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Abstract
Background  Cardiovascular complications are major concerns for Chinese patients with type 2 diabetes. Accurately 
predicting these risks remains challenging due to limitations in traditional risk models. We aimed to develop a 
dynamic prediction model using machine learning and longitudinal trajectories of cardiovascular risk factors to 
improve prediction accuracy.

Methods  We included 16,378 patients from the Kailuan cohort, splitting them into training and testing datasets. 
Using baseline characteristics and changes over a four-year observation period, we developed the ML-CVD-C 
(Machine Learning Cardiovascular Disease in Chinese) score to predict 10-year cardiovascular risk, including 
cardiovascular death, nonfatal myocardial infarction, and stroke. We compared the discrimination and calibration 
of ML-CVD-C with models using only baseline variables (ML-CVD-C [base]), China-PAR (Prediction for ASCVD Risk in 
China), and PREVENT (Predict Risk of cardiovascular disease EVENTs). Risk stratification improvements were assessed 
through net reclassification improvement (NRI) and integrated discrimination improvement (IDI). Transition analysis 
examined the changes in risk stratification over time.

Results  The ML-CVD-C score achieved a C-index of 0.80 (95% CI: 0.78–0.82) in the testing cohort, significantly 
outperforming the ML-CVD-C (base) score, China-PAR, and PREVENT, which had C-index values of 0.62–0.65. 
ML-CVD-C also provided more accurate cardiovascular risk estimates, though all models tended to overestimate 
the prevalence of high-risk cases. Stratification by the ML-CVD-C score showed substantial improvement, with NRI 
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Background
Type 2 diabetes mellitus (T2DM) is increasingly preva-
lent in China, posing significant challenges for effective 
management [1]. Cardiovascular disease remains the 
leading cause of morbidity and mortality in patients with 
T2DM [2], and accurate risk assessment is crucial for 
targeted interventions to prevent cardiovascular events. 
Current guidelines use various prediction models to esti-
mate the 10-year cardiovascular risk, such as the PRE-
VENT (Predict Risk of cardiovascular disease EVENTs) 
[3] in the United States and the China-PAR (Predic-
tion for ASCVD Risk in China) score in China [4]. For 
patients with T2DM, the European Society of Cardiol-
ogy (ESC) guidelines suggest using tools like SCORE-2D 
[5] (Systematic Coronary Risk Evaluation 2 for diabetes) 
and ADVANCE [6] to estimate cardiovascular risk. How-
ever, these models often lack the specificity required for 
accurately predicting risk among Chinese patients with 
T2DM.

While recent advances in machine learning have led 
to the development of population-specific cardiovas-
cular risk models, these models have shown only mod-
est improvements in predictive performance [7]. One 
reason was that traditional models generally assess risk 
based on a snapshot of baseline factors, which often fails 
to capture the evolving risk profile. Emerging evidence 
indicates that longitudinal risk factor changes provide 
insights into cardiovascular outcomes in T2DM [8]. Pre-
vious studies have shown that cumulative systolic blood 
pressure (SBP) load is a more acceptable predictor of car-
diovascular events compared to traditional BP measures 
among patients with T2DM [9]. Additionally, post-treat-
ment changes in blood glucose mediate the cardiovascu-
lar protective effects of sodium-glucose co-transporter-2 
(SGLT2) inhibitors and glucagon-like peptide-1 agonists 
(GLP-1 RA) [10, 11].

We hypothesize that cardiovascular risk evolves 
dynamically with the changes of mediators, so that mod-
els that incorporate both baseline variables and their 
trajectories would perform better than those using base-
line variables alone. Building on this rationale, our study 
leverages machine learning to develop and validate a 

novel dynamic cardiovascular risk prediction model in 
Chinese patients with T2DM (ML-CVD-C). The ML-
CVD-C model integrates longitudinal trajectories of 
multiple risk factors over time, providing a dynamic eval-
uation of cardiovascular risk in a real-world setting.

