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Abstract
Background Using a data-driven approach, six clusters with different risk profiles and burden of complications were 
recently identified in middle-aged people before the diagnosis of type 2 diabetes (T2D). We aimed to investigate 
whether these clusters could be generalised to older people and if subclinical inflammation was related to their 
cardiometabolic risk profiles.

Methods We assigned 843 participants of the KORA F4 study aged 61–82 years without T2D to the six previously 
defined phenotype-based clusters. Based on 73 biomarkers of subclinical inflammation, we derived an inflammation-
related score (“inflammatory load”) using principal component analysis to assess subclinical inflammation. Risk 
factors, inflammatory load as well as prevalence and incidence of (pre)diabetes-related complications were compared 
between the clusters using pairwise comparisons and regression analyses.

Results Clusters 1 and 2 had the lowest cardiometabolic risk, whereas clusters 5 and 6 the highest. T2D risk was 
highest in clusters 3, 4, 5, and 6 compared with the low-risk cluster 2 (age- and sex-adjusted ORs between 3.6 and 
34.0). In cross-sectional analyses, there were significant between-cluster differences in chronic kidney disease (CKD), 
distal sensorimotor polyneuropathy (DSPN) and cardiovascular disease (all p < 0.045). In prospective analyses (mean 
follow-up time 6.5–8.3 years), clusters differed significantly in CKD and DSPN incidence, but not in incident CVD or 
all-cause mortality. The inflammatory load was highest in the high-risk cluster 5 and lowest in cluster 2. Adjustment for 
the inflammatory load had only a minor impact on the aforementioned differences in outcomes between clusters.

Conclusions Our findings extend the knowledge about the previously identified six phenotype-based clusters in 
older people without T2D. Differences between clusters were more pronounced for T2D risk than for prevalent or 
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Background
The heterogeneity of diabetes has been addressed by pro-
posing novel subtypes of diabetes [1, 2]. The most widely 
replicated approach identified—in addition to severe auto-
immune diabetes (SAID) mainly reflecting type 1 diabetes 
(T1D)—four subtypes reflecting type 2 diabetes (T2D) that 
were designated severe insulin-deficient diabetes (SIDD), 
severe insulin-resistant diabetes (SIRD), mild obesity-
related diabetes (MOD) and mild age-related diabetes 
(MARD) [3, 4]. These subtypes display distinct patterns of 
clinical features and disease progression [1–3]. Their dif-
ferences in the incidence of diabetes-related complications 
may partly be attributable to differences in age, anthropo-
metric and metabolic characteristics, while these subtypes 
also differ in biomarkers of inflammation and immune 
cells. Among the five novel subtypes, SIRD is characterised 
both by the most pronounced proinflammatory profile [5, 
6] and the highest risk for diabetes-related complications 

[3]. Given the development of T2D over decades it is likely 
that such heterogeneity is already present before the diag-
nosis of diabetes, e.g. in people with prediabetes or in 
older people with a high T2D risk.

Prediabetes and older age are not only high-risk states 
for the incidence of type 2 diabetes but also associ-
ated with a higher risk for “(pre)diabetes-related” com-
plications and mortality compared to normal glucose 
tolerance [7, 8]. A recent study described six novel sub-
phenotypes/clusters in people before the diagnosis of 
diabetes that differ in clinical and metabolic characteris-
tics and in the risk of (pre)diabetes-related complications 
[9]. The initial cluster analysis relied on highly sophisti-
cated phenotyping but a replication of the clusters was 
possible using variables that are more commonly avail-
able [9]. Importantly, these six clusters were derived 
from middle-aged populations, and it is unknown if 
they are generalisable to older populations with higher 

incident (pre)diabetes-related complications and absent for mortality. The high cardiometabolic risk corresponded to 
the high inflammatory load in cluster 5 but not to the lower inflammatory load of high-risk clusters 3 and 6.
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cardiometabolic risk. Additionally, the clusters differed 
in circulating high-sensitivity C-reactive protein (hsCRP) 
[9] with the highest hsCRP levels in cluster 5 (“high risk 
with insulin-resistant fatty liver”) and cluster 6 (“high 
risk with visceral fat and nephropathy”). Of note, both 
clusters were among the ones with the highest risk for 
complications and mortality [9]. However, a more com-
prehensive assessment of subclinical inflammation in the 
different clusters based on multiple biomarkers that may 
explain differences in disease progression has not been 
performed.

Therefore, our study aimed (i) to replicate the clus-
ters described by Wagner et al. [9] in older adults from 
the population-based cohort study Cooperative Health 
Research in the Region of Augsburg (KORA) F4/FF4, (ii) 
to characterise differences between the clusters in inci-
dent T2D, (iii) to evaluate differences in the prevalence 
and incidence of (pre)diabetes-related complications 
(chronic kidney disease [CKD], distal sensorimotor poly-
neuropathy [DSPN], cardiovascular disease [CVD]) and 
mortality and (iv) to assess differences in > 70 biomarkers 
of subclinical inflammation and their pooled inflamma-
tory load between the clusters.

Methods
Study design and population
This study was based on data from the KORA F4 study 
(2006–2008) and the KORA FF4 study (2013–2014), both 
follow-up examinations of the population-based KORA 
S4 study (1999–2001) conducted in Augsburg and two 
adjacent counties in Germany [10].

