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Abstract
Background  The stress hyperglycemia ratio (SHR) was developed to reduce the effects of long-term chronic 
glycemic factors on stress hyperglycemia levels, which was associated with adverse clinical outcomes. This study aims 
to evaluate the relationship between the postoperative SHR index and all-cause mortality in patients undergoing 
cardiac surgery.

Methods  Data for this study were extracted from the Medical Information Mart for Intensive Care IV (MIMIC-IV) 
database. Patients were categorized into four groups based on postoperative SHR index quartiles. The primary 
outcome was 30-day all-cause mortality, while the secondary outcomes included in-hospital, 90-day and 360-day 
all-cause mortality. The SHR index was analyzed using quartiles, and Kaplan–Meier curves were generated to compare 
outcomes across groups. Cox proportional hazards regression and restricted cubic splines (RCS) were employed to 
assess the relationship between the SHR index and the outcomes. LASSO regression was used for feature selection. 
Six machine learning algorithms were used to predict in-hospital all-cause mortality and were further extended 
to predict 360-day all-cause mortality. The SHapley Additive exPlanations method was used for visualizing model 
characteristics and individual case predictions.

Results  A total of 3,848 participants were included in the study, with a mean age of 68 ± 12 years and female 
participants comprised 30.6% (1,179). Higher postoperative SHR index levels were associated with an increased 
risk of in-hospital, 90-day and 360-day all-cause mortality as shown by Kaplan–Meier curves (log-rank P < 0.05). Cox 
regression analysis revealed that the highest postoperative SHR quartile was associated with a significantly higher 
risk of mortality at these time points (P < 0.05). RCS analysis demonstrated nonlinear relationships between the 
postoperative SHR index and all-cause mortality (P for nonlinear < 0.05). The Naive Bayes model achieves the highest 
area under the curve (AUC) for predicting both in-hospital mortality (0.7936) and 360-day all-cause mortality (0.7410).
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Introduction
Cardiac surgery is a cornerstone in the management of 
various cardiovascular conditions and plays a pivotal role 
in improving patient outcomes. It is routinely performed 
to address pathologies such as coronary artery disease, 
valvular heart disease, congenital heart defects, and aor-
tic aneurysms. Among these, coronary artery bypass 
grafting (CABG) and valve repair surgeries are the most 
commonly performed procedures [1, 2]. These complex 
surgeries often require thoracotomy to provide direct 
access to the heart and typically involve cardiopulmonary 
bypass to temporarily arrest cardiac function while main-
taining systemic circulation [3]. 

Despite significant advancements in surgical tech-
niques, anesthetic management, and perioperative care, 
cardiac surgery remains a high-risk procedure, par-
ticularly for elderly individuals and those with multiple 
comorbidities. Postoperative complications—including 
infection, hemorrhage, organ dysfunction, and mortal-
ity—continue to pose substantial challenges [4, 5, 6]. 
National data indicate that the inpatient mortality rate 
for cardiac surgery is approximately 2.1%, underscoring 
the need to address postoperative risks effectively [7]. 
Identifying determinants of mortality and developing 
personalized risk assessment and management strategies 
are essential for improving patient outcomes.

Blood glucose management is a crucial aspect of car-
ing for critically ill patients, particularly those undergo-
ing cardiac surgery. Hyperglycemia is closely linked with 
an increased incidence of myocardial infarction, heart 
failure, cerebrovascular events, and elevated mortality 
rates [8, 9, 10]. However, a single measurement of blood 
glucose at admission does not provide a comprehensive 
picture of a patient’s long-term glycemic control. Gly-
cated hemoglobin (HbA1c), which reflects average blood 
glucose levels over the past 8 to 12 weeks, offers a more 
accurate assessment of glycemic status. The stress hyper-
glycemia ratio (SHR), a composite index derived from 
both admission blood glucose and HbA1c, has been pro-
posed as a more reliable marker of the glycemic response 
to acute stress [11]. Stress-induced hyperglycemia, 
mediated by elevated levels of glucagon, cortisol, cat-
echolamines, and growth hormone, results in enhanced 
gluconeogenesis, accelerated glycogenolysis, and reduced 
peripheral glucose uptake [12, 13]. Recent studies indi-
cate that a higher SHR is associated with adverse cardio-
vascular outcomes, including an increased risk of heart 
failure and myocardial infarction [14, 15]. 