Method
Study design and population
The Kailuan Study is a prospective cohort study con-
ducted in Tangshan, China, registered with the Chi-
nese Clinical Trial Registry (ChiCTR-TNC-11001489) 
[12]. From June 2006 to December 2021, employees and 
retirees of the Kailuan Group underwent biennial health 
examinations and completed questionnaires at the Kai-
luan General Hospital and its affiliated hospitals. Detailed 
study design and methodology have been described in 
previous publications [12]. In this study, we included 
individuals with diabetes, defined based on self-reported 
diabetes history, hemoglobin A1c (HbA1c) levels ≥ 6.5%, 
or fasting glucose ≥ 7.0 mmol/L. A 4-year observational 
window was established for collecting longitudinal data 
on risk factor trajectories following cohort enrollment. 
Individuals who experienced cardiovascular events or 
were censored during the first four years were excluded 
to avoid immortal bias. Participants were also excluded if 
they were under 40 or over 79 years of age, or if they had 
missing data on age, sex, or glucose levels, and the final 
cohort comprised 16,378 participants (Fig. 1).

Outcomes assessment
Participants were followed until the occurrence of the 
primary outcome, the most recent clinical follow-up, or 
December 31, 2021, whichever came first. The primary 
outcome was defined as the first occurrence of cardiovas-
cular disease, including nonfatal myocardial infarction, 
nonfatal stroke, or cardiovascular death (MACE). Out-
come data were sourced from biennial questionnaires, 
municipal social insurance, the Kailuan group social 
security, and Tangshan medical insurance systems, with 
identification based on ICD-10 codes.

gains of 57.7%, 44.1%, and 47.3%, and IDI gains of 10.1%, 7.9%, and 8.4% compared to the other three scores. Both 
the trajectory and machine learning algorithm contributed significantly to the enhancement of model performance. 
Transition analysis revealed that participants who remained in the same risk category or were reclassified to a lower 
category exhibited 22% and 86% reductions in cardiovascular risk compared to those reclassified to a higher risk 
category during the observation period.

Conclusions  The ML-CVD-C model, incorporating dynamic cardiovascular risk trajectories and a machine learning 
algorithm, significantly improves risk prediction accuracy for Chinese patients with diabetes. This model may serve as 
a valuable tool for more personalized cardiovascular risk management in type 2 diabetes.

Keywords  Machine learning, Risk prediction, Type 2 diabetes, Trajectories
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Data collection and variable measurement
Participants were asked to revisit the hospitals to have 
a face-to-face interview using a standardized question-
naire for collection of the demographic data and medi-
cation information. The physical measurement, such as 
height, weight, and blood pressure were also conducted 
in the Kailuan General Hospital and affiliated hospitals 
using the standardized criteria. BMI was calculated as 
weight (kg) divided by the square of height (m²). Blood 
samples were collected following an 8-hour fast to assess 
fasting glucose, blood creatinine, alanine transaminase, 
triglycerides, total cholesterol, HDL cholesterol, and LDL 
cholesterol using the Hitachi 7600 autoanalyzer. The esti-
mated glomerular filtration rate (eGFR) was calculated 
using the CKD-EPI equation. The left common carotid 
artery intima-media thickness (IMT) was measured by 
trained physicians using the VINNO M86 ultrasound 
machine.

Baseline clinical features related to cardiovascular 
disease included demographic data, physical measure-
ments, disease history, and laboratory values (Table S1). 
To manage repeated measurements at visits, we utilized 
functional principal component (FPC) analysis to reduce 
dimensionality [13]. This method calculates individual 

FPC scores that align with the principal trajectories of 
the analyzed features. To achieve it, discrete data points 
at uneven time intervals for each feature were firstly 
smoothed to create continuous curves and decomposed 
into a mean function, representing the average value at 
each time point, and a Gaussian kernel function. Then 
the principal components and their variance contribu-
tions were derived using formula:

	

∫
K(s, t)φ k (s) ds = λ kφ k (t)

where φ k (t) is the k-th FPC. The number of FPCs K  
was chosen to explain over 95% of the total variance. 
Finally the FPC score of the feature for the individual i 
could be estimated as:

	
ξ ik =

∫
[xi (t) − µ (t)]φ k (t) dt

where xi (t) is the actual value of the individual i. FPC 
scores quantify how an individual’s feature trajectory 
aligns with the principal components of that feature. 

Fig. 1  Flow diagram of the training and test dataset. Participants missing baseline information, experienced cardiovascular events/censored within a 
4-year observation window were excluded. The final population for analysis were randomly divided to training and testing sets at an 8:2 ratio
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These scores were then integrated with baseline features 
for subsequent analysis and model development.