From the 3,080 participants of the KORA F4 study, 
we excluded participants who withdrew consent (n = 5), 
were not in the age range of 61–82 years (n = 1915), had 
clinically diagnosed or OGTT-diagnosed diabetes at 
F4 (n = 254) or had missing information on the diabetes 
status (n = 25) and/or had missing information on the 
prediabetes phenotyping variables (n = 14). After these 
exclusions, 867 participants remained for assignment to 
prediabetes clusters. Of note, the restriction to the age 
range between 61 and 82  years was necessary because 
data for 2-h insulin (OGTT), which is essential for the 
clustering, are only available in this subgroup. We addi-
tionally excluded participants with missing informa-
tion on biomarkers of inflammation (n = 24) leaving 843 
participants for complete-case analysis investigating the 
inflammatory load. All 843 participants had fasted for at 
least 8  h before blood sampling. Supplementary Fig.  1, 
Additional file 1 describes these exclusions in detail. 
For the prospective analyses on incident T2D, CKD and 
DSPN (mean follow-up time 6.5 ± 0.2  years), we further 
excluded participants who did not participate in FF4. 
CVD incidence and all-cause mortality were assessed 
until the end of 2016 (mean follow-up time 7.8 ± 1.9 years 

and 8.3 ± 1.7 years for incident CVD and all-cause mor-
tality, respectively). Participants lost-to-follow-up were 
censored at the time of last information.

Assessment of variables for the cluster assignment
Cluster assignment was performed as described for the 
Whitehall II cohort [9; see also  h t t p  s : /  / c l u  s t  e r .  a p p  s . d z  d 
-  e v . o r g /] based on the following variables in KORA F4: 
age, BMI, waist circumference, hip circumference, fasting 
glucose, 2-h glucose (OGTT), fasting insulin, 2-h insu-
lin (OGTT), fasting triglycerides, fasting HDL-choles-
terol, insulin secretion (Stumvoll) and insulin sensitivity 
(Matsuda). This led to the following six clusters: cluster 
1, Low risk; cluster 2, Very low risk; cluster 3, Beta-cell 
failure; cluster 4, Low risk obese; cluster 5, High risk 
insulin-resistant fatty liver; cluster 6, High risk visceral 
fat nephropathy.

Anthropometric and metabolic variables were mea-
sured as described [11, 12]. Data from the OGTT were 
used to assess glucose tolerance categories (normal glu-
cose tolerance [NGT], impaired fasting glucose [IFG], 
impaired glucose tolerance [IGT]) based on the 1999 
World Health Organization diagnostic criteria [11]. 
Insulin secretion was assessed using Stumvoll’s first-
phase insulin secretion index based on fasting and 2-h 
glucose and insulin levels [13]. Insulin sensitivity was 
quantified using the whole-body insulin sensitivity index 
(ISI(composite)) as described by Matsuda and DeFronzo 
[14].

Assessment of T2D, (pre)diabetes-related complications 
and mortality
Prevalent T2D at KORA F4 was defined based on a vali-
dated physician diagnosis or as newly diagnosed diabetes 
by OGTT (≥ 7.0 mmol/l fasting or ≥ 11.1 mmol/l 2-h glu-
cose) in KORA F4. Incident T2D was defined based on a 
validated physician diagnosis between KORA F4 and FF4 
or as newly diagnosed diabetes by OGTT (≥ 7.0 mmol/l 
fasting or ≥ 11.1 mmol/l 2-h glucose) in KORA FF4 [11].

Kidney function was assessed using the estimated glo-
merular filtration rate (eGFR, ml/min/1.73m2) which 
was calculated according to the Chronic Kidney Dis-
ease Epidemiology (CKD-EPI 2012) equation based on 
both serum creatinine and cystatin-C. An eGFR < 60 ml/
min/1.73m2 was used to define prevalent and incident 
CKD at KORA F4 or FF4.

DSPN was assessed using the physical examina-
tion component of the Michigan Neuropathy Screen-
ing Instrument (MNSI) as described [15]. Prevalent and 
incident DSPN were defined using a cut-off at > 3 points 
based on the examinations at F4 and FF4.

Prevalent CVD included myocardial infarction (MI) 
and stroke at F4 based on self-reported information and 
data from the Augsburg MI registry if applicable. Incident 

https://cluster.apps.dzd-ev.org/
https://cluster.apps.dzd-ev.org/
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CVD includes a combined endpoint of incident non-fatal 
and fatal MI including all coronary heart deaths as well as 
incident non-fatal and fatal stroke (ischaemic and haem-
orrhagic strokes without transient ischaemic attacks).

Vital status was determined using population regis-
tries, and death certificates were requested from the local 
health authorities to ascertain causes of death. In addition 
to the follow-up examination FF4 we used data from fol-
low-up questionnaires sent to all reachable participants 
in 2008–2009 and in 2016 to obtain information on the 
occurrence of incident non-fatal MI and stroke. All inci-
dent events were validated by hospital discharge records, 
information from the treating physician or data from the 
Augsburg MI registry if coronary events occurred in the 
age range (≤ 74 years until 2009 and ≤ 84 years thereafter) 
and the area covered by the MI registry.

