric models were reduced by 19% to 27%, which 
can significantly improve the estimation accuracy. Fur-
thermore, the combination of Sentinel-2 variables and 
LiDAR variables for AGB estimation was emphasized in 
the study. Compared with using only spectral variables of 
Sentinel-2, the RMSE of the joint variables was reduced 
by 21.4%, which can make more full use of remote sens-
ing information, so as to improve the estimation and 
mapping of AGB.

In addition, GEE can provide seamless optical data, 
such as Sentinel-2, Landsat, and MODIS, which are free 
and publicly available. Combining ICESat-2 with optical 
data and estimation models has the potential to obtain 
large-scale forest AGB efficiently [30, 59, 60].

Conclusions
LiDAR can penetrate forest canopy and obtain more 
accurate vertical structure information, which has the 
potential to improve AGB estimation. In this study, opti-
cal remote sensing data were used to synergize with 
spaceborne LiDAR data to realize the large-scale con-
tinuous spatial pattern of AGB mapping with high accu-
racy. ICESat-2 and Sentinel-2 were respectively acquired 
for extracting LiDAR variables and spectral variables. 
Nonparametric models and a stacking model were con-
structed to estimate AGB for comparison and validation. 
The results showed that the participation of the LiDAR 
variable can significantly improve the AGB estimation 
accuracy and reduce the error compared with using 
spectral variable only. The stacking model achieved the 
highest AGB estimation accuracy and the lowest RMSE, 
whose RMSE was reduced by 19% to 27% compared with 
the base models. In addition, the nonlinear variable selec-
tion method based on importance evaluation was proved 
to be better than the linear method in AGB estimation in 
Saihanba.

Abbreviations
AGB: Above-ground biomass; ICESat-2: The Ice, Cloud, and Land Elevation Sat-
ellite-2; LiDAR: Light detection and ranging; ASR: Apparent surface reflectance; 
GEE: Google earth engine; SVM: Support vector machine; kNN: K-nearest 
neighbor; BP: Back propagation; RMSE: Root mean square error.

Acknowledgements
We thank the anonymous reviewers for their constructive comments.

Author contributions
FJ and MD analyzed the results. JT and LF processed the origin data and 
conducted formal analysis. HS conceived the research idea and designed the 
experiments. All authors contributed to the manuscript writing and editing. All 
authors read and approved the final manuscript.

Funding
This research is supported by the Natural Science Foundation of China 
(31971578) and the Hunan Provincial Natural Science Foundation of China 
(2022JJ30078). This research is also supported by the Scientific Research Fund 
of Changsha Science and Technology Bureau (kq2004095).

Availability of data and materials
The data are available upon a reasonable request to the Authors.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Research Center of Forestry Remote Sensing and Information Engineering, 
Central South University of Forestry and Technology, Changsha 410004, China. 
2 Key Laboratory of Forestry Remote Sensing Based Big Data and Ecological 
Security for Hunan Province, Changsha 410004, Hunan, China. 3 Key Laboratory 



Page 12 of 13Jiang et al. Carbon Balance and Management           (2022) 17:12 

of State Forestry Administration On Forest Resources Management and Moni-
toring in Southern Area, Changsha 410004, Hunan, China. 4 Research Institute 
of Forest Resource Information Techniques, Chinese Academy of Forestry, 
Beijing 100091, China. 

Received: 6 April 2022   Accepted: 22 August 2022

References
	1.	 Seidl R, Eastaugh CS, Kramer K, Maroschek M, Hasenauer H. Scaling 

issues in forest ecosystem management and how to address them with 
models. Eur J Forest Res. 2013;132(5–6):653–66. https://​doi.​org/​10.​1007/​
s10342-​013-​0725-y.

	2.	 He HS, Hao ZQ, Mladenoff DJ, Shao GF, Hu YM, Chang Y. Simulating forest 
ecosystem response to climate warming incorporating spatial effects in 
north-eastern China. J Biogeogr. 2005;32(12):2043–56. https://​doi.​org/​10.​
1111/j.​1365-​2699.​2005.​01353.x.