Model development
The dataset was randomly divided into derivation and 
testing cohorts in an 8:2 ratio, stratified by the occurrence 
of MACE events. Predictors with more than 20% miss-
ing data, high collinearity, or low variance were excluded. 
Missing baseline data were imputed using a random 
forest-based approach, which outperformed k-nearest 
neighbor and chained equations imputation methods in 
handling non-linear data with complex interactions [14]. 
Variables not normally distributed were log-transformed, 
and all continuous variables were normalized. Outliers 
beyond six standard deviations were removed (Fig. S1).

An XGBoost algorithm was developed utilizing the 
Cox negative log-likelihood as the loss function to pre-
dict the primary outcome. 5-fold cross-validation was 
performed within the derivation cohort to optimize the 
hyperparameters (Table S2). This final machine learning 
model for cardiovascular disease in the Chinese popula-
tion is named ML-CVD-C.

Model assessment
To evaluate whether trajectory information could 
improve the discrimination of cardiovascular risk, we 
selected predictors including body mass index (BMI), 
systolic blood pressure (SBP), diastolic blood pressure 
(DBP), fasting plasma glucose (FPG), triglycerides (TG), 
total cholesterol (TC), high-density lipoprotein choles-
terol (HDL), low-density lipoprotein cholesterol (LDL), 
alanine transaminase (ALT), and serum creatinine (SCr). 
We compared C-index values between a model using 
only baseline values and one that incorporated both 
baseline values and FPC scores. Wald’s test was used to 
assess differences between models.

The performance of the ML-CVD-C model was evalu-
ated in terms of discrimination and calibration. Dis-
crimination was assessed using the C-index and the 
time-dependent area under the receiver operating char-
acteristic curve (AUROC) in the training and testing 
datasets. Calibration was assessed using calibration plots, 
the expected–observed ratio, and Hosmer–Lemeshow χ2 
(HL-χ2) tests. Feature importance within the model was 
quantified using SHapley Additive exPlanations (SHAP) 
values.

The ML-CVD-C model was used to calculate the ML-
CVD-C score as a value between 0 and 1, which pres-
ents the probability of developing cardiovascular disease 
within the next 10 years. To provide benchmarks, China-
PAR and PREVENT scores were used to assess cardio-
vascular risk, in alignment with the latest guidelines 
from Chinese and US authorities. The ML-CVD-C model 
was also employed to calculate the baseline risk using 

baseline values only, referred to as the ML-CVD-C (base-
line) score. Participants were stratified into low (0-4.9%), 
medium (5-9.9%), high (10-19.9%), and very-high (≥ 20%) 
risk categories according to the 10-year cardiovascular 
risk scores calculated using ML-CVD-C, ML-CVD-C 
(base) score, China-PAR, and PREVENT, in accordance 
with thresholds commonly used in cardiovascular risk 
guidelines [15]. Cox regression was used to analyze the 
association between risk stratification and the primary 
outcome. Net reclassification improvement (NRI) and 
integrated discrimination improvement (IDI) for ML-
CVD-C were also evaluated.

To assess longitudinal transitions in cardiovascular 
risk categories, we examined changes in ML-CVD-C risk 
stratification from baseline to the 4-year follow-up, esti-
mating their association with cardiovascular outcomes, 
to provide insights into how changes in risk categoriza-
tion over time correlated with cardiovascular outcomes.

Sensitivity analysis
To evaluate the impact of trajectory observation length 
on the predictive performance of the model, sensitiv-
ity analyses were conducted by adjusting the trajectory 
observation window in both the training and testing 
datasets. The observation windows varied from 0 to 6 
years, and scores were recalibrated for each window to 
examine potential changes in prediction accuracy. The 
ML-CVD-C model was also compared to a traditional 
Cox regression model using the same variables to allow 
for a direct comparison between traditional statistical 
approaches and machine learning techniques within the 
same dataset and variable context.

