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Abstract
Background Traditional risk factors cannot accurately predict cardiovascular events (CVE) in type 2 diabetes (T2D). 
The LIPOCAT study aimed to prospectively evaluate the clinical utility of advanced lipoprotein characteristics and 
glycoproteins to predict future cardiovascular events (CVE) in a large cohort of subjects with type 2 diabetes mellitus 
(T2D).

Methods From four different Spanish prospective cohorts, a total of 933 T2D subjects were selected to form the 
LIPOCAT study. Advanced 1H-Nuclear Magnetic Resonance (1H-NMR) analysis included lipoprotein (Liposcale®) and 
glycoprotein (Glycoscale) profiling. Random forest classification models and Area Under the Receiver Operating 
Characteristics (AUROC) analysis were used to assess the differential contribution of advanced variables in predicting 
CVE. Validation was performed using an external cohort.

Results Out of 933 T2D subjects, 104 reported a CVE during follow-up. Analysis of Liposcale®/Glycoscale uncovered 
elevations in the circulating VLDL-cholesterol(C), remnant IDL-triglycerides (TG) and LDL-TG in subjects with CVE, 
along with glycoproteins (Glyc) A and B. Moreover, the incorporation of advanced Liposcale® variables to a base 
model constructed with traditional risk factors significantly improved the prediction of CVE, as evidenced by 1.5-fold 
increase in the C statistic (AUROC), reaching AUROC values of 0.756. In the independent validation cohort, similar 
improvements in AUROC values were observed by adding the advanced variables to the traditional models.

Conclusions Advanced 1H-NMR analysis revealed previously hidden lipoprotein and glycoprotein characteristics 
associated with CVE in T2D subjects.
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Background
Type 2 diabetes mellitus (T2D) is a prevalent chronic 
condition and a significant global public health concern 
[1]. Individuals with T2D face an increased risk of car-
diovascular disease (CVD) [2]. The ability to accurately 
predict future cardiovascular events (CVEs) is vital for 
enabling targeted or precision prevention of this main 
complication. CVD risk prediction models have been 
designed to discriminate between individuals at lower or 
higher future risk, however, current models frequently 
fail to offer sufficient specificity to be used for clinical 
purposes, especially in T2D subjects [3]. Therefore, the 
identification of novel diagnostic markers for CVE in 
T2D subjects has become a subject of intense research.

Conventional serum lipid analysis frequently lacks the 
sensitivity to identify subjects with T2D at risk of CVE 

[4]. In this regard, the use of advanced nuclear magnetic 
resonance (1H-NMR) approaches, i.e., Liposcale®, has 
been successful in uncovering such hidden lipoprotein 
alterations associated with preclinical atherosclerosis in 
newly diagnosed T2D patients that were not captured 
by the traditional lipid profile analysis [5]. Therefore, 
advanced analysis of the lipoprotein profile may allow the 
identification of hidden candidate biomarkers for a more 
comprehensive CVD risk prevention strategy.

Clinical chronic, low-grade inflammation also con-
tributes to many of the adverse complications of T2D, 
including CVD [6]. Indeed, low-grade inflammation 
is one of the key targets for the clinical management of 
subjects with T2D to reduce the CVD risk [7]. Studies 
using Glycoscale 1H-NMR spectra have identified a spe-
cific inflammation-responsive signal in serum or plasma 
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samples termed Glyc A [8], which has been positively 
associated with different cardiometabolic conditions [9]. 
In line with this, Glyc A has also been identified as a reli-
able biomarker of cardiometabolic risk [10]. Indeed, Glyc 
A has been associated with an elevated incidence of CVD 
in recent independent clinical trials over other traditional 
CVD risk factors [11–15]. The detection of Glyc A has 
also been linked to incident T2D, even after adjusting 
for other traditional risk factors of T2D and hypersensi-
tive C-reactive protein (hsCRP) [16, 17]. Overall, these 
findings might suggest that Glyc A could be considered 
as a new independent biomarker of chronic, low-grade 
inflammation related to cardiovascular burden in T2D 
subjects.

Taken together, quantitative characteristics of lipo-
protein and glycoprotein profiles may be clinically rel-
evant predictive biomarkers for risk assessment of CVE, 
especially in subjects with T2D, who are more prone to 
develop atherogenic dyslipidemia and inflammation. 
Therefore, we aimed to characterize the serum 1H-NMR-
lipoprotein and glycoprotein profiles in 933 subjects with 
T2D collected from four different Spanish prospective 
population-based cohorts. Furthermore, we also aimed 
to assess the added predictive value for CVE prediction, 
if any, provided by the incorporation of advanced, non-
traditional lipoprotein (i.e., Liposcale®) and glycoprotein 
characteristics (i.e., Glycoscale). Finally, we externally 
validated the CVE prediction models with an indepen-
dent cohort including 187 individuals with T2D.

Methods
Study population
The LIPOCAT study was prospectively built up using 
four independent cohorts recruited from several areas of 
Catalonia in the north-east of Spain. Subjects with T2D 
matched for age, sex and body mass index (BMI) who had 
a serum sample available were selected and a follow-up 
update was performed to determine the cardiovascular 
events and all-cause mortality. The four cohorts that form 
the LIPOCAT study were previously described: Periph-
eral Arterial Disease study (PERART/ARTPER) [18, 19], 
Chronic Liver Disease-Fibro Scan cohort (FIBROSCAN) 
[21], Diabetes Mellitus study (DM) [22], DIABIMCAP 
Study (Carotid Atherosclerosis in Newly Diagnosed Type 
2 Diabetic Individuals) [24]. We used an independent 
cohort, the Di@bet.es [25], to validate the results. The 
characteristics of the five cohorts are detailed in the Sup-
plementary file 1.