Given the limited research on the relationship between 
postoperative SHR and postoperative mortality in car-
diac surgery, this study aims to investigate the associa-
tion between postoperative SHR and all-cause mortality 
following cardiac surgery. Through this investigation, we 
hope to identify high-risk patients at an early stage and 
inform the development of targeted strategies to opti-
mize postoperative care and improve long-term survival.

Method
Source of data
This study is a retrospective analysis utilizing data from 
the publicly available Medical Information Mart for 
Intensive Care IV (MIMIC-IV, version 3.1) database. 
MIMIC-IV, an enhancement of its predecessor MIMIC-
III, includes updated data and reconstructed tables. It 
contains clinical information from over 190,000 patients 
and 450,000 hospitalizations recorded between 2008 
and 2019 at the Beth Israel Deaconess Medical Center in 
Boston, MA, United States. The database provides com-
prehensive records on patient demographics, laboratory 
tests, medications, vital signs, surgical procedures, dis-
ease diagnoses, medication management, and follow-
up survival status. To access the data, we completed the 
National Institutes of Health training course on protect-
ing human study participants and passed the Collabora-
tive Institutional Training Initiative exams. The database 
does not contain protected health information, and all 
patient data is anonymized.

Study design and population
Our analysis included patients who were aged 18–100 
years old and undergone a cardiac surgery including 
CABG, valve surgery and combining CABG and valve 
surgery (eTable 3). Patients were excluded based on the 
following criteria: (1) those lacking HbA1c (2) those lack-
ing fasting blood glucose data within 24  h after cardiac 
surgery; (3) those without prognostic information. Ulti-
mately, 3,848 patients met the inclusion criteria and were 
categorized into four groups based on quartiles of the 
postoperative SHR index (Fig. 1).

Data extraction
Data extraction was performed using Navicat Premium 
(Version 16.1.15) with SQL. The study examined vari-
ous variables categorized as follows: Demographics: age, 
sex. Past medical history: conditions such as myocar-
dial infarction (MI), heart failure (HF), cerebrovascular 

Conclusion  In patients undergoing cardiac surgery, higher postoperative SHR index levels were significantly 
associated with increased risk of in-hospital, 90-day and 360-day all-cause mortality. The SHR index may serve as a 
valid tool for assessing the severity after cardiac surgery and guiding treatment decisions.

Keywords  Cardiac surgery, Stress hyperglycemia ratio, Prognosis, Machine learning, All-cause mortality



Page 3 of 10Pei et al. Cardiovascular Diabetology           (2025) 24:77 

disease (CVD), pulmonary disease, diabetes, renal dis-
ease. Laboratory indicators: preoperative and postopera-
tive fasting blood, white blood cells (WBC), neutrophils, 
monocytes, lymphocytes, platelets and creatinine; HbA1c 
of admission. Vital signs: heart rate (HR), systolic blood 
pressure (SBP), diastolic blood pressure (DBP), respira-
tory rate (RR), and temperature (T). Length of stay (LOS) 
and outcomes: duration of mechanical ventilation, LOS 
in hospital, LOS in ICU, hospital, 30-day, 90-day, and 
360-day all-cause mortality. Disease Severity Scores: 
Acute Physiology Score III (Aps iii).

Outcomes
The primary outcome of this study was 30-day all-cause 
mortality, while the secondary outcomes included in-
hospital, 90-day and 360-day all-cause mortality.