	3.	 Bonan GB. Forests and climate change: forcings, feedbacks, and the 
climate benefits of forests. Science. 2008;320(5882):1444–9. https://​doi.​
org/​10.​1126/​scien​ce.​11551​21.

	4.	 Lugo B. The storage and production of organic matter in tropical forests 
and their role in the global carbon cycle. Biotropica. 1982;14(3):161–87. 
https://​doi.​org/​10.​2307/​23880​24.

	5.	 Brown S. Measuring carbon in forests: current status and future chal-
lenges. Environ Pollut. 2002;116(3):363–72. https://​doi.​org/​10.​1016/​
S0269-​7491(01)​00212-3.

	6.	 Sandra B, Gillespie A, Lugo AE. Biomass estimation methods for tropical 
forests with applications to forest inventory data. For Sci. 1989;4:881–902. 
https://​doi.​org/​10.​1093/​fores​tscie​nce/​35.4.​881.

	7.	 Qin H, Cheng W, Xi X, Tian J, Zhou G. Estimation of coniferous forest 
aboveground biomass with aggregated airborne small-footprint lidar full-
waveforms. Opt Express. 2017;25(16):A851. https://​doi.​org/​10.​1364/​oe.​25.​
00a851.

	8.	 Englhart S, Keuck V, Siegert F. Aboveground biomass retrieval in tropical 
forests—the potential of combined X- and L-band SAR data use. Remote 
Sens Environ. 2011;115(5):1260–71. https://​doi.​org/​10.​1016/j.​rse.​2011.​01.​
008.

	9.	 Dong J, Kaufmann RK, Myneni RB, Tucker CJ, Kauppi PE, Liski J. Remote 
sensing estimates of boreal and temperate forest woody biomass: carbon 
pools, sources, and sinks. Remote Sens Environ. 2003;84(3):393–410. 
https://​doi.​org/​10.​1016/​S0034-​4257(02)​00130-x.

	10.	 Gleason CJ, Im J. A review of remote sensing of forest biomass and bio-
fuel: options for small-area applications. GISci Remote Sens. 2011;48:141–
70. https://​doi.​org/​10.​2747/​1548-​1603.​48.2.​141.

	11.	 Zhao P, Lu D, Wang G, Wu C, Huang Y, Yu S. Examining spectral reflectance 
saturation in Landsat imagery and corresponding solutions to improve 
forest aboveground biomass estimation. Remote Sens. 2016;8(6):469. 
https://​doi.​org/​10.​3390/​rs806​0469.

	12.	 Bubier JL, Rock BN, Crill PM. Spectral reflectance measurements of boreal 
wetland and forest mosses. J Geophys Res. 1997;102(D24):29483–94. 
https://​doi.​org/​10.​1029/​97JD0​2316.

	13.	 Myneni R, Maggion S, Iaquinta J, Privette J, Gobron N, Pinty B, Kimes D, 
Verstraete M, Williams D. Optical remote sensing of vegetation: modeling, 
caveats, and algorithms. Remote Sens Environ. 1995;51:169–88. https://​
doi.​org/​10.​1016/​0034-​4257(94)​00073-v.

	14.	 Huete A, Didan K, Miura T, Rodriguez EP, Gao X, Ferreira LG. Overview of 
the radiometric and biophysical performance of the MODIS vegetation 
indices. Remote Sens Environ. 2002;83(1–2):195–213. https://​doi.​org/​10.​
1016/​S0034-​4257(02)​00096-2.

	15.	 Immitzer M, Atzberger C, Koukal T. Tree species classification with random 
forest using very high spatial resolution 8-band worldview-2 satellite 
data. Remote Sens. 2012;4:2661–93. https://​doi.​org/​10.​3390/​rs409​2661.