Biomarkers of subclinical inflammation
Biomarkers of subclinical inflammation were measured 
in fasting serum using proximity extension assay technol-
ogy (Target 96 Inflammation panel, OLINK Proteomics, 
Uppsala, Sweden) in KORA F4 participants aged 
61–82 years as described [16]. This proximity extension 
assay allows the measurement of 92 protein biomarkers 
including pro- and anti-inflammatory cytokines, che-
mokines, growth factors and factors involved in acute 
inflammatory and immune responses, angiogenesis, 
fibrosis and endothelial activation. These biomarkers are 
designated “biomarkers of inflammation” although some 
of them may also be considered metabolic biomark-
ers or biomarkers also reflecting other pathways. Bio-
marker levels are given as normalised protein expression 
(NPX) values, which are comparable in their distribu-
tion to log2-transformed protein concentrations. Out of 
the 92 measured proteins, 21 biomarkers were excluded 
due to quality control issues (≥ 25% of values below the 
limit of detection and/or inter-assay coefficient of varia-
tion > 20%) [16]. Remaining values below the limit of 
detection were retained in the data and not substituted. 
We examined each individual biomarker for outliers and 
set one implausibly low value of one participant for trans-
forming growth factor beta-1 proprotein (TGFb1) to the 
next lowest available value of the protein.

In addition, we included hsCRP and tumour necrosis 
factor alpha (TNFα), which were measured separately. 
hsCRP was measured in EDTA plasma using high-sensi-
tivity latex-enhanced nephelometric assay on a BN II ana-
lyzer (Dade Behring) and TNFα was measured in serum 
by ELISA [17]. hsCRP and TNFα levels were log2 trans-
formed as their values were not normally distributed. 
Therefore, the final data set consisted of 73 biomarkers 
of subclinical inflammation, which were all transformed 
using z-standardisation.

Additional participant characteristics
Systolic and diastolic blood pressure were measured 
according to standardised protocols. Hypertension was 
defined as blood pressure of 140/90  mmHg or higher 
or by the use of antihypertensive medication given that 
participants were aware of being hypertensive [18]. Infor-
mation on medication was collected by trained medical 
interviewers. Being physically active was defined as exer-
cising in summer and winter for more than 1 h/week [19].

Statistical analysis
Cluster assignment was based on the aforementioned 
variables and performed using the same method as in the 
Whitehall II cohort [9]. Summary statistics are reported 
as means ± SD for continuous variables and percentages 
for categorical variables. Differences between the clusters 
were calculated using one-way ANOVA for continuous 
variables and chi-square test or Fisher’s exact test (used 
for cell sizes < 5) for categorical variables. Chi-square 
test or Fisher’s exact test were also used to assess dif-
ferences in prevalent and/or incident outcomes (T2D, 
CKD, DSPN) among the clusters as appropriate, and for 
pairwise comparisons between clusters. Comparisons 
between clusters were performed with cluster 2 as the 
reference since this cluster had the lowest inflamma-
tory load (see below for the calculation) compared to the 
other clusters.

We performed principal component analysis (PCA) 
with all 73 biomarkers of inflammation using the R pack-
age “FactoMineR” [20] to derive a score of “inflamma-
tory load” for each participant. The “inflammatory load” 
was derived by combining levels of multiple biomarkers 
and indicates a state of subclinical inflammation (higher 
scores indicate a higher inflammation). After conduct-
ing the PCA, we assessed the stability of the first five 
principal components by bootstrapping of the PCA. 
Hereby, the Pearson correlation coefficient was calcu-
lated between the variable scores before bootstrapping 
(original sample) and each of the 1000 bootstrap samples 
individually. Boxplots were used to visualise the median 
correlation coefficient of all 1000 coefficients and their 
distribution. We then calculated the inflammatory load, 
i.e. the principal component score, of each participant 
from principal component 1. This approach was based 
on the analysis strategy of Morrisette-Thomas et al. [21]. 
Afterwards, we compared the inflammatory load and the 
individual levels of the multiple biomarkers of subclini-
cal inflammation between the clusters using boxplots and 
pairwise comparisons between all clusters (15 compari-
sons) and between each cluster against all other clusters 
combined (6 comparisons). For the comparisons of the 
inflammatory load between the clusters, the following 
three models were used: Model 1, unadjusted; model 2, 
adjusted for age and sex; model 3, adjusted for age, sex, 
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and BMI. Pairwise comparisons were performed using 
the R package “multcomp” [22]. In addition, Spearman’s 
rank correlation was applied to calculate the correla-
tion between the inflammatory load and the clustering 
variables.

The associations of the six clusters with prevalent CKD, 
DSPN and CVD as well as with incident T2D, CKD and 
DSPN were assessed with logistic regression to obtain 
odds ratios (OR) and 95% confidence intervals (CI). The 
associations of clusters with incident CVD and all-cause 
mortality were assessed with Cox regression to obtain 
hazard ratios (HR) and 95% CI as the times of events 
were known during the follow-up period. Addition-
ally, for incident CVD and all-cause mortality, which are 
time-to-event outcomes, we plotted the Kaplan–Meier 
survival curves stratified by cluster and used the log-rank 
test to assess differences between survival time. For both 
the logistic regression and Cox regression analyses four 
models were built. Model 1 was unadjusted, model 2 was 
adjusted for age and sex, model 3 was adjusted for age, 
sex and BMI and model 4 was adjusted for age, sex and 
inflammatory load.