Calculation of SHR, NLR, MLR, PLR, SII, and SIRI
SHR = [(glucose max (mg/dl))/(28.7×HbA1c (%)-
46.7)]; [15] NLR = neutrophil count/lymphocyte count; 
[16] MLR = monocyte count/lymphocyte count; [17] 
PLR = platelet count/lymphocyte count; [18] SII = plate-
let count×neutrophil count/lymphocyte count; [19] 
SIRI = neutrophil count×monocyte count/lymphocyte 
count [20]. 

Statistical analysis model development
A normality test was conducted on continuous vari-
ables. For non-normally distributed data, the Wilcoxon 
rank-sum test was applied, and results were expressed 

as medians with interquartile ranges (IQR). Categori-
cal variables were analyzed using Chi-square or Fish-
er’s exact tests and presented as absolute numbers with 
percentages. Kaplan–Meier (KM) curves were used to 
determine the incidence of primary and secondary out-
comes, stratified by the SHR index. Multivariable Cox 
proportional hazards regression models assessed the 
relationship between the SHR index and all-cause mor-
tality. The lowest quartile of the SHR index served as 
the reference group. The SHR index was also analyzed 
as a continuous variable to predict all-cause mortality 
using area under the curve (AUC). In addition, The SHR 
index using restricted cubic splines (RCS) to explore 
the dose-response relationship with the risk of primary 
and secondary outcomes. Stratified analyses were per-
formed based on gender (male, female), age (≤ 75 years 
or >75 years), creatinine (≤ 90 mg/dl or >90 mg/dl), MI, 
HF, CVD, pulmonary disease, diabetes, and renal disease 
status. Causal mediation analysis was used to explore the 
mediating role between postoperative SHR and 30-day 
all-cause mortality.

Due to the presence of class imbalance in the depen-
dent variables, undersampling was utilized to adjust the 
dataset and achieve class balance. Subsequently, the data-
set was partitioned into a training set and an internal 
validation set using the Synthetic Minority Over-Sam-
pling Technique. For datasets with a high number of fea-
tures, Lasso regression was applied for feature selection. 
This technique incorporates L1 regularization, which 
not only facilitates feature selection but also reduces 

Fig. 1  Flow of included patients through the trial. SHR Stress hyperglycemia ratio; HbA1c Hemoglobin A1c
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dimensionality by compressing the coefficients, effec-
tively retaining features with significant contributions 
while eliminating redundant ones.

In the present study, six machine learning algorithms—
namely, extreme gradient boosting (XGBoost), support 
vector machine (SVM), adaptive boosting (AdaBoost), 
naive Bayes (NB), logistic regression (LR), and gradi-
ent boosting machine (GBM)—were used to predict in-
hospital all-cause mortality and were further extended to 
predict 360-day all-cause mortality. The features selected 
through Lasso regression were incorporated into the 
model. To ensure the robustness of the model, ten-fold 
cross-validation was performed. Grid search optimiza-
tion was utilized to identify the most suitable hyper-
parameters for each algorithm. During the parameter 
tuning process, the model with the highest area under the 
receiver operating characteristic curve was selected as 
the optimal model. The final models were trained using 
the training set, and their performance was evaluated on 
both the internal and external validation sets. The effec-
tiveness of the predictive model was assessed using the 
AUC of the ROC curve.

All statistical analyses were conducted using SPSS 
software (version 22.0, IBM Corporation, United States) 
and R software (version 4.3.1, R Foundation for Statisti-
cal Computing, Austria), with a significance level set at 
P < 0.05. YP completed all of statistical analysis.

Results
Baseline characteristics of study participants
This study analyzed data from 8,321 patients included in 
the MIMIC-IV database, of whom 3,848 met the inclu-
sion criteria. Participants were stratified into four quar-
tiles (Q1, Q2, Q3, and Q4) according to postoperative 
SHR percentiles. The baseline characteristics for each 
group are detailed in Table 1. The mean age of the cohort 
was 68 ± 12 years, with female participants comprising 
30.6% (1,179). It is noteworthy that the Q4 group demon-
strated the highest mean age and the largest proportion 
of female participants. The most prevalent comorbidi-
ties included MI, and HF, affecting 40.0%, and 37.6% of 
the population, respectively, with the Q4 group having 
the highest prevalence of these conditions. Furthermore, 
preoperative and postoperative WBC counts, creatinine 
levels, aps iii, and durations of mechanical ventilation, 
ICU stays, and total hospitalizations were consistently 
highest in the Q4 group.