	16.	 Drusch M, Del Bello U, Carlier S, Colin O, Fernandez V, Gascon F, Hoersch B, 
Isola C, Laberinti P, Martimort P, Meygret A. Sentinel-2: ESAs optical high-
resolution mission for gmes operational services. Remote Sens Environ. 
2012;120:25–36. https://​doi.​org/​10.​1016/j.​rse.​2011.​11.​026.

	17.	 Hu Y, Xu X, Wu F, Sun Z, Xia H, Meng Q, Huang W, Zhou H, Gao J, Li W. 
Estimating forest stock volume in Hunan Province, China, by integrat-
ing in situ plot data, sentinel-2 images, and linear and machine learning 

regression models. Remote Sens. 2020;12:186. https://​doi.​org/​10.​3390/​
rs120​10186.

	18.	 Verrelst J, Rivera JP, Veroustraete F, Muñoz-Marí J, Clevers JG, Camps-Valls 
G, Moreno J. Experimental Sentinel-2 LAI estimation using parametric, 
non-parametric and physical retrieval methods—a comparison. ISPRS J 
Photogramm Remote Sens. 2015;108:260–72. https://​doi.​org/​10.​1016/j.​
isprs​jprs.​2015.​04.​013.

	19.	 Gorelick N, Hancher M, Dixon M, Ilyushchenko S, Moore R. Google earth 
engine: planetary-scale geospatial analysis for everyone. Remote Sens 
Environ. 2017;202:18–27. https://​doi.​org/​10.​1016/j.​rse.​2017.​06.​031.

	20.	 Dong J, Xiao X, Menarguez MA, Zhang G, Qin Y, Thau D. Mapping 
paddy rice planting area in northeastern ASIA with Landsat 8 images, 
phenology-based algorithm and google earth engine. Remote Sens 
Environ. 2016;185:142–54. https://​doi.​org/​10.​1016/j.​rse.​2016.​02.​016.

	21.	 Patel NN, Angiuli E, Gamba P, Gaughan A, Lisini G, Stevens FR. Multitem-
poral settlement and population mapping from landsat using google 
earth engine. Int J Appl Earth Obs Geoinf. 2015;35:199–208. https://​doi.​
org/​10.​1016/j.​jag.​2014.​09.​005.

	22.	 Tang Z, Li Y, Gu Y, Jiang W, Xue Y, Hu Q. Assessing nebraska playa wetland 
inundation status during 1985–2015 using landsat data and google earth 
engine. Environ Monit Assess. 2016;188(12):654. https://​doi.​org/​10.​1007/​
s10661-​016-​5664-x.

	23.	 Minh D, Toan TL, Rocca F, Tebaldini S, D’Alessandro MM, Villard L. Relating 
p-band synthetic aperture radar tomography to tropical forest biomass. 
IEEE Trans Geosci Remote Sens. 2013;52(2):967–79. https://​doi.​org/​10.​
1109/​TGRS.​2013.​22461​70.

	24.	 Imhoff ML. Radar backscatter and biomass saturation: ramifica-
tions for global biomass inventory. IEEE Trans Geosci Remote Sens. 
1995;33(2):511–8. https://​doi.​org/​10.​1109/​TGRS.​1995.​87460​34.

	25.	 Luo S, Chen JM, Wang C, Xi X, Zeng H, Peng D. Effects of lidar point den-
sity, sampling size and height threshold on estimation accuracy of crop 
biophysical parameters. Opt Express. 2016;24(11):11578. https://​doi.​org/​
10.​1364/​OE.​24.​011578.

	26.	 Simard M, Pinto N, Fisher JB, Baccini A. Mapping forest canopy 
height globally with spaceborne lidar. J Geophys Res G: Biogeosci. 
2011;116(G4):4021. https://​doi.​org/​10.​1029/​2011J​G0017​08.

	27.	 Abdalati W, Zwally HJ, Bindschadler R, Csatho B, Webb C. The ICESat-2 
laser altimetry mission. Proc IEEE. 2010;98(5):735–51. https://​doi.​org/​10.​
1109/​JPROC.​2009.​20347​65.