The data collection procedures for all cohorts have 
been extensively detailed in previous publications [19, 21, 
24, 25]. Key clinical variables recorded included age, sex, 
smoking habit, systolic blood pressure (SBP), diastolic 
blood pressure (DBP), glycated hemoglobin (HbA1c), and 
lipid profile. T2D was defined by glucose > 126  mg/dL, 

HbA1c > 6.5%, ongoing treatment or a medical diagnosis. 
Dyslipidemia was defined by a cholesterol level > 200 mg/
dL, ongoing treatment or a medical diagnosis. Hyperten-
sion was defined by SBP > 140 mmHg or DBP > 90 mmHg 
or treatment or a medical diagnosis. Remnant choles-
terol was calculated according to the consensus European 
Atherosclerosis Society (EAS) formula: remnants cho-
lesterol = triglycerides (TG) * (VLDL-C/VLDL-TG) [31]. 
Additionally, remnant cholesterol was calculated using 
variables from Liposcale®, using the formula: remnants 
cholesterol = VLDL-C + IDL-C. Standardized protocols 
were followed for the measurement of weight, height, and 
blood pressure. Blood samples were collected in a fasting 
state, analyzed using standardized methods to determine 
biochemical parameters. For the Liposcale® test and the 
glycoprotein profile, blood samples were collected in a 
fasting state into EDTA tubes, processed immediately 
after extraction, and stored at − 80  °C at the biobanks of 
the participant centers until analysis.

A comprehensive review of medical records, encom-
passing all available information from the healthcare 
system, was conducted to identify occurrences of all-
cause mortality and CVEs during the follow-up update. 
Incident cardiovascular endpoints were identified using 
codes from the International Classification Diseases 
(ICD-9 and ICD-10). These codes were used to identify 
and track specific cardiovascular events, procedures, and 
mortality outcomes throughout the follow-up period. 
Specific diagnostic codes included: Acute myocardial 
infarction (410, I21, I22), Angina (413, 411.1, I20), Unsta-
ble angina (411.1, I20.0), Ischemic heart disease (410–
414, I20, I25 excluding 414.10, 414.11, 414.12, 414.19), 
Stroke (431, 433, 434, 435, 438, I61, I63, I65, I69, G45, 
G46), Peripheral arterial disease (443.1, 443.8, 443.9, 
444, I73.1, I73.8, I73.9, I74), Heart failure (40,201, 40,211, 
40,291, 40,401, 40,403, 40,411, 40,413, 40,491, 40,493, 
428, I50, I11.0, I13.0, I13.2). In addition, relevant proce-
dures were monitored, including Coronary revasculariza-
tion (00.66, 36.0, 36.1, 36.2, 36.3) and Revascularization 
of other vascular territories (39.50, 39.90, 39.79, 00.60, 
00.61, 00.62, 00.63, 00.64, 00.65). For mortality assess-
ment: Cardiovascular death (390–459, I00-I09 excluding 
427.5, 435, 446, 459.0) and Overall mortality (001-E999, 
A00-Y89) were also documented. The events included 
ischemic heart disease (encompassing any documented 
diagnosis such as angina pectoris), stroke, heart failure, 
peripheral artery disease, revascularization procedures, 
and cardiovascular mortality. To ensure accuracy, CVEs 
were only confirmed if a treating physician had docu-
mented a new diagnosis corresponding to the event after 
hospital admission or in outpatient medical records. This 
meticulous approach aimed to maintain the integrity and 
reliability of the collected data. The study protocol for the 
LIPOCAT study was approved by the Ethics Committees 
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of University Hospital Germans Trias i Pujol (PI-18–039). 
All participants were informed about the study protocols 
and provided their consent to participate.

NMR molecular profiling
Three hundred µL of serum samples were shipped on dry 
ice to Biosfer Teslab (Reus, Spain) for the NMR analysis 
which included the lipoprotein profile based on the Lipo-
scale® test [27] and the glycoprotein profile [28].

Serum samples were thawed overnight and prepared 
for NMR analyses. High-resolution 1H-NMR spectros-
copy data was acquired on a Bruker 600 MHz spectrom-
eter using LED Diffusion (Diff) experiments to detect 
larger molecules such as lipoproteins and glycoproteins, 
running at 37 °C in quantitative conditions.

The Liposcale® test was used to obtain the composition, 
the mean size and the number of lipoprotein particles of 
nine subtypes i.e. the main lipoprotein types (VLDL, LDL 
and HDL) further subdivided into large, medium and 
small particles for each type according to their respec-
tive size. Using the same NMR spectra, the general mea-
surement of circulating glycoproteins was obtained by 
deconvoluting the specific region where glycoproteins 
resonate using analytical functions, and the area was 
quantified in proportion to the concentration of the ace-
tyl groups of N-acetylglucosamine and N-acetyl galactos-
amine (Glyc A) and acetyl groups of N-acetylneuraminic 
acid (Glyc B). We analyzed the 1H-NMR spectral region 
where glycoproteins resonate (2.15–1.90 ppm) using sev-
eral analytical functions, following a previously published 
procedure [28].

Statistical analysis
Continuous variables were tested for normality using the 
Kolmogorov–Smirnov test. Data are presented as median 
(25th percentile–75th percentile), and n and percentages 
for categorical variables. Differences between groups 
were analyzed using the non-parametric Mann–Whitney 
test or Student’s parametric t-test for continuous vari-
ables and the chi-square test or Fisher’s exact test for cat-
egorical variables.