Relationship between postoperative SHR and clinical 
outcomes
Clinical outcomes varied significantly across postopera-
tive SHR quartiles. Patients in the Q4 group exhibited 
the highest rates of in-hospital mortality (4.9%), 30-day 
mortality (4.7%), 90-day mortality (7.9%), and 360-day 

mortality (12.5%). An adjusted logistics regression anal-
ysis, accounting for sex, age, MI, HF, CVD, pulmonary 
disease, diabetes, renal disease, duration of mechani-
cal ventilation, aps iii, and preoperative creatinine and 
WBC levels, revealed Q4 patients exhibiting higher 
risks of in-hospital mortality (OR = 3.323; 95% CI 1.558–
7.089; p = 0.002), 30-day mortality (OR = 2.877; 95% CI 
1.391–5.590; p = 0.004), 90-day mortality (OR = 1.918; 
95% CI 1.187–3.099; p = 0.008), and 360-day mortality 
(OR = 1.485; 95% CI 1.031–2.138; p = 0.034). By contrast, 
no significant differences were observed between Q2 and 
Q1, or Q3 and Q1 (Table 2). These findings indicate that 
patients with an SHR index of ≥ 1.40 have a higher risk of 
in-hospital, 30-day, 90-day and 365-day all-cause mortal-
ity compared to those with an SHR index of < 1.40. Simi-
lar trends were observed for in-hospital, 30-day, 90-day 
and 365-day all-cause mortality, as detailed in Fig. 3.

Survival analysis
Kaplan–Meier survival analyses revealed significant 
differences in survival rates across postoperative SHR 
quartiles for in-hospital, 90-day and 360-day all-cause 
mortality. Patients in the Q4 group experienced low-
est survival rates at all time points compared to those 
in lower postoperative SHR quartiles (log-rank p < 0.05). 
However, survival rates did not differ significantly among 
the Q1, Q2, and Q3 groups across any time point (Fig. 2).

Predictive value and nonlinear relationship
The prognostic utility of preoperative SHR, postoperative 
SHR, and the rate of SHR change for in-hospital, 30-day, 
90-day, and 360-day mortality was assessed using AUC 
analysis. Among these, postoperative SHR exhibited the 
strongest predictive value, with AUCs of 0.723, 0.710, 
0.658, and 0.618, respectively (eFigure 1). Moreover, 
restricted cubic spline (RCS) analysis indicated a nonlin-
ear association between postoperative SHR and all-cause 
mortality at all time points (in-hospital, 30-day, 90-day, 
and 360-day all-cause mortality). Increasing postopera-
tive SHR values were consistently associated with higher 
mortality risks, demonstrating the nonlinear nature of 
this relationship (p for nonlinear < 0.05) (Fig. 3).

Stratified analyses
Subgroup analyses were conducted to explore potential 
effect modifications by sex, age, MI, HF, CVD, pulmo-
nary disease, diabetes, and renal disease on the associa-
tion between postoperative SHR and in-hospital, 30-day, 
90-day, 360-day all-cause mortality (eFigure 2–5). Post-
operative SHR was significantly associated with 30-day 
mortality among males, individuals aged ≤ 75 years, those 
with creatinine levels > 90, patients with MI, those with-
out heart failure, individuals with CVD, and those with-
out pulmonary or renal disease (p < 0.05). Conversely, 
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Table 1  Baseline characteristics of patients grouped according to postoperative SHR index quartiles
Variables Total, N = 3848 Q1 (SHR ≤ 1.06), 