	28.	 Narine LL, Popescu SC, Malambo L. Synergy of ICESat-2 and landsat for 
mapping forest aboveground biomass with deep learning. Remote Sens. 
2019;11:1503. https://​doi.​org/​10.​3390/​rs111​21503.

	29.	 Montesano PM, Rosette J, Sun G, North P, Nelson RF, Dubayah RO. The 
uncertainty of biomass estimates from modeled ICESat-2 returns across 
a boreal forest gradient. Remote Sens Environ. 2015;158:95–109. https://​
doi.​org/​10.​1016/j.​rse.​2014.​10.​029.

	30.	 Li W, Niu Z, Shang R, Qin Y, Wang L, Chen H. High-resolution mapping of 
forest canopy height using machine learning by coupling ICESat-2 LiDAR 
with Sentinel-1, Sentinel-2 and Landsat-8 data. Int J Appl Earth Obs Geo-
information. 2020;92: 102163. https://​doi.​org/​10.​1016/j.​jag.​2020.​102163.

	31.	 Jiang F, Zhao F, Ma K, Li D, Sun H. Mapping the forest canopy height in 
Northern China by synergizing ICESat-2 with sentinel-2 using a stacking 
algorithm. Remote Sens. 2021;13:1535. https://​doi.​org/​10.​3390/​rs130​
81535.

	32.	 Ahmadi K, Kalantar B, Saeidi V, Harandi EKG, Janizadeh S, Ueda N. Com-
parison of machine learning methods for mapping the stand character-
istics of temperate forests using multi-spectral sentinel-2 data. Remote 
Sens. 2020;12:3019. https://​doi.​org/​10.​3390/​rs121​83019.

	33.	 Neuenschwander A, Pitts K. The ATL08 land and vegetation product for 
the ICESat-2 mission. Remote Sens Environ. 2019;221:247–59. https://​doi.​
org/​10.​1016/j.​rse.​2018.​11.​005.

	34.	 Tamiminia H, Salehi B, Mahdianpari M, Quackenbush L, Adeli S, Brisco B. 
Google Earth Engine for geo-big data applications: a meta-analysis and 
systematic review. ISPRS J Photogramm Remote Sens. 2020;164:152–70. 
https://​doi.​org/​10.​1016/j.​isprs​jprs.​2020.​04.​001.

	35.	 Xiao C, Peng L, Feng Z, Liu Y, Zhang X. Sentinel-2 red-edge spectral indi-
ces (RESI) suitability for mapping rubber boom in luang namtha province, 
northern Lao PDR. Int J Appl Earth Obs Geoinf. 2020;93: 102176. https://​
doi.​org/​10.​1016/j.​jag.​2020.​102176.