We used random forests to construct the prediction 
models of CVE. Model parameters were adjusted using 
fivefold cross-validation, and the models were trained 
on 80% of the dataset and tested on the remaining 20% 
of data, based on a strategy that has proved to be more 
accurate for complex scenarios compared to other mul-
tivariate approaches [29]. The first model (Model 1) was 
performed with the traditional cardiovascular risk factors 
(CVRFs): sex, age, BMI, hypertension, dyslipidemia and 
smoking. Model 2 was built on top of Model 1 by further 
incorporating conventional lipid variables: total choles-
terol (Total C), HDL-C, LDL-C, TG and remnant cho-
lesterol using the EAS formula. Model 3, also built upon 

Model 1, incorporated advanced integrative variables of 
Liposcale®, including ratios and percentages of quantita-
tive characteristics of lipoprotein metabolism. Specifi-
cally, the variables included the VLDL-TG-to-VLDL-C 
ratio, IDL-TG-to-IDL-C ratio, LDL-TG-to-LDL-C ratio, 
HDL-TG-to-HDL-C, the percentages of smaller VLDL, 
LDL and HDL, remnant cholesterol calculated using the 
Liposcale® formula and incorporating glycoproteins Glyc 
A and Glyc B. To assess model performance, we com-
puted the accuracy and the area under the ROC curve 
(AUROC) for all models. Differences between AUROC 
values were assessed using DeLong’s test for correlated 
ROC curves, with pairwise comparisons performed 
across models. Statistical significance was set at p < 0.05. 
Statistical analyses were performed using the R statistical 
software version 4.4.0 [30].

Results
Characteristics of the LIPOCAT cohort
In the total cohort of 933 T2D subjects drawn from the 
four distinct prospective cohorts, 104 individuals expe-
rienced at least one CVE during the follow-up period. 
Given the matching by age, sex and BMI, these variables 
did not differ between CVE groups i.e. with and without 
CVEs. Additionally, there were no differences in smoking 
habits between the groups (Table 1).

The proportion of T2D subjects receiving antihyper-
tensive medication was significantly higher in those with 
a CVE than those without. Correspondingly, significant 
elevations in SBP were observed in the CVE group com-
pared with the non-CVE subjects. The HbA1c levels were 
significantly higher in the CVE group, indicating subopti-
mal glycemic control. However, conventional total lipids 
did not differ between both groups, although total cho-
lesterol was marginally elevated in the CVE group. No 
changes were observed in the serum concentrations of 
HDL- and LDL-cholesterol.

During the follow-up period among the CVE group, 
peripheral arterial disease was the most common event 
(29.8%), followed by heart failure (22.7%), stroke (21.2%), 
acute myocardial infarction, (18.3%), angina pectoris 
(17.3%), ischemic heart disease (16.3%) and coronary 
revascularization (15.4%). Cardiovascular mortality was 
10.6% (Table 1).

Advanced lipoprotein and glycoprotein variables
The advanced analysis of serum lipoproteins using the 
NMR approach revealed a significant increase in total 
triglycerides in the CVE group. This increase was mainly 
due to significant increases of IDL- and LDL-triglycerides 
and VLDL-triglycerides (p-value = 0.054). Despite total 
cholesterol not differing between groups, NMR analysis 
uncovered significant elevations in the VLDL-cholesterol 
and marginally in the IDL-cholesterol (p-value = 0.058) in 
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the CVE group. Interestingly, the serum concentration of 
LDL-cholesterol did not differ between groups (Table 2).

The triglyceride-to-cholesterol ratio calculated for each 
lipoprotein fraction revealed a significant increase only 
in the LDL, partly attributed to the relatively higher tri-
glyceride content in the serum from subjects in the CVE 
group.

Regarding the particle size, our data showed that 
the circulating concentrations of larger HDL were sig-
nificantly elevated in the CVE group (p-value = 0.007). 
Consistently, the small HDL-P-to-medium HDL-P 
ratio was concurrently decreased in the CVE group 
(p-value = 0.039). Medium VLDL was significantly 
increased in the CVE group. No significant differences 
were observed in other cardiovascular surrogates calcu-
lated from quantitative characteristics of lipoproteins, 
but the HDL-C-to-total triglycerides showed a trend 
(p-value = 0.063) towards being decreased in the CVE 
group compared with the non-CVE group.

Serum glycoproteins, especially Glyc A, are compos-
ite biomarkers of inflammation that can also be detected 
by [1H]-NMR. Median values of Glyc A and Glyc B were 
higher in T2D subjects with CVE compared with those 
without (Table 3).

Contribution of advanced lipoprotein and glycoproteins 
characteristics to CVE prediction
We developed three models with the overall aim of 
examining whether the addition of advanced variables 
(i.e., Liposcale® and Glycoscale) that were differentially 
changed in the CVE group (i.e., IDL-TG, LDL-TG and 
diameter, and glycated proteins) (Model 3) could improve 
CVE prediction over traditional CVRFs such as BMI, age, 
sex, hypertension, dyslipidemia, smoking habit (Model 
1), and traditional CVRFs together with the conventional 
lipid profile (Model 2) (Fig. 1; Table 4 ). We used random 
forests to construct the prediction models of CVE.

Model 1: Designed with traditional CVRFs, random 
forest analysis identified BMI, age and hypertension as 
the most important variables for making accurate predic-
tions (scores higher than 75%) (Fig. 1a).

Model 2: We incorporated the conventional lipid pro-
file (i.e., total cholesterol, TG, LDL-C, and HDL-C) and 
estimated cholesterol remnants (EAS formula) to analyze 
their added effect on CVE risk. Random forest analysis 
again identified BMI as the most important variable. This 
analysis also revealed that age, total cholesterol, LDL-
C, HDL-C, remnant cholesterol, and total triglycerides 
scored within the top quartile (> 75%) on the variable 
importance scale for accurate CVE prediction (Fig. 1b).