N = 972
Q2 (1.06< 
SHR ≤ 1.20), 
N = 934

Q3 (1.20< 
SHR ≤ 1.40), 
N = 964

Q4 (SHR ≥ 1.40), 
N = 978

P 
value

Age, y 68 ± 12 67 ± 12 68 ± 11 68 ± 11 69 ± 11 0.001*
Female, (%) 1179 (30.6) 318 (32.7) 277 (29.7) 259 (26.9) 325 (33.2) 0.008*
BMI Mean, kg/m2 29.1 ± 6.0 29.5 ± 6.4 28.9 ± 5.6 29.2 ± 6.0 28.7 ± 6.0 0.026*
Past medical history
Myocardial infarct, (%) 1538 (40.0%) 379 (39.0) 349 (37.4) 385 (39.9) 425 (43.5) 0.046*
Heart failure, (%) 1446 (37.6) 312 (32.1) 302 (32.3) 342 (35.5) 490 (50.1) 0.000*
Cerebrovascular disease, (%) 436 (12.0) 115 (11.8) 111 (11.9) 109 (11.3) 128 (13.1) 0.667
Chronic pulmonary disease, (%) 910 (23.6) 228 (23.5) 235 (25.2) 203 (21.1) 244 (24.9) 0.127
Diabetes, (%) 1474 (38.3) 454 (46.7) 278 (29.8) 325 (33.7) 417 (42.6) 0.000*
Renal disease, (%) 801 (20.8) 161 (16.6) 172 (18.4) 188 (19.5) 280 (28.6) 0.000*
Preoperative laboratory indicators
Glucose max, mg/dl 134.8 ± 57.1 134.2 ± 59.8 123.9 ± 42.6 130.3 ± 45.9 151.9 ± 72.6 0.000*
HbA1c, % 6.3 ± 1.4 7.0 ± 1.8 6.1 ± 1.0 6.1 ± 1.1 6.0 ± 1.1 0.000*
Creatinine, mg/dl 1.2 ± 1.0 1.1 ± 0.5 1.1 ± 0.9 1.2 ± 1.0 1.4 ± 1.5 0.000*
WBC, 10^9/L 8.5 ± 4.8 8.4 ± 3.1 8.5 ± 6.4 8.5 ± 4.2 8.9 ± 4.8 0.159
Postoperative laboratory indicators
Glucose max, mg/dl 170.0 ± 59.1 142.3 ± 38.0 146.1 ± 32.5 164.7 ± 41.8 217.6 ± 80.2 0.000*
Creatinine, mg/dl 1.2 ± 1.0 1.0 ± 0.6 1.1 ± 0.9 1.2 ± 0.8 1.5 ± 1.5 0.004*
WBC, 10^9/L 17.2 ± 8.7 16.5 ± 6.1 17.2 ± 11.8 17.3 ± 6.6 17.7 ± 9.0 0.000*
Vital signs
HR Mean, beats/min 80 ± 12 80 ± 11 79 ± 11 80 ± 11 83 ± 14 0.000*
RR Mean, times/min 16 ± 4 15 ± 4 16 ± 4 16 ± 4 17 ± 5 0.000*
SBP Mean, mmHg 114 ± 18 114 ± 18 114 ± 18 113 ± 18 115 ± 19 0.320
DBP Mean, mmHg 60 ± 12 60 ± 11 59 ± 11 59 ± 11 60 ± 13 0.126
Temperature Mean, ℃ 36.2 ± 0.7 36.3 ± 0.6 36.2 ± 0.7 36.3 ± 0.7 36.3 ± 0.7 0.064
Aps iii 34 (26, 45) 32 (25, 41) 32 (25, 42) 33 (26, 44) 38 (29, 51) 0.000*
Mechanical ventilation time, (h) 28 (19, 56) 25 (19, 46) 26 (19, 47) 29 (18, 55) 40 (20, 73) 0.000*
LOS in ICU, (d) 2 (1, 3) 1 (1, 3) 2 (1, 3) 2 (1, 3) 2 (1, 4) 0.000*
LOS in hospital, (d) 8 (7, 11) 9 (7, 11) 8 (6, 11) 8 (6, 12) 10 (7, 14) 0.000*
Clinical outcomes
In-hospital mortality, (%) 83 (2.2) 9 (0.9) 7 (0.7) 19 (2.0) 48 (4.9) 0.000*
30-day mortality, (%) 76 (2.0) 10 (1.0) 8 (0.9) 12 (1.2) 46 (4.7) 0.000*
90-day mortality, (%) 150 (3.9) 27 (2.8) 15 (1.6) 31 (3.2) 77 (7.9) 0.000*
360-day mortality, (%) 279 (7.3) 55 (5.7) 42 (4.5) 60 (6.2) 122 (12.5) 0.000*
*Statistically significant: a value greater than 0.05 is interpreted as a meaningful difference