Statistics analysis
Continuous variables were reported as either 
means ± standard deviations (SD) or medians [interquar-
tile ranges (IQR)], while categorical variables were shown 
as counts (percentages). All statistical analyses were con-
ducted using R software, version 4.2.2 (R Foundation for 
Statistical Computing, Vienna, Austria). The ‘MissForest’ 
package facilitated baseline data imputation, the ‘fdapace’ 
and ‘longitudinalData’ packages were employed for FPC 
analysis of the longitudinal data, and the ‘XGBoost’ pack-
age was utilized to build the XGBoost model. We per-
formed all statistical tests two-sided, with a P-value of 
< 0.05 deemed indicative of statistical significance.

Results
There were 16,378 participants included in the final anal-
ysis, with a mean age of 55.3 years, and 4.2% (N = 687) 
had a history of cardiovascular disease at baseline. Over 
a mean follow-up of 8.5 years, there were 2,164 (13.2%) 
incident of primary outcome (Table 1).
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The performance of cardiovascular risk scores
In the overall analysis, we observed that incorporating 
trajectory information into the model yielded moder-
ate improvements in predictive performance compared 
to models relying solely on baseline data (Fig. S2). The 
ML-CVD-C model, developed using machine learning 
to incorporate multiple risk factor trajectories, dem-
onstrated consistently strong predictive performance 
for cardiovascular events across various time frames in 

both the training and testing datasets (Figs. S3, 2A). The 
C-index of the ML-CVD-C risk score was 0.86 (0.85, 
0.87) in the training set and 0.80 (0.78, 0.82) in the test-
ing set (Table S3). In contrast, the China-PAR, PRE-
VENT, ML-CVD-C (base) risk scores had C-index values 
of 0.62 (0.59, 0.65), 0.64 (0.61, 0.67) and 0.65 (0.62, 0.68), 
respectively, in the testing cohort. In terms of calibra-
tion (Fig. 2B–D), while the calibration plot indicated that 
participants at higher CVD risk were more likely to be 
overestimated by models, the ML-CVD-C, China-PAR, 
and PREVENT, ML-CVD-C (base) risk scores exhib-
ited expected-observed ratios of 1.30, 1.92, 1.59 and 
1.97, respectively. The ML-CVD-C risk score performed 
slightly better than the others.

Analysis of SHAP values indicated that among the top 
ten contributing variables, age and sex were the most 
influential baseline factors. For trajectory risk factors, the 
first principal component (FPC1) represents the primary 
component, capturing sustained exposure to the factors. 
The second (FPC2) and third (FPC3) components mainly 
reflect fluctuations in these factors or trend changes of a 
variable. FPC3 of ALT and FPC1 of fasting glucose and 
systolic blood pressure were the most significant contrib-
utors (Fig. 3).

Risk stratification with cardiovascular scores
The ML-CVD-C score was used to estimate the 10-year 
cardiovascular risk, allowing participants to be stratified 
into low, medium, high, and very high-risk categories. As 
expected, participants in higher risk categories were gen-
erally older, had a higher proportion of males, a greater 
prevalence of cardiovascular disease (CVD) history, 
and exhibited less favorable profiles in blood pressure, 
glucose, and lipid levels (Table S4). MACE incidence 
was highest in the very high-risk group, with an occur-
rence rate of 18.2%. In a subset of 1,437 participants who 
underwent follow-up measurements for common carotid 
artery intima-media thickness (IMT), we observed a sig-
nificant increase in IMT in categories with higher risks 
(P < 0.001, Table S4).

The hazard ratios for MACE in participants in the 
medium-risk, high-risk, and very high-risk groups 
defined by ML-CVD-C were 3.97 [2.60, 6.07], 9.47 [6.32, 
14.18], and 21.3 [14.2, 32.1], respectively, in reference 
to participants with low risk (Table S5). In contrast, the 
risk groups defined by China-PAR showed significantly 
elevated HRs for MACE only in the very high-risk group 
(HR 2.62 [1.66, 4.12] versus low-risk group). Although 
risk groups defined by both PREVENT and ML-CVD-C 
(base) scores exhibited a linear increase in hazard ratios 
for MACE, the effect sizes were smaller. Reclassification 
analyses demonstrated that ML-CVD-C risk stratifica-
tion notably improved classification accuracy, with a net 
reclassification improvement (NRI) of approximately 50% 