Model 3: We incorporated the advanced characteris-
tics of lipoproteins (Liposcale®) and glycoproteins (Gly-
coscale) into Model 1. In this model cholesterol remnants 
were calculated using the Liposcale® formula. BMI, age, 

Table 1 Clinical variables and incidence of cardiovascular events 
in the prospective T2D cohort (LIPOCAT)
Characteristics All non-CVE CVE p-value

n = 933 n = 829 n = 104
Clinical and demographic
Age (years) 63.0 

[57.0;68.2]
62.7 
[57.0;68.1]

64.0 
[56.0;69.0]

0.300

Sex (female) 402 (43.1%) 358 
(43.2%)

44 (42.3%) 0.948

Obesity 474 (50.8%) 419 
(50.5%)

55 (52.9%) 0.847

BMI (kg/m2) 30.1 
[27.4;33.8]

30.0 
[27.4;33.8]

30.1 
[27.5;33.4]

0.770

SBP (mm Hg) 136 
[126;148]

135 
[125;146]

144 
[130;158]

 < 0.001

DBP (mm Hg) 80.0 [73;87] 80.0 
[73;87]

80.0 [71;86] 0.878

HbA1c (%) 6.80 
[6.20;7.80]

6.80 
[6.20;7.70]

7.30 
[6.50;8.75]

0.001

Hypertension 673 (72.1%) 587 
(70.8%)

86 (82.7%) 0.015

Dyslipidemia 685 (73.4%) 601 
(72.5%)

84 (80.8%) 0.093

Smoking 351 (41.5%) 306 
(41.0%)

45 (45.5%) 0.952

Conventional lipid profile
Total triglycerides 
(mg/dL)

132 [95;181] 131 
[94;179]

146 
[101;189]

0.121

Total cholesterol 
(mg/dL)

191 
[167;219]

190 
[167;218]

197 
[176;224]

0.060

LDL-C (mg/dL) 113 [91;137] 112 
[91;136]

115 [98;140] 0.168

HDL-C (mg/dL) 48 [40;57] 48 [41;57] 47 [39;60] 0.882
Cardiovascular events and mortality
All-cause mortality 
(Yes)

40 (4.29%) 26 (3.14%) 14 (13.5%)  < 0.001

Cardiovascular 
mortality (Yes)

11 (1.18%) 0 (0.00%) 11 (10.6%)  < 0.001

Acute myocardial 
infarction (Yes)

19 (2.04%) 0 (0.00%) 19 (18.3%)  < 0.001

Angina pectoris 
(Yes)

18 (1.93%) 0 (0.00%) 18 (17.3%  < 0.001

Ischemic heart 
disease (Yes)

17 (1.82%) 0 (0.00%) 17 (16.3%)  < 0.001

Stroke (Yes) 22 (2.36%) 0 (0.00%) 22 (21.2%)  < 0.001
Peripheral arteri-
opathy (Yes)

31 (3.32%) 0 (0.00%) 31 (29.8%)  < 0.001

Heart failure (Yes) 10 (2.71%) 0 (0.00%) 10 (22.7%)  < 0.001
Coronary revascu-
larization (Yes)

16 (1.71%) 0 (0.00%) 16 (15.4%)  < 0.001

Bold values indicate statistical significance (P < 0.05)

Data are shown as the n (percentage) for qualitative variables and median [25th 
percentile–75th percentile] for quantitative variables. BMI, body mass index; 
CVE, cardiovascular event; LDL-C, low-density lipoprotein cholesterol; HDL-C, 
high-density lipoprotein cholesterol. SBP, systolic blood pressure; DBP, diastolic 
blood pressure.
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Glyc A, Glyc B, and all lipids scored over 75% on the 
variable importance scale for accurate CVE prediction 
(Fig. 1c).

The AUROC score calculated in Model 3 was 1.5-fold 
higher (AUROC: 0.756) compared with Model 1 (0.501) 
(Δ value = 0.255). Likewise, the balanced accuracy value 
estimated using Model 1, which was strictly built using 
only traditional risk factors, was 0.492, much lower than 

Table 2 Advanced lipoprotein variables of the LIPOCAT study
Lipid and lipoprotein variables All non-CVE CVE p-value