SHR, Stress hyperglycemia ratio; BMI, Body mass index; MI, Myocardial infarction; HF, Heart failure; CVD, Cerebrovascular disease; AF, Atrial fibrillation; ICU, Intensive 
care unit; WBC, White blood cells; HbA1c, Hemoglobin A1c; HR, Heart rate; SBP, Systolic blood pressure; DBP, Diastolic blood pressure; RR, Respiratory rate; LOS, 
Length of Stay; Aps iii, Acute Physiology Score III; ICU, Intensive care unit;

Table 2  Logistic regression models for hospital, 30-day, 90-day and 360-day all-cause mortality
Variables In-hospital mortality P value 30-day mortality P value 90-day mortality P value 360-day mortality P value

HR (95%CI) HR (95%CI) HR (95%CI) HR (95%CI)
Postoperative SHR quantile
Q1 1.00 (Reference) 1.00 (Reference) 1.00 (Reference) 1.00 (Reference)
Q2 0.730 (0.241, 2.205) 0.576 0.707 (0.262, 1.913) 0.495 0.545 (0.275, 1.079) 0.082 0.699 (0.448, 1.902) 0.116
Q3 1.805 (0.764, 4.267) 0.178 0.994 (0.409, 2.420) 0.990 1.015 (0.580, 1.777) 0.959 0.939 (0.624, 1.412) 0.763
Q4 3.323 (1.558, 7.089) 0.002* 2.877 (1.391, 5.590) 0.004* 1.918 (1.187, 3.099) 0.008* 1.485 (1.031, 2.138) 0.034*
HR for trend 1.651 (1.304, 2.091) 1.623 (1.275, 2.066) 1.371 (1.165, 1.613) 1.208 (1.073, 1.359)
P for trend 0.000* 0.000* 0.000* 0.002*
*Statistically significant: a value greater than 0.05 is interpreted as a meaningful difference

SHR, Stress hyperglycemia ratio; HR, Hazard ratio; CI, Confidence interval;
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postoperative SHR was no associated with 30-day mor-
tality among females, individuals aged < 75 years, those 
with creatinine levels ≤ 90, and patients without MI, heart 
failure, CVD, pulmonary disease, or renal disease. How-
ever, postoperative SHR was significantly associated with 
360-day mortality among those without HF.

Mediation analysis
Mediation analysis, conducted on 2,649 patients with 
complete data for monocytes, neutrophils, lympho-
cytes, and platelets, demonstrated that postopera-
tive SHR indirectly influenced prolonged mechanical 

ventilation through its association with inflammatory 
markers (eTable 1). These markers include the neutro-
phil-to-lymphocyte ratio (NLR), monocyte-to-lympho-
cyte ratio (MLR), platelet-to-lymphocyte ratio (PLR), 
systemic immune-inflammation index (SII), and systemic 
inflammation response index (SIRI). Prolonged mechani-
cal ventilation, in turn, was associated with increased 
30-day mortality risk (p < 0.05) (eTable 2, eFigure 3).

Machine learning
Using six machine learning algorithms were used to 
predict in-hospital all-cause mortality and were further 

Fig. 2  Kaplan–Meier survival analysis curves for all-cause mortality. Kaplan–Meier curves of hospital (A) 30-day (B), 90-day (C) and 360-day (B) all-cause 
mortality stratified by postoperative SHR index, SHR Stress hyperglycemia ratio
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extended to predict 360-day all-cause mortality. The 
model incorporated creatinine, SHR, HR, RR, HF. NB 
algorithm demonstrated the strongest predictive perfor-
mance on in-hospital and 360-day all-cause mortality, 
achieving an AUC of 0.7936 and 0.7410 comparing with 
other models. (Fig. 4, eFigs. 7 and 8).