Table 1  Characteristics of the training and testing sets
Total Training Testing

Participants—no. 16,378 13,102 3276
MACE—no. (%)# 2164 (13.2) 1731 (13.2) 433 (13.2)
Age—yr 55.3 (8.7) 55. 3 (8.7) 55.2 (8.7)
Female—no. (%) 3078 (18.8) 2483 (19.0) 595 (18.2)
Current smoke—% 6633 (40.5) 5300 (40.5) 1333 (40.7)
Hypertension—no. (%) 6542 (39.9) 5193 (39.6) 1349 (41.2)
Hyperlipemia—no. (%) 4643 (28.3) 3657 (27.9) 986 (30.1)
History of cardiovascular 
disease—no. (%)

687 (4.2) 546 (4.2) 141 (4.3)

Antihypertensive drugs—no. 
(%)

4336 (26.5) 3425 (26.1) 911 (27.8)

Lipid-lowering drugs—no. 
(%)

2092 (12.8) 1610 (12.3) 482 (14.7)

Height—cm 167.9 (6.9) 167.8 (6.9) 168.0 (6.8)
Body weight—kg 74.0 (11.0) 74.0 (11.1) 74.2 (11.0)
BMI—kg/m2 26.3 (3.4) 26.2 (3.4) 26.3 (3.3)
SBP—mmHg 138.7 (20.2) 138.7 (20.1) 138.9 

(20.5)
DBP—mmHg 86.7 (11.3) 86.8 (11.3) 86.9 (11.5)
Heart rate—bpm 76.7 (10.9) 76.5 (10.9) 76.5 (10.7)
ALT—U/L 25.8 (23.3) 25.9 (23.3) 25.5 (23.3)
FPG—mmol/L 8.8 (4.1) 8.8 (4.1) 8.8 (4.2)
SCr -mmol/L 88.2 (41.2) 88.2 (42.5) 88.1 (35.6)
eGFR—ml/min/1.73m2 83.7 (20.3) 83.8 (20.4) 83.6 (20.1)
Median TG—mmol/L 1.7 [1.1, 2.6] 1.7 [1.1, 2.6] 1.7 [1.1, 

2.7]
Median TC—mmol/L 5.2 [4.6, 6.0] 5.2 [4.6, 6.0] 5.2 [4.6, 

6.0]
Median HDL—mmol/L 1.4 [1.2, 1.7] 1.4 [1.2, 1.7] 1.4 [1.2, 

1.7]
Median LDL—mmol/L 2.6 [2.1, 3.2] 2.6 [2.1, 3.2] 2.6 [2.0, 

3.2]
Mean risk score—%
ML-CVD-C 12.2 (10.9) 12.0 (10.7) 12.1 (10.9)
China-PAR 17.8 (11.5) 17.7 (11.5) 17.8 (11.5)
PREVENT 14.7 (8.0) 14.7 (8.1) 14.7 (8.0)
Base 18.3 (10.8) 18.2 (10.9) 18.3 (10.8)
Data are represented as mean (standard deviation) or median [interquartile 
range] for continuous variables or N (%) for categorical variables
# MACE included non-fatal myocardial infraction, non-fatal stroke, death from 
cardiovascular cause

BMI, body mass index. SBP, systolic blood pressure. DBP, diastolic blood 
pressure. eGFR, estimated glomerular filtration rate. ALT, alanine transaminase. 
FPG, fasting plasma glucose. TG, triglycerides. TC, total cholesterol. HDL, high-
density lipoprotein cholesterol. LDL, low-density lipoprotein cholesterol. SCr, 
serum creatinine
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Fig. 2  Time-dependent AUROC and calibration curves for cardiovascular scores in the testing set. A The area under the receiver operating characteristic 
curve (AUROC) with 95% confidence intervals (CI) of cardiovascular score for predicting MACE in various follow-up time. B–E The calibration curve of the 
ML-CVD-C, China-PAR, PREVENT and ML-CVD-C (base) scores for 10-year cardiovascular risk. The plot shows the predicted vs. observed incidence of MACE 
based on deciles of predicted risk. Q1 to Q10 refer to deciles of risk score. MACE, major adverse cardiovascular outcome
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and an integrated discrimination improvement (IDI) of 
around 10% compared to other scores (Table 2).