n = 933 n = 829 n = 104
Total lipids
Total cholesterol (mg/dL) 177 [155;198] 207 [154;198] 178 [163;198] 0.284
Total triglycerides (mg/dL) 104 [79;142] 103 [78;140] 122 [84;147] 0.017
Lipoprotein lipid distribution
VLDL-C (mg/dL) 16.8 [11.1;25.0] 16.6 [10.9;24.3] 20.7 [12.2;26.6] 0.031
VLDL-TG (mg/dL) 59.3 [40.8;92.1] 58.5 [40.9;90.7] 72.8 [37.8;96.2] 0.054
VLDL-TG/VLDL-C ratio 3.77 [3.34;4.30] 3.77 [3.34;4.31] 3.77 [3.31;4.19] 0.605
IDL-C (mg/dL) 11.3 [8.04;15.2] 11.2 [8.00;15.2] 12.7 [8.72;15.4] 0.058
IDL-TG (mg/dL) 10.9 [8.14;13.9] 10.8 [8.06;13.8] 11.9 [9.06;15.0] 0.013
IDL-TG/IDL-C ratio 0.95 [0.87;1.06] 0.95 [0.87;1.06] 0.94 [0.86;1.06] 0.879
LDL-C (mg/dL) 92.7 [78.4;109.0] 82.9 [78.5;109.0] 91.3 [77.9;107.0] 0.715
LDL-TG (mg/dL) 13.1 [10.1;16.3] 12.9 [9.91;16.2] 14.3 [11.6;17.7] 0.002
LDL-TG/LDL-C ratio 0.14 [0.12;0.16] 0.14 [0.11;0.16] 0.15 [0.13;0.18]  < 0.001
HDL-C (mg/dL) 50.9 [43.8;59.5] 50.9 [43.8;59.5] 51.6 [43.9;60.2] 0.994
HDL-TG (mg/dL) 17.8 [13.4;22.3] 17.6 [13.2;22.2] 18.7 [14.8;23.0] 0.084
HDL-TG/HDL-C ratio 0.34 [0.26;0.44] 0.34 [0.26;0.43] 0.37 [0.28;0.45] 0.084
Lipoprotein size distribution
VLDL diameter (nm) 42.2 [42.0;42.3] 42.2 [42.0;42.3] 42.2 [42.0;42.3] 0.789
VLDL-P (nmol/L) 45.4 [31.0;67.9] 44.4 [31.0;67.2] 56.7 [30.2;71.8] 0.052
Large (nmol/L) 1.17 [0.91;1.58] 1.15 [0.91;1.56] 1.32 [0.91;1.64] 0.090
Medium (nmol/L) 4.77 [3.21;7.36] 4.74 [3.21;7.16] 5.58 [3.43;9.27] 0.038
Small (nmol/L) 39.3 [26.9;58.9] 38.7 [26.9;58.7] 49.2 [26.7;61.1] 0.060
LDL diameter (nm) 20.8 [20.6;20.9] 20.8 [20.6;20.9] 20.9 [20.7;21.0] 0.078
LDL-P (nmol/L) 705 [609;817] 708 [607;819] 696 [617;804] 0.960
Large (nmol/L) 96.8 [83.5;111.0] 96.4 [83.1;111.0] 99.7 [89.9;114.0] 0.105
Medium (nmol/L) 188 [145;238] 188 [144;237] 188 [147;241] 0.871
Small (nmol/L) 423 [369;477] 423 [369;478] 414 [367;477] 0.498
HDL diameter (nm) 8.20 [8.15;8.24] 8.19 [8.15;8.24] 8.22 [8.17;8.26] 0.004
HDL-P (nmol/L) 29.2 [24.7;34.4] 29.2 [24.7;34.5] 29.4 [24.9;34.1] 0.927
Large (nmol/L) 0.29 [0.25;0.32] 0.28 [0.25;0.32] 0.29 [0.27;0.32] 0.007
Medium (nmol/L) 8.83 [7.82;9.81] 8.79 [7.80;9.76] 9.10 [8.08;10.0] 0.070
Small (nmol/L) 20.2 [16.3;24.5] 20.3 [16.3;24.6] 19.8 [16.2;23.9] 0.413
Calculated CV surrogates
Small HDL-P-to-medium HDL-P 2.27 [1.95;2.68] 2.28 [1.98;2.72] 2.19 [1.87;2.55] 0.039
LDL-P-to-HDL-P 24.4 [19.8;29.6] 24.3 [19.9;29.6] 24.7 [19.8;29.8] 0.714
Total particles-to-HDL-P 26.2 [21.4;31.6] 26.0 [21.4;31.5] 26.7 [21.5;31.8] 0.496
Non-HDL-P (nmol/L) 728 [635;841] 726 [634;841] 729 [650;832] 0.622
HDL-C/total TG 0.50 [0.34;0.71] 0.50 [0.34;0.71] 0.44 [0.30;0.67] 0.063
Cholesterol remnants (Liposcale®; mg/dL) † 28.7 [20.0;39.4] 28.5 [20.0;38.6] 32.7 [21.3;42.9] 0.019
Cholesterol remnants (EAS; mg/dL) ‡ 29.1 [20.5;39.0] 28.6 [20.1;38.7] 33.5 [22.8;42.3] 0.010
Bold values indicate statistical significance (P < 0.05)

Data are shown as the median (25th percentile–75th percentile). † Remnant cholesterol EAS formula = triglycerides (TG) * (VLDL-C/VLDL-TG). ‡ Remnant cholesterol 
Liposcale® formula = VLDL-C + IDL-C. C, cholesterol; CV, cardiovascular; CVE, cardiovascular event; VLDL, very low-density lipoprotein; VLDL-P, VLDL particles; IDL, 
intermediate-density lipoprotein; LDL, low-density lipoprotein; LDL-P, LDL particles; HDL, high-density lipoprotein; HDL-P, HDL particles; TG, triglycerides.

Table 3 Advanced glycoprotein variables of the LIPOCAT study
Characteristics All non-CVE CVE p-value

n = 845 n = 746 n = 99
Glyc A (μmol/L) 793 [710;899] 789 [707;896] 821 [739;931] 0.042
Glyc B (μmol/L) 385 [349;427] 384 [349;426] 393 [359;452] 0.007
Data are shown as the median [25th percentile–75th percentile]. CVE, 
cardiovascular event; Glyc A, glycoprotein A; Glyc B, glycoprotein B.
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Fig 1.  Random forest analysis for CVE prediction. Model 1: a Random Forest model of cardiovascular risk factors (including sex, age, BMI, hypertension, 
dyslipidemia, smoking habit) and b Model 2: Random Forest of Model 1 + conventional lipid profile (i.e., total triglycerides, total cholesterol, HDL-C and 
LDL-C, remnant cholesterol calculated by EAS formula = Triglycerides (TG) * (VLDL-C/VLDL-TG). c Model 3: Random forest of Model 1 + Liposcale® + Gly-
coproteins variables and remnant cholesterol calculated by the Liposcale® formula = VLDL-C + IDL-C. Yellow dots = traditional cardiovascular risk factors. 
Orange dots = conventional lipid profile. Blue dots = Liposcale® + Glycoproteins variables
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Model 3, which had the addition of Liposcale® and Gly-
coscale variables (0.709). Supplementary Table  1 details 
false-positive and false-negative rates for each model. 
(Table 4).

Internal validation cohort analysis
The addition of Liposcale® and Glycoscale variables to the 
traditional base model increased the prediction accuracy 
for CVE, as revealed by the use of confusion matrices. 