Statistical analyses were performed using R version 
4.3.1 and SAS statistical software (version 9.4; SAS Insti-
tute Inc., Cary, NC, USA). A p value of < 0.05 was used 
to indicate statistical significance. Benjamini–Hochberg 
adjusted p values were additionally calculated to account 
for multiple testing.

Results
Baseline sample characteristics
We replicated six clusters among older adults without 
T2D in the KORA study. Among the clusters, there were 
significant differences between all clustering variables 
except for age (all other p < 0.05, Table 1). Obesity indices 
were higher in clusters 4, 5 and 6 compared to clusters 1, 
2 and 3. Glucose levels were highest in clusters 3, 5 and 6, 
which were also characterised by the lowest insulin sensi-
tivity. Insulin secretion was lowest in clusters 2, 3 and 4. 
Lipid levels were most unfavourable (high triglycerides, 
low HDL cholesterol) in cluster 5. Cluster 5 had the high-
est proportion of individuals with hypertension.

The distribution of individuals by glucose tolerance sta-
tus is shown in Supplementary Table 1, Additional file 1 
and Fig. 1a. Clusters 1, 2 and 4 had the largest proportion 

Table 1 Clinical characteristics and other risk factors of the clusters (n = 867)
Cluster 1 (Low 
risk) (n = 87, 
10.03%)

Cluster 2 
(Very low 
risk) (n = 313, 
36.10%)

Cluster 3 
(Beta-cell fail-
ure) (n = 159, 
18.34%)

Cluster 4 (Low 
risk obese) 
(n = 150, 
17.30%)

Cluster 5 (High 
risk IR fatty 
liver) (n = 71, 
8.19%)

Cluster 6 (High 
risk visceral fat 
nephropathy) 
(n = 87, 10.03%)

p

Clustering variables
Age (years) 69.62 ± 5.53 69.58 ± 5.52 70.86 ± 5.36 69.82 ± 5.38 70.38 ± 5.00 69.37 ± 5.12 0.1678
BMI (kg/m2) 26.09 ± 1.84 25.04 ± 2.63 28.61 ± 2.73 30.60 ± 2.93 32.76 ± 3.55 32.35 ± 4.87  < 0.0001
Waist circumference (cm) 91.32 ± 6.76 88.77 ± 9.54 97.94 ± 8.92 102.03 ± 7.27 108.47 ± 8.99 106.76 ± 13.20  < 0.0001
Hip circumference (cm) 102.38 ± 4.06 101.61 ± 5.79 106.73 ± 5.82 112.06 ± 6.47 115.26 ± 8.83 114.20 ± 11.30  < 0.0001
Fasting glucose (mmol/l) 5.24 ± 0.41 5.19 ± 0.47 5.72 ± 0.53 5.32 ± 0.48 5.96 ± 0.56 5.52 ± 0.41  < 0.0001
2-h glucose (mmol/l) 6.29 ± 1.06 5.83 ± 1.49 8.57 ± 1.18 6.01 ± 1.04 8.71 ± 1.43 6.54 ± 1.11  < 0.0001
Fasting insulin (pmol/l) 50.59 ± 25.47 23.40 ± 13.03 43.66 ± 20.28 33.63 ± 13.56 283.50 ± 795.74 183.45 ± 310.23  < 0.0001
2-h insulin (pmol/l) 471.69 ± 214.30 209.11 ± 145.78 572.19 ± 240.51 309.61 ± 151.48 1242.98 ± 1356.0 788.42 ± 471.24  < 0.0001
Triglycerides (mg/dl) 134.35 ± 60.76 95.66 ± 48.87 138.63 ± 60.51 127.65 ± 54.94 199.38 ± 105.55 136.45 ± 50.22  < 0.0001
HDL cholesterol (mg/dl) 52.57 ± 9.38 65.97 ± 14.79 54.90 ± 11.24 53.14 ± 10.84 45.86 ± 9.13 52.35 ± 12.31  < 0.0001
Insulin secretion (Stumvoll) 947.77 ± 328.88 596.17 ± 268.88 570.98 ± 335.23 695.84 ± 225.27 2673.70 ± 6173.2 1995.40 ± 2307.3  < 0.0001
Insulin sensitivity (Matsuda) 18.26 ± 5.51 58.19 ± 68.15 15.41 ± 4.68 27.88 ± 9.74 7.22 ± 4.12 8.80 ± 3.91  < 0.0001
Other clinical variables
Sex, Men (%) 47.13 52.40 50.31 40.67 38.03 55.17 0.0616
Systolic blood pressure 
(mmHg)

125.37 ± 20.71 126.90 ± 19.97 129.52 ± 19.15 126.34 ± 19.01 130.30 ± 19.48 126.04 ± 18.24 0.3680

Diastolic blood pressure 
(mmHg)

73.17 ± 10.17 73.80 ± 9.35 75.14 ± 10.57 74.09 ± 10.19 75.47 ± 10.45 74.28 ± 10.68 0.5564

Hypertension (%) 59.77 43.41 67.92 61.74 80.00 63.22  < 0.0001
Physically active (%) 55.17 64.95 44.65 46.62 49.30 43.68  < 0.0001
Lipid-lowering medica-
tion (%)