The transition of cardiovascular risk assessed by ML-CVD-C
The ML-CVD-C dynamic prediction model allowed for 
cardiovascular risk estimation at both baseline and the 
4-year follow-up, enabling the analysis of transitions in 
risk categories over the observation period. Participants 
initially categorized as low-risk or very high-risk were 
more likely to remain within their original categories 
after 4 years. Conversely, participants in the medium and 
high-risk groups demonstrated greater transitions across 
risk categories. Notably, nearly two-thirds of participants 
initially at high risk and about half of those at very high 
risk were reclassified into a lower category over time 

(Fig. 4). Participants who remained in the same risk cat-
egory or were reclassified into a lower category exhibited 
significantly lower hazard ratios for cardiovascular events 
compared to those who were reclassified to a higher risk 
category over the observation period (HR: 0.78 [95% CI: 
0.66, 0.92] and 0.14 [0.11, 0.16], respectively).

Sensitivity analysis
The sensitivity analysis assessed how varying the tra-
jectory observation window impacted the model’s per-
formance, and the results showed that extending the 
observational window led to an increase in the C-index 
in both training and testing cohorts (Fig. S4). The appli-
cation of machine learning techniques significantly 
improved predictive performance compared to tradi-
tional models, with the performance gap widening as the 
observation period increased.

Discussion
In this study, we developed a machine learning-based 
cardiovascular disease model (ML-CVD-C) for individu-
als with T2DM in the Chinese population. By incorporat-
ing trajectory analysis and machine learning techniques, 
our model demonstrated better discrimination and cali-
bration compared to the currently recommended risk 
scores. Our stratification strategy notably enhanced 

Table 2  Reclassification improvement by ML-CVD-C
ML-CVD-C ver-
sus China-PAR

ML-CVD-C ver-
sus ML-CVD-C 
base

ML-CVD-
C versus 
PREVENT

NRI overall (95% 
CI)

57.7% (42.9, 77.1) 44.1% (29.9, 
61.9)

47.3% (29.3, 
61.2)

NRI cases (95% 
CI)

44.2% (33.7, 61.0) 35.9% (24.7, 
52.8)

39.9% (27.6, 
51.0)

NRI non-cases 
(95% CI)

13.5% (2.6, 24.9) 8.3% (0.3, 19.1) 7.4% (-1.4, 
17.0)

IDI (95% CI) 10.1% (7.5, 12.7) 7.9% (5.6, 10.3) 8.4% (5.7, 10.9)
NRI, net reclassification improvement. IDI, integrated discrimination 
improvement

Fig. 3  Dependency plots of the top 10 important features in the ML-CVD-C quantified by SHapley Additive exPlanation (SHAP) values. These features are 
age; the third functional principal component (FPC3) score of alanine transaminase (ALT); the first FPC score (FPC1) of fasting plasma glucose (FPG); the 
FPC1 score of systolic blood pressure (SBP); the third FPC score of high-density lipoprotein cholesterol (HDL); the FPC3 score of serum creatinine (SCr); 
the FPC3 score of low-density lipoprotein cholesterol (LDL); sex; the FPC3 score of diastolic blood pressure (DBP); the FPC3 score of heart rate (HR). Clini-
cally, the FPC1 score indicates the long-term average level of a variable and the FPC3 score represents the fluctuations, or trend changes of a variable. 
Categorical features are binary-encoded, while continuous features have been scaled and centered around the mean for the analysis. Each plot point 
corresponds to an individual data observation. The x-axis represents the deviation of feature values from the mean, and the y-axis depicts the SHAP value 
for each feature within the training dataset
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reclassification performance, providing a valuable tool 
for precision medicine in patients with T2DM in China.

Predicting cardiovascular risk in T2DM remains chal-
lenging. A previous study reported that the 22 exist-
ing cardiovascular scores only had moderate predictive 
ability over a 10-year follow-up period [16]. In our 
research, we observed that the widely recommended 
models, China-PAR and PREVENT, achieved a C-index 
of 0.62–0.65 in the Kailuan cohort, significantly lower 
than their performance in the general population [3, 4]. 
Similar findings were reported in a study conducted in 
Yinzhou district, where the C-index of the China-PAR 
score for cardiovascular events in participants with 
T2DM was 0.67 in men and 0.70 in women [17]. A sys-
tematic review reported that CVD prediction models for 
Chinese patients with T2DM had C-index values ranging 
from 0.70 to 0.85 [18]. A recent model using the XGBoost 
method based on 141,516 Chinese adults achieved a 
C-index of 0.74–0.76 in validation sample [19]. Nota-
bly, CVD risk prediction models tend to exhibit better 
discrimination for short-term predictions. One study 
achieved an AUROC exceeding 0.8 in 3-year predictions 
[20]. However, the predictive performance often declines 
over longer estimation periods, with some models 