https://doi.org/10.1007/s10342-013-0725-y
https://doi.org/10.1007/s10342-013-0725-y
https://doi.org/10.1111/j.1365-2699.2005.01353.x
https://doi.org/10.1111/j.1365-2699.2005.01353.x
https://doi.org/10.1126/science.1155121
https://doi.org/10.1126/science.1155121
https://doi.org/10.2307/2388024
https://doi.org/10.1016/S0269-7491(01)00212-3
https://doi.org/10.1016/S0269-7491(01)00212-3
https://doi.org/10.1093/forestscience/35.4.881
https://doi.org/10.1364/oe.25.00a851
https://doi.org/10.1364/oe.25.00a851
https://doi.org/10.1016/j.rse.2011.01.008
https://doi.org/10.1016/j.rse.2011.01.008
https://doi.org/10.1016/S0034-4257(02)00130-x
https://doi.org/10.2747/1548-1603.48.2.141
https://doi.org/10.3390/rs8060469
https://doi.org/10.1029/97JD02316
https://doi.org/10.1016/0034-4257(94)00073-v
https://doi.org/10.1016/0034-4257(94)00073-v
https://doi.org/10.1016/S0034-4257(02)00096-2
https://doi.org/10.1016/S0034-4257(02)00096-2
https://doi.org/10.3390/rs4092661
https://doi.org/10.1016/j.rse.2011.11.026
https://doi.org/10.3390/rs12010186
https://doi.org/10.3390/rs12010186
https://doi.org/10.1016/j.isprsjprs.2015.04.013
https://doi.org/10.1016/j.isprsjprs.2015.04.013
https://doi.org/10.1016/j.rse.2017.06.031
https://doi.org/10.1016/j.rse.2016.02.016
https://doi.org/10.1016/j.jag.2014.09.005
https://doi.org/10.1016/j.jag.2014.09.005
https://doi.org/10.1007/s10661-016-5664-x
https://doi.org/10.1007/s10661-016-5664-x
https://doi.org/10.1109/TGRS.2013.2246170
https://doi.org/10.1109/TGRS.2013.2246170
https://doi.org/10.1109/TGRS.1995.8746034
https://doi.org/10.1364/OE.24.011578
https://doi.org/10.1364/OE.24.011578
https://doi.org/10.1029/2011JG001708
https://doi.org/10.1109/JPROC.2009.2034765
https://doi.org/10.1109/JPROC.2009.2034765
https://doi.org/10.3390/rs11121503
https://doi.org/10.1016/j.rse.2014.10.029
https://doi.org/10.1016/j.rse.2014.10.029
https://doi.org/10.1016/j.jag.2020.102163
https://doi.org/10.3390/rs13081535
https://doi.org/10.3390/rs13081535
https://doi.org/10.3390/rs12183019
https://doi.org/10.1016/j.rse.2018.11.005
https://doi.org/10.1016/j.rse.2018.11.005
https://doi.org/10.1016/j.isprsjprs.2020.04.001
https://doi.org/10.1016/j.jag.2020.102176
https://doi.org/10.1016/j.jag.2020.102176


Page 13 of 13Jiang et al. Carbon Balance and Management           (2022) 17:12 	

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	36.	 Fernandez-Manso Q. Sentinel-2A red-edge spectral indices suitability for 
discriminating burn severity. Int J Appl Earth Obs Geoinf. 2016;50:170–5. 
https://​doi.​org/​10.​1016/j.​jag.​2016.​03.​005.

	37.	 Zhao M, Yang J, Zhao N, Liu Y, Yue T. Estimation of china’s forest stand bio-
mass carbon sequestration based on the continuous biomass expansion 
factor model and seven forest inventories from 1977 to 2013. For Ecol 
Manage. 2019;448:528–34. https://​doi.​org/​10.​1016/j.​foreco.​2019.​06.​036.

	38.	 Li HK, Lei YC. Assessment of forest vegetation biomass and carbon stor-
age in China. 2010 (ISBN: 978-7-5038-5809-3).

	39.	 Breiman L. Random forests. Mach Learn. 2001;45:5–32. https://​doi.​org/​10.​
1023/A:​10109​33404​324.

	40.	 Jiang F, Kutia M, Ma K, Chen S, Long J, Sun H. Estimating the aboveground 
biomass of coniferous forest in Northeast China using spectral variables, 
land surface temperature and soil moisture. Sci Total Environ. 2021;785: 
147335. https://​doi.​org/​10.​1016/j.​scito​tenv.​2021.​147335.

	41.	 Liaw A, Wiener M. Classification and regression by randomForest. R News. 
2002;2:18–22. https://​doi.​org/​10.​1023/A:​10109​33404​324.

	42.	 Li B, Wang W, Bai L, Chen N, Wang W. Estimation of aboveground vegeta-
tion biomass based on landsat-8 oli satellite images in the guanzhong 
basin, China. Int J Remote Sens. 2019;40(9–10):3927–47. https://​doi.​org/​
10.​1080/​01431​161.​2018.​15533​23.

	43.	 Song S, Xiong X, Wu X, Xue Z. Modeling the SOFC by bp neural network 
algorithm. Int J Hydrogen Energy. 2021;46(38):20065–77. https://​doi.​org/​
10.​1016/j.​ijhyd​ene.​2021.​03.​132.