27.59 20.26 24.53 21.33 16.90 22.99 0.5650

NSAIDs (%) 1.15 5.13 2.52 4.00 2.82 3.45 0.5971
Cluster designations are based on Wagner et al. [9]

Data are given as mean ± SD. Significant differences between the six clusters (p < 0.05) are indicated by bold print

Missing values: NSAIDs (non-steroidal anti-inflammatory drugs; n = 1), lipid-lowering medication (n = 2), physical activity (n = 4) and hypertension (n = 4)
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Fig. 1 Glucose tolerance categories and of the clustering variables in the six clusters. a Distribution of participants by glucose tolerance category and 
cluster. b Distribution of the clustering variables within each cluster. Medians are plotted for each cluster with the corresponding standardised level 
(mean = 0, standard deviation = 1) for each variable. AUC Gluc, area under the glucose curve during OGTT (2-point glucose area-under-curve was cal-
culated as 120 * ((fasting blood glucose in mmol/L + blood glucose at 2 h in mmol/L)/2); BMI, body mass index (kg/m2); Fst Ins, fasting insulin (µIU/ml); 
hip, Hip circumference (cm); Insulin resistance: 1 / insulin sensitivity (Matsuda’s index for estimating insulin sensitivity during OGTT was calculated as 
10,000/sqrt (fasting blood glucose in mmol/L * fasting insulin in pmol/L* (fasting insulin in pmol/L + insulin at 2 h in pmol/L)/2 * (fasting blood glucose in 
mmol/L + blood glucose at 2 h in mmol/L)/2)); Low HDL, HDL cholesterol in mmol/L * -1 (directionally flipped so that a higher area in the figure indicates 
a higher cardiometabolic risk); Secretion failure, Stumvoll’s first phase insulin secretion index calculated as 2503 + 6.476 * fasting insulin in pmolL—126.5 * 
blood glucose at 2 h in mmol/L + 0.954 * insulin at 2 h in pmol/L—293.3 * fasting blood glucose in mmol/L; Waist, waist circumference (cm)
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of individuals with NGT. Clusters 3, 5 and 6 had the larg-
est proportion of individuals with IGT or IFG/IGT.

The radar charts in Fig. 1b visualise the distribution of 
cardiometabolic risk factors used for the cluster assign-
ment. The size of the coloured areas indicates that clus-
ters 1 and 2 had the most favourable and clusters 5 and 6 
the most unfavourable distribution of risk factors.

Incidence of T2D
The incidence of T2D differed significantly between the 
clusters (p < 0.0001; Fig.  2, Supplementary Table  2, Addi-
tional file 1). Using cluster 2 as reference (Supplemen-
tary Table 3, Additional file 1), T2D incidence was higher 
in clusters 3, 4, 5 and 6 after adjustment for age and sex 
(pBH < 0.05). All but one of these associations remained sig-
nificant after additional adjustment for BMI.

Prevalence of (pre)diabetes-related complications among 
clusters
Figure  3a and Supplementary Table  2, Additional file 1 
show the prevalence of CKD, DSPN and CVD among the 
clusters. There was a significant difference in the preva-
lence of all three complications between the clusters 
(p ≤ 0.0450). In adjusted pairwise comparisons with clus-
ter 2 as reference (Supplementary Table 4, Additional file 
1), CKD prevalence was elevated in clusters 3, 4, 5 and 6. 
These differences remained significant after adjustment 
for age, sex and BMI (all pBH < 0.05). For DSPN, clusters 
did not differ significantly from cluster 2 but prevalences 
were 2–4 fold higher in all clusters compared with clus-
ter 1. CVD prevalence was highest in clusters 1, 3 and 6. 
These differences were maintained after adjustment for 

age and sex (pBH < 0.05), and the difference between clus-
ter 3 and 2 remained significant after additional adjust-
ment for BMI.

Incidence of (pre)diabetes-related complications and all-
cause mortality among clusters
Figure  3b and Supplementary Table  2, Additional file 
1 illustrate the incidence of CKD and DSPN among the 
clusters. Significant differences were observed for CKD 
(p = 0.0487) but not for DSPN (p = 0.1322). Using cluster 
2 as reference (Supplementary Table 5, Additional file 1), 
CKD incidence was higher in cluster 1, and DSPN inci-
dence was higher in cluster 5.

Supplementary Fig.  2, Additional file 1 gives Kaplan–
Meier curves for incident CVD and all-cause mortality 
which indicate only small between-cluster differences 
during the follow-up. CVD incidence was higher in 
cluster 3 compared to cluster 2 (age- and sex-adjusted 
p < 0.05; Supplementary Table  6, Additional file 1) but 
this difference was not significant after adjustment for 
multiple testing or BMI. No significant differences were 
seen for all-cause mortality.

Comparison of the inflammatory load between the clusters
Supplementary Fig. 3, Additional file 1 displays the vari-
able loading plot of the PCA including the 73 biomark-
ers of inflammation. Since principal component 1 was 
the only highly stable component after bootstrapping 
(Supplementary Fig.  4, Additional file 1), we calculated 
the inflammatory load for each participant based on 
principal component 1 only. The individual loadings of 
the biomarkers to principal component 1 are given in 
Supplementary Table  7, Additional file 1. Correlations 
between the inflammatory load and the clustering vari-
ables are described in Supplementary Table 8, Additional 
file 1.