Internal analysis by comparing all models revealed that 
predictability improved from 25% (Model 1) to 85% 
(Model 3). Moreover, the rate of false negatives was sig-
nificantly reduced when adding the advanced variables 
to the traditional ones (Model 3, 15%) compared to using 
only the traditional CVRFs (Model 1, 75%). However, the 
relative rate of false positives increased when using the 
Model 3 (45%) compared to Model 1 (27%).

The comparison of ROC curves (Fig.  2a)and AUC 
values (Fig.  2c) supported the added value of using 
advanced variables to predict CVE in the LIPOCAT 
cohort. Interestingly, the AUC values calculated in Model 
3 were significantly increased compared with those cal-
culated using Model 1 (p-value = 0.004) and Model 2 
(p-value = 0.002).

To assess potential differences in predictive perfor-
mance across cardiovascular event (CVE) types, we 
applied Model 3 (traditional CV risk factors, Liposcale®, 
and Glycoscale markers) to individual CVE subgroups. 
As shown in Table  5, the model demonstrated moder-
ate to good discrimination across most event types, with 
(AUROC values ranging from 0.571 to 0.866).

To further evaluate the predictive performance of our 
models, we conducted additional analyses incorporat-
ing family history of cardiovascular disease, glycopro-
teins (Glyc A and Glyc B), HbA1c levels, and SCORE2 
alongside traditional cardiovascular risk factors (CVRF). 
The inclusion of family history of cardiovascular disease 

Table 4 Performance Metrics of Predictive Models for 
Cardiovascular Events in the LIPOCAT study
Model 
description

Model Accuracy Sensitivity Specific-
ity

AUROC

Traditional 
CV risk fac-
tors (CVRF)

1 0.492 0.250 0.733 0.501 
[0.36;0.64]

CVRF + con-
ventional 
lipid profile 
†

2 0.432 0.050 0.815 0.489 
[0.36;0.62]

CVRF + Li-
poscale® 
‡ + Gly-
coscale

3 0.709 0.850 0.567 0.756 
[0.65;0.86]

AUROC data are shown as the median [lower value; upper value] of the 
confidence interval. CVE, cardiovascular event; AUROC, area under the ROC 
curve. † Remnant cholesterol EAS formula = Triglycerides (TG) * (VLDL-C/
VLDL-TG). ‡ Remnant cholesterol Liposcale® formula = VLDL-C + IDL-C. CVRF, 
cardiovascular risk factors (BMI, age, sex, hypertension, dyslipidemia, and 
smoking habit).

Fig 2. Predictability accuracy and ROC curves in the LIPOCAT cohort. a. ROC curves. b. Confusion matrices. c. AUC curves. Model 1: Traditional CV risk 
factors (CVRF); Model 2: Traditional CVRF + conventional lipid variables, including remnant cholesterol EAS formula = triglycerides (TG) * (VLDL-C/VLDL-TG). 
Model 3: Traditional CVRF + Liposcale®, + Glycoscale variables, including remnant cholesterol Liposcale® formula = VLDL-C + IDL-C

 



Page 9 of 14Amigó et al. Cardiovascular Diabetology           (2025) 24:88 

slightly reduced the false negative rate; however, it did 
not significantly improve the overall model performance, 
as reflected by unchanged AUC values (0.756, Supple-
mentary Table  2 and Supplementary Fig.  1). Upon add-
ing glycoproteins to the traditional CVRF model (Model 
4, Supplementary Fig.  2), the AUC increased to 0.629, 
indicating improved predictive performance compared 
to the base model using CVRF alone (Model 1). How-
ever, this improvement was not statistically significant in 
comparison to the model that incorporated both Lipo-
scale® and Glycoscale variables (Model 3). Incorpora-
tion of HbA1c into the traditional CVRF and Liposcale® 
parameters (Model 4, Supplementary Fig.  3) resulted in 
an increased AUC (0.682) compared to the base model 
using CVRF alone (Model 1). However, this improvement 
was less pronounced than that observed in Model 3, 
which included both Liposcale® and Glycoscale variables. 
Consequently, the addition of HbA1c did not surpass the 
predictive performance of the model incorporating glyco-
proteins, and the overall conclusions of the study remain 
unchanged. Integrating the SCORE2 risk score into the 
traditional CVRF model (Model 4, Supplementary Fig. 4) 
led to an AUC increase to 0.678, reflecting improved pre-
dictive performance over CVRF alone. The subsequent 
addition of the HbA1c variable in Model 5 resulted in a 

slight enhancement in discrimination, though this did 
not substantially alter the AUROC values compared to 
Model 4. Importantly, both models demonstrated infe-
rior predictive accuracy relative to Model 3, which con-
sistently yielded the highest performance. Overall, Model 
3, which integrates traditional CVRF with Liposcale® and 
Glycoscale variables, consistently demonstrated the best 
performance for CVE prediction across all analyses.

External validation cohort analysis
To validate the results from the LIPOCAT cohort, we 
tested the models and conducted an analysis using con-
fusion matrices and calculated the AUROC values with 
an independent cohort comprising 187 subjects, of 
which 41 had a CVE. The clinical variables are detailed 
in Supplementary Table 3, while the Liposcale® and Gly-
coscale variables are provided in Supplementary Table 4. 
This validation process allowed us to assess the perfor-
mance and generalizability of the models using a separate 
dataset.

Consistent with the LIPOCAT cohort, this validation 
cohort showed that the AUROC score values calculated 
when adding the Liposcale® and Glycoscale variables to 
traditional CVRFs were 1.2-fold higher (AUROC: 0.669) 
compared with the traditional base model (0.540) (Δ 
value = 0.129) (Fig. 3).

Our analysis also revealed that the balanced accuracy 
value estimated using the traditional base model, which 
was strictly built only using traditional CVRFs, was 0.499, 
much lower than that obtained by adding the Liposcale® 
and Glycoscale variables (0.631) (Table 6).