	44.	 Saunders C, Stitson MO, Weston J, et al. Support vector machine. Comput 
Sci. 2002;1(4):1–28. https://​doi.​org/​10.​1007/​978-3-​642-​27733-7_​299-3.

	45.	 Gjertsen A. Accuracy of forest mapping based on Landsat TM data and a 
kNN-based method. Remote Sens Environ. 2007;110:420–30. https://​doi.​
org/​10.​1016/j.​rse.​2006.​08.​018.

	46.	 Willmott CJ, Ackleson SG, Davis RE, Feddema JJ, Klink KM, Legates DR, 
O’donnell J, Rowe CM. Statistics for the evaluation and comparison of 
models. J Geophys Res Space Phys. 1985;90:8995–9005. https://​doi.​org/​
10.​1029/​JC090​iC05p​08995.

	47.	 Long J, Lin H, Wang G, Sun H, Yan E. Estimating the growing stem volume 
of the planted forest using the general linear model and time series 
quad-polarimetric SAR images. Sensors. 2020;20:3957. https://​doi.​org/​10.​
3390/​s2014​3957.

	48.	 Mutanga O, Adam E. Cho MAHigh density biomass estimation for wet-
land vegetation using worldview-2 imagery and random forest regres-
sion algorithm. Int J Appl Earth Obs Geoinf. 2012;18:399–406. https://​doi.​
org/​10.​1016/j.​jag.​2012.​03.​012.

	49.	 Chen Y, Li L, Lu D, Li D. Exploring bamboo forest aboveground biomass 
estimation using sentinel-2 data. Remote Sens. 2019;11:7. https://​doi.​org/​
10.​3390/​rs110​10007.

	50.	 Magruder L, Brunt K, Neumann T, Klotz B, Alonzo M. Passive ground-based 
optical techniques for monitoring the on-orbit ICESat-2 altimeter geolo-
cation and footprint diameter. Earth Space Sci. 2021;8:e2020EA001414. 
https://​doi.​org/​10.​1029/​2020E​A0014​14.

	51.	 Liu A, Cheng X, Chen Z. Performance evaluation of GEDI and ICESat-2 
laser altimeter data for terrain and canopy height retrievals. Remote Sens 
Environ. 2021;264: 112571. https://​doi.​org/​10.​1016/j.​rse.​2021.​112571.

	52.	 Silva CA, Duncanson L, Hancock S, Neuenschwander A, Thomas N, Hofton 
M, Fatoyinbo L, Simard M, Marshak CZ, Armston J. Fusing simulated GEDI, 
ICESat-2 and NISAR data for regional aboveground biomass mapping. 
Remote Sens Environ. 2021;253: 112234. https://​doi.​org/​10.​1016/j.​rse.​
2020.​112234.

	53.	 Wang XZ, Xing HJ, Li Y, Hua Q, Dong CR, Pedrycz W. A study on relation-
ship between generalization abilities and fuzziness of base classifiers in 
ensemble learning. IEEE Trans Fuzzy Syst. 2015;23(5):1638–54. https://​doi.​
org/​10.​1109/​TFUZZ.​2014.​23714​79.

	54.	 Chen L, Ren C, Bao G, Zhang B, Wang Z, Liu M, Man W, Liu J. Improved 
object-based estimation of forest aboveground biomass by integrating 
LiDAR data from GEDI and ICESat-2 with multi-sensor images in a hetero-
geneous mountainous region. Remote Sens. 2022;14(12):2743. https://​
doi.​org/​10.​3390/​rs141​22743.

	55.	 Nandy S, Srinet R, Padalia H. Mapping forest height and aboveground 
biomass by integrating ICESat-2, Sentinel-1 and Sentinel-2 data using 
Random Forest algorithm in northwest Himalayan foothills of India. 
Geophys Res Lett. 2021;48(14):e2021GL093799. https://​doi.​org/​10.​1029/​
2021G​L0937​99.