Participants in cluster 5 had the highest inflamma-
tory load, while participants in cluster 2 had the lowest 
(Fig.  4a). Pairwise comparisons further demonstrated 
that cluster 5 had a significantly higher inflammatory load 
compared to all other clusters combined after adjustment 
for age, sex, and BMI (Fig. 4b). When compared to each 
individual cluster, cluster 5 had a higher inflammatory 
load than clusters 1, 2, 3, and 4 in age and sex-adjusted 
analysis (Supplementary Fig. 5, Additional file 1). Cluster 
2 had a lower inflammatory load than the other clusters 
combined when adjusted for age and sex, but the differ-
ence became non-significant after additionally adjust-
ing for BMI (Fig. 4b). All other clusters had intermediate 
values of the inflammatory load (Fig. 4b, Supplementary 
Fig. 5, Additional file 1).

In order to investigate to what extent between-clus-
ter differences in prevalent and incident complications 
might be explained by subclinical inflammation, we 

Fig. 2 Incidence of T2D in the clusters. See also Supplementary Table 2, 
Additional file 1 for numbers of cases in each cluster. *p < 0.05, *** p < 0.001 
for comparisons between each cluster to cluster 2 (reference)
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additionally adjusted for the inflammatory load. Differ-
ences in CKD prevalence were attenuated compared to 
the age- and sex-adjusted model but were similar to the 
model adjusted for age, sex and BMI. Adjustment for the 
inflammatory load had almost no effect on differences 
in prevalent DSPN and CVD compared to the age- and 
sex-adjusted model (Supplementary Table  4, Additional 
file 1). Additional adjustment for the inflammatory load 
attenuated the differences between clusters 5 and 2 
for incident DSPN, but had virtually no effect on effect 

estimates describing between-cluster differences in inci-
dent CKD, T2D, CVD or all-causemortality (Supplemen-
tary Tables 3, 5, 6, Additional file 1).

Comparison of biomarkers of subclinical inflammation 
between the clusters
In exploratory analyses, biomarkers of inflammation were 
analysed separately. As shown in Fig. 5a, most differences 
in biomarker levels were seen for cluster 2 (n = 31, of 
which 29 were lower than in the other clusters combined) 

Fig. 3 (Pre)diabetes-related complications in the clusters (a, prevalence; b, incidence). See also Supplementary Table 2, Additional file 1 for numbers of 
cases in each cluster. *p < 0.05, **p < 0.01, ***p < 0.001 for comparisons between each cluster to cluster 2 (reference)
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Fig. 5 Pairwise comparisons of biomarkers of inflammation between each cluster against all other clusters combined. a unadjusted; b adjusted for age 
and sex; c, adjusted for age, sex, and BMI. The colour of the heatmap indicates the difference in mean levels between the groups and the asterisks (*) in-
dicate statistical significance (pBH < 0.05). All p values were adjusted with Benjamini–Hochberg correction for all 438 tests (73 markers and 6 comparisons). 
Clusters are named “C1”, “C2”, “C3”, “C4”, “C5”, and “C6”

 

Fig. 4 Comparison of the inflammatory load between the clusters. a Notched boxplots of the inflammatory load (PC score) for each cluster. The lower 
whisker indicates the smallest observation ≥ lower hinge-1.5*IQR. The upper whisker indicates the largest observation ≤ upper hinge + 1.5*IQR. b Pairwise 
comparison of the inflammatory load (PC score) between each cluster against all other clusters combined. Model 1, unadjusted; model 2, adjusted for 
age and sex; model 3, model 2 + BMI. The color of the heatmap indicates the difference in mean levels of the groups and the asterisks (*) indicate the 
significance (BH corrected p < 0.05). All p values were adjusted with Benjamini–Hochberg correction for all 6 comparisons. Clusters are named “C1”, “C2”, 
“C3”, “C4”, “C5”, and “C6”. PC score: principal component score
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and for cluster 5 (n = 23, of which 21 were higher than in 
the other clusters combined) with 18 biomarkers show-
ing differences for both clusters 2 and 5 (in opposite 
directions) versus the other clusters combined. Clusters 
1, 3, 4 and 6 differed only for one biomarker each from 
the other clusters. These findings were almost unchanged 
after adjustment for age and sex (Fig.  5b), whereas fur-
ther adjustment for BMI (Fig.  5c) reduced the numbers 
of biomarker differences to 5 and 10 for clusters 2 and 5, 
respectively. Supplementary Fig. 6, Additional file 1 pro-
vides further details by summarising all pairwise compar-
isons (each cluster vs. each other cluster separately).

Discussion
This study replicated the clusters described by Wagner et 
al. [9] in older adults from the population-based KORA 
F4/FF4 cohort and extended current knowledge by the 
analysis in an older population, by investigating DSPN 
as an outcome and by exploring numerous biomark-
ers of inflammation. Clusters differed (i) in their cardio-
metabolic risk profile, (ii) in T2D incidence, (iii) in the 
prevalence of CKD, DSPN and CVD, (iv) in the incidence 
of CKD and DSPN and (v) in their inflammatory load. 
The adjustment for inflammatory load had only a minor 
impact on the differences in (pre)diabetes-related com-
plications between clusters.