The addition of Liposcale® and Glycoscale variables to 
the traditional base Model 1 also increased the predic-
tion accuracy for CVE in the external validation cohort 
(Fig. 3a), similar to the internal validation analysis results 
(Fig. 2a). The estimated accuracy was greater when using 
Model 3 (74%) compared with Model 1 (20%). The false 
negatives were also reduced when adding the advanced to 
the traditional CVRFs (Model 3, 26%) compared with the 
matrix built solely on traditional factors (Model 1, 80%). 
However, the relative rate of false positives remained 
much higher for Model 3 (48%) compared with Model 1 
(20%).

The comparison of ROC curves (Fig. 3b) and AUC val-
ues (Fig. 3c) supports the added value of using advanced 
variables to predict CVE in this validation cohort, fully 
consistent with the data obtained using the LIPOCAT 
cohort.

Discussion
Conventional clinical lipid/lipoprotein variables do not 
show the full complexity of the altered lipid metabolism 
associated with increased cardiovascular burden in sub-
jects with T2D [32]. Conversely, the relationship between 

Table 5 Predictive performance of Model 3 across different 
cardiovascular event subgroups in the LIPOCAT cohort
Cardiovascular 
events

Balanced 
Accuracy

Sensitivity Specificity AUROC

All-cause 
mortality

0.607 0.50 0.71 0.738 
(0.31–
1.00)

Cardiovascular 
mortality

0.646 0.50 0.79 0.756 
(0.34–
1.00)

Acute myocar-
dial infarction

0.666 0.67 0.66 0.815 
(0.61–
1.00)

Angina pectoris 0.653 0.67 0.64 0.705 
(0.32–
1.00)

Ischemic heart 
disease

0.668 0.67 0.67 0.709 
(0.42–
1.00)

Stroke 0.841 1.00 0.68 0.829 
(0.70–
0.96)

Peripheral 
arteriopathy

0.551 0.50 0.60 0.571 
(0.31–
0.83)

Heart failure 0.634 0.50 0.77 0.740 
(0.34–
1.00)

Coronary 
revascularization

0.829 1.00 0.66 0.866 
(0.69–
1.00)
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advanced lipoprotein characteristics or glycoproteins and 
atherosclerosis has recently been reported in subjects 
with T2D [5, 33]. However, their contribution to CVE in 
this complex metabolic context has not been previously 
evaluated. In this study, we assessed the predictive poten-
tial of quantitative non-traditional variables analyzed 
by 1H-NMR for CVE across 933 T2D subjects enrolled 
from different cohorts. Advanced NMR methodologies 
enable the assessment of hidden, differentially expressed 

molecules related to lipoprotein metabolism and inflam-
mation, which could be candidate biomarkers of CVE in 
subjects with T2D.

Our NMR data revealed elevations in total triglycer-
ides, primarily due to significant increases in triglycer-
ides in VLDL, IDL, and LDL, although VLDL-TGs were 
only marginally increased in the CVE group. These find-
ings suggest impaired lipolysis, which could lead to the 
accumulation of cholesterol remnants in this group of 
subjects [31]. In support of this is the evidence showing 
an accumulation of VLDL and IDL in T2D subjects in the 
CVE group. In this respect, firstly, VLDL-C, and IDL-C 
albeit marginally, were increased in the CVE group. Sec-
ondly, due to the nature of circulating IDL particles, our 
[1H]-NMR approach did not classify this class of lipo-
proteins by size. Despite this limitation, medium and 
smaller VLDL-P were also increased in the CVE group; 
thus, their sum could be considered a novel correlate of 
such remnant lipoprotein. Lastly, the remnant cholesterol 
levels in the CVE group were significantly elevated com-
pared with the non-CVE group. Moreover, the calculated 
levels of cholesterol remnants were consistent with those 
directly determined by the NMR approach. Indeed, our 
NMR analysis provided a more accurate estimation of 
serum cholesterol remnant concentrations than previous 
studies [34, 35], which simply calculated them by sub-
tracting the LDL-C and HDL-C moieties from total cho-
lesterol determined using conventional methods.

Table 6 Performance Metrics of Predictive Models for 
Cardiovascular Events in the validation cohort
Model 
description

Model Accuracy Sensitivity Specific-
ity

AUROC

Traditional 
CV risk fac-
tors (CVRF)

1 0.499 0.200 0.797 0.540 
[0.45;0.63]

CVRF + con-
ventional 
lipid profile 
†

2 0.494 0.154 0.835 0.629 
[0.54;0.72]

CVRF + Li-
poscale® 
‡ + Gly-
coscale

3 0.631 0.744 0.518 0.669 
[0.58;0.75]

AUROC data are shown as the median [lower value; upper value] of the 
confidence interval. CVE, cardiovascular event; AUROC, area under the ROC 
curve. † Remnant cholesterol EAS formula = Triglycerides (TG) * (VLDL-C/
VLDL-TG). ‡ Remnant cholesterol Liposcale® formula = VLDL-C + IDL-C. CVRF, 
cardiovascular risk factors (BMI, age, sex, hypertension, dyslipidaemia, and 
smoking habit).