Discussion
This study, to our knowledge, is the first investiga-
tion examining the association between postoperative 
SHR levels and in-hospital, 30-day, 90-day and 360-day 

all-cause mortality in patients undergoing cardiac sur-
gery. Our results reveal a non-linear relationship between 
SHR levels and in-hospital mortality, as well as mortal-
ity at 30, 90, and 360 days following surgery. Notably, 
elevated postoperative SHR levels are associated with an 
increased risk of in-hospital, 30-day, 90-day and 360-day 
all-cause mortality, potentially mediated through mecha-
nisms such as inflammation and prolonged mechanical 
ventilation. These findings provide critical insights that 
may inform strategies aimed at mitigating mortality risk 
in patients undergoing cardiac surgery.

Fig. 4  The machine learning algorithm predicts in-hospital and 360-day all-cause mortality. AUC Area under the curve, XGBoost Extreme gradient boost-
ing, SVM Support vector machine, AdaBoost Adaptive boosting, GBM Gradient boosting machine

 

Fig. 3  RCS of SHR index with all-cause mortality. RCS of postoperative SHR index with hospital A 30-day B, 90-day C and 360-day B all-cause mortality. 
SHR Stress hyperglycemia ratio, RCS Restricted cubic splines
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The stress-induced hyperglycemia is commonly 
observed in patients following surgery, which is close 
association with all-cause mortality [15]. Postoperative 
hyperglycemia primarily arises as a consequence of the 
body’s stress response to surgical intervention, involving 
factors such as trauma, anesthesia, pain, and inflamma-
tion [21]. These stressors activate elevated levels of stress 
hormones, including cortisol, catecholamines, and glu-
cagon, which promote hepatic glucose production and 
inhibit peripheral glucose uptake [22]. A body of research 
has established hyperglycemia as a significant risk factor 
for postoperative complications, which are closely associ-
ated with increased in-hospital mortality [13]. However, 
traditional measurements of blood glucose, both pre- and 
post-admission, fail to capture the dynamic fluctuations 
in blood glucose levels. In this context, SHR provides a 
more robust and reliable metric for evaluating stress-
induced hyperglycemia [11]. Existing literature consis-
tently underscores the clinical relevance of SHR, linking 
it to critical factors such as thrombus load, the severity 
of coronary artery disease, post-stroke cerebral edema, 
and an increased risk of infection during hospitalization 
[23, 24, 25]. Furthermore, SHR has demonstrated predic-
tive utility for clinical outcomes, with elevated SHR lev-
els being significantly associated with long-term 1-year 
all-cause mortality in cohorts from both the United 
States and China [26]. Additionally, in patients with acute 
decompensated heart failure, SHR exhibits a U-shaped 
relationship with long-term mortality and readmission 
rates [9]. SHR has also been shown to be independently 
associated with the risk of major adverse cardiovascular 
events (MACE) [27]. In our study, elevated postoperative 
SHR levels are strongly associated with an increased risk 
of in-hospital, 30-day, 90-day and 360-day all-cause mor-
tality, following a non-linear pattern when compared to 
preoperative SHR levels.