Replication of phenotype-based clusters before the 
diagnosis of diabetes
Our study represents a comprehensive replication of the 
phenotype-based clusters in people without T2D that 
were identified in the Tübingen Family study and Tübin-
gen Lifestyle Intevention Program (TUEF/TULIP) cohort 
and the Whitehall II cohort [9]. Whereas TUEF/TULIP 
enrolled people at elevated risk of T2D, the occupational 
Whitehall II cohort comprised people with a lower risk 
of T2D, but importantly both cohorts mainly consisted of 
middle-aged people. Our study is the first replication that 
extends the analysis to older individuals (all > 60 years of 
age) with a high cardiometabolic risk.

Use of the same clustering algorithm yielded a similar 
distribution of glucose tolerance categories as in TUEF/
TULIP: high prevalence of NGT in the low-risk clusters 
1, 2 and 4 compared with a high prevalence of IGT and 
IFG/IGT in the high-risk clusters 3, 5 and 6. The compa-
rability with the data from Whitehall II is limited because 
of the low proportion of people with IGT and IFG/IGT 
in this cohort. The radar charts in KORA F4 display simi-
lar differences in the overall cardiometabolic risk profile 
between the clusters as in TUEF/TULIP and in Whitehall 
II with the most favourable profile in clusters 1 and 2 and 
the most unfavourable profile in clusters 5 and 6. There-
fore, these findings indicate that the phenotype-based 
clustering from Wagner et al. can identify subgroups in 

people without T2D with different cardiometabolic risk 
profile in populations with a wide range of mean age and 
overall T2D risk.

The six clusters showed pronounced differences in 
the incidence of T2D. The highest T2D incidence was 
observed for clusters 5 and 3, which is in line with the 
data from TUEF/TULIP and Whitehall II [9]. T2D risk 
was higher in clusters 6 and 4 compared with cluster 2 
(lowest risk), which indicates a further risk separation 
between the cluster 4 and the low risk clusters 1 and 2 in 
KORA. These between-cluster differences were robust to 
adjustment for age and sex but slightly attenuated when 
we additionally adjusted for BMI.

Our study shows that the six clusters also differed in 
the prevalence of CKD, DSPN and CVD. DSPN has not 
been investigated in this context before. We found the 
nominally lowest prevalence of DSPN in cluster 1, and 
2–4 fold higher prevalences in the other clusters albeit 
differences did not reach statistical significance. None-
theless, these findings point towards a clinically relevant 
heterogeneity in DSPN risk among people without T2D. 
They also indicate differences between DSPN on the one 
hand and CKD and CVD on the other hand, which are 
characterised by the lowest prevalence in cluster 2. With 
respect to CKD, our results show robust differences 
between the clusters with the lowest prevalence in cluster 
2 and ORs between 2 and 4 for the other clusters com-
pared to cluster 2. This suggests that the clustering might 
be more sensitive to identify differences in renal function 
in older people, whereas the six clusters did not differ in 
urinary albumin/creatinine ratio in the younger TUEF/
TULIP study participants. Regarding CVD, clusters 1, 3 
and 6 had the highest prevalence in KORA F4. The analy-
ses in TUEF/TULIP used carotid intima-media thickness 
as a proxy for CVD, which was higher in clusters 3, 5 and 
6 than in clusters 1, 2 and 4. Thus, at least clusters 3 and 
6 appear to be characterised by elevated CV risk. Taken 
together, the cluster assignment can also be used in older 
people to address the heterogeneity in (pre)diabetes-
related complications. The findings appeared most con-
sistent for cluster 2 as the low-risk subgroup and clusters 
3, 5 and 6 as the high-risk subgroups.

For incident CKD, DSPN and CVD, differences 
between the six clusters were less pronounced compared 
to the differences in their prevalence. The CKD incidence 
was highest in cluster 1, whereas CKD risk was low in 
this cluster in TUEF/TULIP and Whitehall II. DSPN risk, 
which had not been examined in previous studies, was 
highest in cluster 5. The low CVD risk in cluster 2 is in 
line with data from Whitehall II, but we found the high-
est CVD incidence in cluster 3 versus cluster 5 in White-
hall II. In people with coronary angiography from the 
LURIC study a higher CV risk was seen for clusters 3, 5 
and 6 combined versus clusters 1, 2 and 4 [23]. While we 
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observed a nominally higher CVD incidence in clusters 3 
and 5 compared to clusters 2 and 4, our findings for clus-
ters 1 and 6 do not fit this pattern. We did not see differ-
ences in mortality rate between clusters which might be 
explained by the higher mean age and the shorter follow-
up time in KORA F4/FF4 compared to Whitehall II.

Taken together, the cluster assignment was very sensi-
tive to reveal the heterogeneity in T2D risk in our older 
study population, whereas the risk stratification for inci-
dent CKD, DSPN, CVD and mortality was less effective. 
Of note, we are not aware of further studies that used the 
phenotype-based clustering from Wagner et al. A similar 
clustering approach, but based on different variables, was 
used in a large sample of people with prediabetes [24]. 
This study also identified six clusters but with smaller dif-
ferences in the overall cardiometabolic risk profile than 
in KORA F4. Their prospective analysis showed that the 
clusters were useful for the stratification of T2D risk, 
whereas between-cluster differences regarding CKD or 
CVD risk were less pronounced, which is in line with our 
findings.