Fig. 3 Predictability accuracy and ROC curves in the validation cohort. a. ROC curves. b. confusion matrices. c. AUC curves. Model 1: Traditional CV risk fac-
tors; Model 2: Traditional CV risk factors + conventional lipid variables, including remnant cholesterol EAS formula = triglycerides (TG) * (VLDL-C/VLDL-TG). 
Model 3: Traditional CV risk factor + Liposcale®, + Glycoscale variables, including remnant cholesterol Liposcale® formula = VLDL-C + IDL-C
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Although the atherogenicity of cholesterol remnants, 
which include both medium-to-smaller range of VLDL 
and IDL, is an old concept [36], there is renewed inter-
est due to their predictive potential for CVE [31, 37]. The 
accumulation of cholesterol remnants in circulation is 
considered a potential risk factor for future CVE in T2D 
subjects [38]; consistent with our data. Specifically, eleva-
tions in circulating IDL are highly proatherogenic [39] 
and considered a risk factor for CVD [40]. In this context, 
we identified the IDL-TG-to-IDL-C ratio (Liposcale®) as 
a variable associated with CVE. However, no significant 
differences in the ratio were observed between the CVE 
and non-CVE groups.

Another important finding from our study was the 
elevated concentrations of LDL-TG in the CVE group 
compared with the non-CVE group. Our data align with 
other studies where LDL-TG has been recently identified 
as a risk factor for CVD [41, 42]. Since CVE parallels the 
development of atherosclerosis in T2D [43], increased 
triglyceride content in LDL might also be a potential 
candidate risk factor of CVE; however, LDL-TG did not 
appear among the advanced variables significantly linked 
to CVE.. In our cohort, despite the absence of significant 
differences in LDL-cholesterol levels, both groups (with 
and without CVE) exhibited a high proportion of small 
LDL particles, with over 50% of total LDL belonging to 
the small subclass (particle size < 21 nm). This lipid pro-
file is characteristic of atherogenic dyslipidemia, a well-
recognized contributor to increased cardiovascular risk 
in patients with type 2 diabetes. Our findings suggest that 
LDL particle composition, rather than LDL-cholesterol 
concentration alone, may be a more relevant marker of 
atherogenicity in this population.

Systemic chronic inflammation, a frequent feature in 
diabetes [44], is also related to an elevated risk of CVE 
in T2D subjects [45]. In this context, another set of vari-
ables differentially expressed in the CVE group was 
glycoproteins. Recent research has linked circulating 
NMR-derived glycoproteins with chronic inflammation 
in various clinical studies [28, 33], suggesting their poten-
tial as systemic biomarkers of inflammation. Supporting 
this notion, glycoprotein elevations has been associated 
with atherogenic dyslipidemia in subjects with T2D [33]. 
Importantly, their added predictive value above other 
traditional risk factors of CVE was unveiled in this study, 
along with advanced lipoproteins characteristics.

In the external validation cohort, the predictive perfor-
mance of models incorporating advanced NMR-based 
lipid and glycoprotein variables did not significantly 
exceed that of models using traditional lipid parameters. 
This contrasts with findings from the LIPOCAT cohort, 
where NMR markers improved CVE prediction. The dif-
ferences in event composition between cohorts likely 
contributed to this discrepancy. The external cohort 

predominantly experienced stroke and heart failure, with 
no recorded cases of atherosclerotic cardiovascular dis-
ease (e.g., myocardial infarction), where lipid metabo-
lism plays a more critical role. Additionally, the smaller 
sample size and the absence of mortality events may 
have limited the statistical power to detect differences in 
model performance.

Although NMR is currently considered a relatively 
expensive technique, its scalability and clinical utility 
make it a valuable tool for cardiovascular risk assess-
ment. It is particularly beneficial for patients with dyslip-
idemia and residual cardiovascular risk, especially those 
with metabolic disorders such as diabetes, obesity, and 
metabolic syndrome. The Spanish Society of Arterioscle-
rosis (SEA) has identified key patient groups who could 
benefit most from this technology [46]. A preliminary 
evaluation estimated that around 0.1% of the Spanish 
population (~ 48,000 individuals) would be eligible for 
NMR-based lipoprotein analysis. Despite its cost, a sin-
gle NMR instrument can process up to 50,000 samples 
per year ensuring sufficient analytical capacity without 
requiring additional infrastructure for broad territories. 
Given that a single plasma sample can provide over 70 
molecular parameters related to cardiometabolic and 
inflammatory risk, NMR profiling represents a powerful 
tool for improving risk stratification and guiding preven-
tive strategies.

One of the main strengths of this study was the inclu-
sion of a large population of age, sex, and BMI-matched 
T2D subjects with follow-up of CVE. This eliminated 
major confounding factors, providing a better evalua-
tion of lipoprotein characteristics uncovered by advanced 
[1H]-NMR analysis. Another important strength was 
the improved predictive value provided by incorporating 
Liposcale® variables to traditional clinical variables linked 
to CVE, confirmed elegantly in an independent valida-
tion cohort. However, our study had some limitations. 
The study did not examine traditional factors like diabe-
tes duration or kidney disease estimates for their effects 
on CVE risk. This limitation prevented us from directly 
comparing our developed models to the SCORE2-dia-
betes risk prediction algorithms, which are currently 
used to predict events in reference populations. As these 
variables were not consistently recorded across cohorts, 
they may have obscured the predictive value of advanced 
[1H]-NMR-derived variables in our study. Although our 
model exhibits a relatively high false-positive rate, its 
value lies in identifying individuals with a molecular pro-
file associated with elevated cardiovascular risk, even if 
they have not yet experienced the event. A high-risk clas-
sification may indicate that the patient is in a subclinical 
or pre-event stage, suggesting they are closer to experi-
encing a cardiovascular event due to their molecular sig-
nature. This predictive capacity is particularly valuable 
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for early risk stratification, allowing for timely preventive 
interventions that could mitigate disease progression and 
reduce the likelihood of future adverse events.

Conclusions
Advanced 1H-NMR analysis reveal previously hidden 
lipoprotein and glycoprotein characteristics associated 
with CVE in T2D subjects. The enhanced prediction of 
CVE offered by these advanced variables, beyond tradi-
tional risk factors, suggests their potential as novel bio-
markers for cardiovascular risk stratification in diabetes 
mellitus.
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