Another key finding of our study is that inflamma-
tion acts as a mediating factor between postoperative 
SHR and 30-day, 90-day and 360-day all-cause mortality 
risk. Hyperglycemia exacerbates mortality by disrupt-
ing glucose metabolism and triggering systemic inflam-
mation. Elevated blood glucose significantly increases 
the expression of inflammatory markers, which, in turn, 
contribute to the development of insulin resistance and 
impairment of blood glucose control, creating a vicious 
cycle. The inflammatory response also leads to multi-
organ dysfunction, particularly affecting the heart, kid-
neys, and liver [28]. These markers impair endothelial cell 
function, induce oxidative stress, and activate immune 
cells, all of which contribute to organ failure [29]. Addi-
tionally, hyperglycemia increases the risk of postopera-
tive infection, prolonged hospital stays, and elevates the 
incidence of complications, ultimately adversely affecting 
patient prognosis and quality of life [26, 30]. Our study 

underscores the role of hyperglycemia in amplifying mor-
tality risk through heightened inflammation, including 
NLR, MLR, PLR, SII, and SIRI, which contribute to pro-
longed mechanical ventilation. It is crucial to emphasize 
that this association is indirect. Inflammation is identi-
fied as a prognostic factor for an extended duration of 
mechanical ventilation, and subsequently, this prolonged 
mechanical ventilation is associated with an elevated 
risk of mortality within a 30-day timeframe, but not for 
all time intervals of mortality. Moreover, hyperglycemic 
conditions may create an environment conducive to bac-
terial and other pathogenic infections, further prolonging 
mechanical ventilation durations and exacerbating post-
operative mortality rates.

Beyond its influence on short-term outcomes, stress-
induced hyperglycemia also plays a significant role in 
long-term mortality risks. While the association between 
postoperative SHR and increased short-term mortality 
following cardiac surgery is well-documented, emerging 
evidence suggests that it is also linked to long-term mor-
tality. For instance, elevated SHR levels are significantly 
associated with long-term all-cause mortality in cohorts 
from both the U.S. and China [26]. In our study, postop-
erative SHR is significantly correlated with both 30-day 
and 360-day mortality risks and is a good marker for the 
prediction of 30-day all-cause mortality. However, the 
predictive accuracy for 360-day mortality is relatively 
modest, and additional clinical variables are required 
to enhance the prediction of long-term mortality. To 
address this limitation, we developed a predictive model 
that integrated both preoperative variables. We used six 
machine learning algorithms [31] to predict in-hospital 
all-cause mortality and subsequently extended them to 
forecast 360-day all-cause mortality, which demonstrates 
strong predictive performance. The model incorporated 
patient demographics, preoperative health status, post-
operative recovery metrics, and relevant physiological 
markers, offering a more precise and personalized risk 
assessment. In comparison to traditional risk models, 
this machine learning-based approach accounted for 
intricate interactions between variables and can dynami-
cally adjust based on individual patient characteristics. 
Consequently, it provides clinicians with a more refined 
tool for early identification of high-risk patients, thereby 
facilitating timely interventions that may improve long-
term survival outcomes.

Our findings further suggest that SHR, when combined 
with HbA1c levels and initial blood glucose at admis-
sion, can serve as an effective and practical alternative 
for evaluating cardiac surgery patients. As a simple and 
readily available tool, the SHR index can assist clini-
cians in quickly identifying high-risk patients, poten-
tially reducing mortality rates and improving overall 
patient outcomes. However, several limitations must be 
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considered in interpreting our findings. First, the retro-
spective nature of our study, along with the use of data 
from a single medical center and reliance on the MIMIC-
IV database, limits our ability to establish causal relation-
ships. Although we adjusted for various confounders 
and performed subgroup analyses, residual confounding 
factors might still influence the results. Additionally, the 
moderate sample size calls for validation of these findings 
in larger cohort studies. Lastly, while our study provides 
strong associations between SHR and 30-day, 90-day and 
360-day all-cause mortality, we are unable to fully eluci-
date the biological mechanisms underlying this relation-
ship, which may limit the broader applicability of our 
conclusions.

Conclusion
In our study, postoperative SHR appeared to be an effec-
tive, non-invasive measure for predicting short-term 
and long-term mortality outcomes in cardiac surgery 
patients. This study highlights the potential of SHR as a 
tool for identifying high-risk patients and improving clin-
ical decision-making. Further prospective studies with 
larger sample sizes are needed to confirm these findings 
and explore the clinical utility of SHR in enhancing post-
operative care and outcomes.
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