showing reduced discrimination when extending the pre-
diction horizon from 10 to 30 years [21]. In our study, the 
ML-CVD-C score demonstrated superior discrimination 
within the Kailuan cohort, highlighting its effectiveness 
for short-term CVD risk prediction. In our study, our 
ML-CVD-C score demonstrated better discrimination 
in the Kailuan cohort than other scores. The introduc-
tion of trajectory information contributed significantly 
to this improvement. While previous studies suggested 
that trajectory-based assessments could enhance dia-
betes management, these approaches typically relied on 
summary metrics like means, variability, or cumulative 
load of repeated measurements [9, 22]. Our approach 
utilized principal component analysis to generate overall 
scores that assess the alignment of individual and over-
all trajectory. Moreover, by leveraging machine learning, 
we effectively integrated the interplay of multiple com-
plex variables. Our predictive results showed a C-index 
improvement to 0.80 in the testing cohort, also indicating 
a robust performance among existing machine-learning 
based cardiovascular prediction models [7]. Additionally, 
the ML-CVD-C model enabled better risk stratification 
in Chinese patients with T2DM. Our study suggested 
that this stratification significantly improved actual risk 

Fig. 4  Sankey diagram visualizing the progression of ML-CVD-C risk score and cardiovascular outcome. Patients used ML-CVD-C model to estimate risk 
at baseline and re-estimate at year 4. MACE, major adverse cardiovascular event
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estimation, NRI, and IDI. Notably, the improvement in 
NRI was more pronounced in populations with MACE, 
highlighting the enhanced specificity of the ML-CVD-C 
model.

The ML-CVD-C model explored the potential benefits 
of incorporating changes observed during patient revis-
its. The SHAP values indicated that revisited information 
provided additional predictive value independent of base-
line values. The ADVANCE study highlighted that after 
adjustment for baseline SBP, sustained pressure elevation 
significantly increases the risk of major cardiovascular 
events, particularly cardiovascular death and myocar-
dial infarction [9]. The Chinese Longitudinal Healthy 
Longevity Survey found a strong link between long-term 
systolic blood pressure load and cardiovascular mortality 
among the elderly [23]. Long-term glucose control also 
affected cardiovascular outcomes, with one study sug-
gesting that personal glucose level control according to 
glucose variability was crucial for patients with T2DM 
[24]. This emphasizes the need for regular management 
for cardiovascular risk factors in patients with diabetes 
[25]. The ML-CVD-C model explanation indicates that 
fluctuations in ALT, creatinine, and LDL levels contribute 
to the model, while sustained elevations in SBP and FPG 
over four years were important factors predicting cardio-
vascular outcomes. This finding suggests that different 
monitoring strategies for these risk factors may improve 
cardiovascular disease management.

Follow-up of ML-CVD-C risk assessments revealed 
that many individuals initially classified needed reclas-
sification upon subsequent evaluations. A recent study 
suggested the evolution of diabetes screening and man-
agement strategies has radically improved the car-
diovascular risk profile of people with diabetes [26]. 
Reestimating cardiovascular risk over time in patients is 
crucial for understanding the progression of diabetes and 
for adjusting treatment strategies to mitigate cardiovas-
cular complications effectively. High-risk individuals may 
not remain at elevated risk upon reevaluation with favor-
able control of cardiovascular risk factors [27]. Moreover, 
the cardiovascular protective effects of new-generation 
glucose-lowering medications such as SGLT2 inhibi-
tors also reduced cardiovascular risk among patients 
at higher baseline risk [28, 29]. The ML-CVD-C scores, 
derived from multiple diabetes-related trajectory predic-
tors, would be a better tool for capturing changes in car-
diovascular risk profiles in an increasingly heterogeneous 
population. This model allowed for dynamic risk reclas-
sification during follow-ups, paving the way for a shift in 
clinical practice from single-point predictions to contin-
uous, multi-point risk surveillance.