Differences in subclinical inflammation between clusters
This study used a multimarker proteomics panel to char-
acterise differences in subclinical inflammation between 
phenotype-based clusters. After dimensionality reduc-
tion we found that the inflammatory load was highest in 
cluster 5 previously designated as “high risk insulin resis-
tant fatty liver”, whereas cluster 2 designated as “very low 
risk” had the lowest inflammatory load. In contrast, the 
inflammatory load was intermediate for clusters 1, 3, 4 
and 6 with relatively few between-cluster differences.

The high inflammatory load in cluster 5 is in line with 
its clinical characteristics, i.e. obesity, high insulin resis-
tance, high prevalence of hypertension and very high 
hepatic lipid content [9], and with the increased burden 
and risk of (pre)diabetes-related complications compared 
with the other clusters. Since parameters that were used 
for the clustering such as triglycerides and BMI were 
strongly correlated with the inflammatory load and had 
the highest levels in cluster 5, this might explain why the 
highest inflammatory load was observed in cluster 5. 
While conclusions on mechanistic or causal relationships 
are not possible based on our data, previous studies have 
linked multiple biomarkers or their receptors, that char-
acterise the inflammatory signature of cluster 5, with the 
development of insulin resistance. These include compo-
nents of the IL-6 family (IL-6, LIFR [25, 26]), cytokines 
downstream of the NLRP3 inflammasome (IL-18/IL-
18R1; [27, 28]), chemokines (CCL19 [29]) and the CD40/
CD40L signaling [30]. In this respect, cluster 5 may be 
antecedent to the SIRD subtype in people with diabetes 
which is also characterised by both high risk of complica-
tions [1, 2] and high subclinical inflammation [5, 6].

However, it is noteworthy that the high risk of T2D and 
complications in clusters 3 and 6 is not reflected by an 
elevated inflammatory load which suggests that different 
mechanisms may underlie the high-risk phenotype in the 
different clusters. It is possible that high oxidative stress 
may contribute to the higher risk in clusters 3 and 6, but 
mechanisms related to beta-cell dysfunction (in particu-
lar for cluster 3), to differences in adipose tissue distri-
bution (e.g. for visceral, pancreatic and renal sinus fat) or 
mitochondrial function are also plausible and merit fur-
ther investigation.

Overall, these findings considerably extend the data 
from the TUEF/TULIP cohort which only included CRP 
and found, in line with our results, that CRP levels were 
highest in cluster 5 and lowest in cluster 2 [9]. Of note, 
CRP only had a small contribution to the inflammatory 
load score of this study, suggesting that the differences 
between the clusters cannot be sufficiently explained by 
this general indicator of subclinical inflammation and 
that other biomarkers would be needed to identify the 
potential mechanisms and pathways.

Strengths and limitations
Strengths of the study include the population-based 
design, the assessment of glucose-tolerance status with 
OGTTs, the investigation of (pre)diabetes-related com-
plications both cross-sectionally and prospectively and 
the availability of proteomics data for biomarkers of 
inflammation, which enabled us to derive the inflam-
matory load but also to analyse multiple biomarkers 
separately.

The major limitation of the study is the fact that certain 
phenotypes and variables from the TUEF/TULIP cohort 
such as insulin secretion calculated from glucose and 
insulin levels at 0 and 30 min from an OGTT or liver and 
renal sinus fat were not available in KORA F4. However, 
our dataset contained all variables required for the clus-
ter validation as performed in the Whitehall II cohort. 
The numbers of study participants with prevalent or inci-
dent (pre)diabetes-related complications in the separate 
clusters differed so that larger studies would be required 
to better detect cluster differences especially with respect 
to incident CVD and mortality. Longer follow-up times 
might be needed to assess the differences between clus-
ters with respect to the incidence of complications and 
mortality more accurately. The study participants are 
from one region in Southern Germany and mainly of 
European ancestry so that results are not generalisable 
to the whole German population or to populations with 
different ancestry. Finally, the observational study design 
precludes any causal inferences.
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Conclusions
This study corroborated the previously identified six 
clusters derived from phenotype-based clustering in a 
population-based sample of older people without clini-
cally or OGTT-diagnosed T2D. When data from cross-
sectional and prospective analyses are assessed together, 
data are most consistent for cluster 2 as low-risk cluster 
and for clusters 3, 5 and 6 as high-risk clusters. However, 
the cluster assignment appears to capture phenotypic 
heterogeneity better for the risk of T2D than for its com-
plications or mortality in an older population. This is the 
first study to implement a proteomics approach to derive 
a multimarker-based inflammatory load, which differed 
between the prediabetes clusters. The high inflamma-
tory load in cluster 5 and the low inflammatory load in 
cluster 2 correspond to their overall cardiometabolic risk 
profile, whereas other pathways might underlie the high-
risk phenotypes of clusters 3 and 6. The high inflamma-
tory load and the high burden of complications in cluster 
5 might identify a subgroup of people who could benefit 
from early prevention also addressing the high inflamma-
tory state.
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