	56.	 Zubler AV, Yoon JY. Proximal methods for plant stress detection using 
optical sensors and machine learning. Biosensors. 2020;10:193. https://​
doi.​org/​10.​3390/​bios1​01201​93.

	57.	 Cui S, Yin Y, Wang D, Li Z, Wang Y. A stacking-based ensemble learning 
method for earthquake casualty prediction. Appl Soft Comput. 2021;101: 
107038. https://​doi.​org/​10.​1016/j.​asoc.​2020.​107038.

	58.	 Liu Y, Yao X. Ensemble learning via negative correlation. Neural Netw. 
1999;12:1399–404. https://​doi.​org/​10.​1016/​s0893-​6080(99)​00073-8.

	59.	 Coops NC, Tompalski P, Goodbody TRH, Queinnec M, Luther JE, Bolton 
DK, White JC, Wulder MA, van Lier OR, Hermosilla T. Modelling lidar-
derived estimates of forest attributes over space and time: a review of 
approaches and future trends. Remote Sens Environ. 2021;260: 112477. 
https://​doi.​org/​10.​1016/j.​rse.​2021.​112477.

	60.	 Mulverhill C, Coops NC, Hermosilla T, White JC, Wulder MA. Evaluat-
ing ICESat-2 for monitoring, modeling, and update of large area forest 
canopy height products. Remote Sens Environ. 2022;271: 112919. https://​
doi.​org/​10.​1016/j.​rse.​2022.​112919.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1016/j.jag.2016.03.005
https://doi.org/10.1016/j.foreco.2019.06.036
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1016/j.scitotenv.2021.147335
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1080/01431161.2018.1553323
https://doi.org/10.1080/01431161.2018.1553323
https://doi.org/10.1016/j.ijhydene.2021.03.132
https://doi.org/10.1016/j.ijhydene.2021.03.132
https://doi.org/10.1007/978-3-642-27733-7_299-3
https://doi.org/10.1016/j.rse.2006.08.018
https://doi.org/10.1016/j.rse.2006.08.018
https://doi.org/10.1029/JC090iC05p08995
https://doi.org/10.1029/JC090iC05p08995
https://doi.org/10.3390/s20143957
https://doi.org/10.3390/s20143957
https://doi.org/10.1016/j.jag.2012.03.012
https://doi.org/10.1016/j.jag.2012.03.012
https://doi.org/10.3390/rs11010007
https://doi.org/10.3390/rs11010007
https://doi.org/10.1029/2020EA001414
https://doi.org/10.1016/j.rse.2021.112571
https://doi.org/10.1016/j.rse.2020.112234
https://doi.org/10.1016/j.rse.2020.112234
https://doi.org/10.1109/TFUZZ.2014.2371479
https://doi.org/10.1109/TFUZZ.2014.2371479
https://doi.org/10.3390/rs14122743
https://doi.org/10.3390/rs14122743
https://doi.org/10.1029/2021GL093799
https://doi.org/10.1029/2021GL093799
https://doi.org/10.3390/bios10120193
https://doi.org/10.3390/bios10120193
https://doi.org/10.1016/j.asoc.2020.107038
https://doi.org/10.1016/s0893-6080(99)00073-8
https://doi.org/10.1016/j.rse.2021.112477
https://doi.org/10.1016/j.rse.2022.112919
https://doi.org/10.1016/j.rse.2022.112919

	Integrating spaceborne LiDAR and Sentinel-2 images to estimate forest aboveground biomass in Northern China
	Abstract 
	Background: 
	Results: 
	Conclusion: 

	Background
	Methods
	Study area
	Remote sensing data acquisition and processing
	Statistics of measured AGB values
	Variable selection
	AGB estimation models
	Accuracy assessment

	Results
	Variable selection and AGB estimation
	Comparison of the AGB estimation results
	Continuous AGB mapping

	Discussion
	Variable selection methods for AGB estimation
	Uncertainty, limitations, and prospects

	Conclusions
	Acknowledgements
	References