Our study utilized a large population-based cohort 
to demonstrate that dynamic machine learning mod-
els that incorporate multiple interim factors during the 

disease course may lead to more accurate prognostic 
assessments in Chinese patients with T2DM. Despite the 
advancement, we observed that our ML-CVD-C score 
still tended to overestimate the actual cardiovascular risk, 
particularly in patients at higher risk, although it dem-
onstrated better calibration than the other scores. Previ-
ous studies have reported inconsistent results regarding 
the calibration of cardiovascular risk models in the Chi-
nese population [15, 30]: A study in Yinzhou suggested 
an underestimation of risk using cardiovascular scores, 
while another study in northern China indicated an over-
estimation. In our study, we observed a higher prevalence 
of medication use in individuals at higher risk. We pos-
tulated that a plausible explanation for the overestima-
tion is that individuals at higher risk are more likely to 
receive intensive medical intervention, which subse-
quently reduces their risk. Information on diabetes medi-
cation and adherence to treatment regimens would be 
needed for better calibration, but such data were scarce 
in our study. Incorporating detailed treatment and medi-
cation data into future models could further enhance the 
accuracy and reliability of cardiovascular risk predic-
tions in patients with T2DM. Interestingly, the low-risk 
group demonstrated a higher prevalence of self-reported 
hyperlipidemia but had lower levels of triglycerides, 
total cholesterol, and LDL cholesterol, with no signifi-
cant differences in the use of lipid-lowering drugs. The 
self-reported diagnosis of hyperlipidemia in our study 
may explain this observation. In China, hypertriglyceri-
demia is more prevalent than hypercholesterolemia [31]. 
It is possible that low-risk individuals likely present-
ing primarily with hypertriglyceridemia, while high-risk 
individuals are more affected by hypercholesterolemia, 
which is more detrimental to cardiovascular health. 
Greater awareness and early detection of hyperlipidemia 
in the low-risk group may have facilitated timely lifestyle 
changes and improved lipid profiles in these patients. 
These observations underscore the limitations of the ML-
CVD-C (base) model in capturing the dynamic progres-
sion of T2DM, which might reduce the reliability of risk 
stratification and the significance of transition analysis. 
Nonetheless, ML-CVD-C still provides a way to identify 
patients with prolonged high-risk exposure.

Limitations
This study has other limitations. Firstly, the validation 
of the models was conducted solely within the Kailuan 
cohort, necessitating further validation in other cohorts 
to confirm the findings. Additionally, the lack of regu-
lar check-ups and long-term follow-ups for T2DM in 
other domestic cohorts restricted our ability to validate 
the efficacy of our model more broadly. Secondly, the 
absence of detailed data on some advanced cardiovascu-
lar predictors, such as the urine albumin-creatinine ratio, 
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potentially impacted the predictive ability. Thirdly, the 
lack of follow-up data and more missing variables pre-
sented challenges in applying the ML-CVD-C model in 
real-world contexts. Finally, lack of direct data on treat-
ment adherence and medication use limited the abil-
ity to assess their impact on calibration and prediction. 
The effect of new-generation glucose-lowering medica-
tions on cardiovascular risk reduction was not explicitly 
considered. Whether the application of the ML-CVD-C 
model can help physicians design personalized treatment 
strategies in current clinical practice also needs further 
investigation.

Future directions
To address these limitations, our future research on the 
machine learning model will focus on validating its per-
formance across multiple cohorts with diverse demo-
graphic and clinical characteristics. We will explore 
whether integrating additional dynamic biomarkers can 
further improve predictive accuracy. Additionally, it is 
worthwhile to explore the model’s potential for moni-
toring changes in cardiovascular disease risk in patients 
receiving medications such as SGLT2 inhibitors and 
GLP-1 receptor agonists, which are known to improve 
cardiovascular outcomes.

Conclusions
The utilization of the machine learning-based cardiovas-
cular dynamic prediction model ML-CVD-C represents 
a significant advancement in the predictive capabilities 
for cardiovascular diseases in T2DM patients within the 
Chinese population. This model enables accurate assess-
ment of cardiovascular outcomes, showcasing its poten-
tial for the precise stratification of patients with T2DM 
in China.
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