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Abstract 

Background Mammographic breast density (MBD), a strong predictor of breast cancer, is highly influenced by body 
mass index (BMI) in childhood and early adulthood, but the mechanisms underlying these associations are not fully 
understood. Our goal is to identify biomarkers that mediate the associations of BMI at ages 10 and 18 with MBD 
in premenopausal women.

Methods This study consists of 705 premenopausal women who had their screening mammogram at Washington 
University in St. Louis, MO, and provided a fasting blood sample. Our comprehensive metabolomic and lipidomic pro-
filing yielded complete data for 828 metabolites and 857 lipid species after imputation. We used Volpara to determine 
volumetric measures of MBD. We performed high dimensional mediation analysis using the HIMA R package, adjusted 
for confounders, to determine whether lipid species and metabolites mediate the associations of BMI at 10 and 18 
with MBD. We applied a false discovery rate (FDR) p-value < 0.1.

Results Four metabolites (glutamate, β-cryptoxanthin, cortolone glucuronide (1), phytanate) significantly mediated 
the association of BMI at 10 with volumetric percent density (VPD), and two (glutamate, β-cryptoxanthin) mediated 
the association of BMI at 18 with VPD. Glutamate was the strongest mediator across time points. Glutamate medi-
ated 6.7% (FDR p-value = 0.06) and 9.3% (FDR p-value = 0.008) of the association between BMI at age 10 and 18, 
respectively. Four lipid species (CER(18:0), LCER(14:0), LPC(18:1), PC(18:1/18:1)), mediated the association of BMI at 10 
with VPD, while five lipid species (CER(18:0), LCER(14:0), PC(18:1/18:1), TAG56:5-FA22:5, TAG52:2-FA16:0) mediated 
the association of BMI at 18 with VPD. The strongest mediator was PC(18:1/18:1), which mediated 9.7%, (FDR-p = 0.009) 
and 7.7%, (FDR-p = 0.04) of the association of BMI at age 10 and 18 with VPD, respectively.

Conclusions Metabolites in amino acid, lipid, cofactor/vitamin, and xenobiotic super-pathways as well as lipid 
species across the phospholipid, neutral complex lipid and sphingolipid super-pathways mediated the associations 
of BMI in early-life and MBD in premenopausal women. This study offers insight into the biological mechanisms 
underlying the link between early-life adiposity and MBD, which can support future research into breast cancer 
prevention.
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Background
Early-life and adulthood body mass index (BMI) are 
inversely associated with both mammographic breast 
density (MBD) and breast cancer among premenopausal 
women [1–3]. BMI explains the most variation in MBD 
(26%) compared to other well-established risk factors 
[4]. Nevertheless, the underlying biological mechanisms 
explaining the association of early-life BMI and MBD have 
not been well characterized. Understanding the underly-
ing biological mechanism can support research into breast 
cancer prevention early in life.

Metabolomics provides an expansive representation of 
many exposures and may imply phenotype [5]. The metab-
olome is also associated with various measures of adipos-
ity. Studies have identified positive associations between 
glutamate and mannose with BMI, as well as inverse asso-
ciations between β-cryptoxanthin [6–8]. Similarly, the lipi-
dome, which provides an overall representation of lipid 
metabolism and a detailed overview of heterogeneous 
functions of lipids, is also strongly related to adiposity [9]. 
The lipidome is associated with BMI. Phospholipids, par-
ticularly species from the lysophosphatidylcholine (LPC) 
sub-pathway, are inversely associated with BMI, whereas 
neutral complex lipid species from the largely enriched tri-
acylglycerol (TAG) sub-pathway are often positively associ-
ated with BMI [10–14].

Studies have reported associations of the lipidome and 
various metabolites, especially in amino acid, vitamin, 
and related cofactor sub-pathways with MBD in premen-
opausal women [15–17]. Given the associations of the 
metabolome/lipidome with BMI as well as those between 
metabolites/lipid species with MBD; it is possible that the 
associations of childhood/early adulthood BMI with MBD 
is mediated by metabolites and lipid species. Yet, only one 
small study in 182 women aged 25–29 years has explored 
the possible role of metabolites in mediating the associa-
tion of childhood adiposity with MBD. The study also uti-
lized a traditional mediation analysis approach [18].

Our goal in this study is to perform high-dimensional 
mediation analyses to identify lipid species and metabo-
lites that mediate the associations of childhood/early adult-
hood BMI with MBD in premenopausal women who were 
recruited during screening mammogram.

Methods
Study population
This study is comprised of 705 premenopausal women 
who attended the Joanne Knight Breast Health Center 

at Washington University School of Medicine in St. 
Louis, MO, for their screening mammogram and pro-
vided a blood sample for lipidomics and metabolomics 
profiling. Women were not eligible to participate in the 
study if they were postmenopausal, which was deter-
mined as not having had a menstrual period in the past 
12 months, having a history of taking hormone replace-
ment therapy, or had their ovaries surgically removed 
[2, 3]. We excluded premenopausal women who had a 
personal history of cancer, breast augmentation (reduc-
tion or implants), who were pregnant or had used selec-
tive estrogen receptor modulators in the past six months 
[2, 3]. On the same visit as the screening mammogram, 
women provided a fasting blood sample that was imme-
diately sent to the Tissue Procurement Core at Siteman 
Cancer Center, where it was stored at − 80  °C [19]. All 
participants provided written informed consent, and the 
study was conducted within the guidelines of the Decla-
ration of Helsinki. The study was approved by the institu-
tional review board at the Washington University School 
of Medicine, St. Louis, MO.

Anthropometric and self‑reported measures
Trained research staff measured anthropometric char-
acteristics at enrollment. Height was measured using a 
stadiometer, and we measured weight using the OMRON 
Full Body Sensor Body Composition Monitor and Scale 
Model HBF-514FC [2, 3]. Additionally, participants were 
asked to complete a questionnaire that provided infor-
mation on their demographics, reproductive/family his-
tory and adiposity measures from childhood and early 
adulthood. Adiposity at age 10 was assessed utilizing the 
Stunkard pictogram and converted to BMI based on val-
ues generated from the Growing Up Today Study [20]. 
BMI at age 18 was calculated from self-reported weight 
at age 18 and height at enrollment. Women who reported 
a history of breast cancer diagnosis in either a mother or 
a sister were classified as having a positive family history 
of breast cancer.

Lipidomic/metabolomic profiling
Metabolon (Durham, NC) performed untargeted lipi-
domics profiling and measured 982 individual lipid 
species. The process of how the lipid species were quan-
tified and the reproducibility of the measures has been 
previously published [17, 21]. Of the 982 lipid species, 
125 species were excluded due to excess missing obser-
vations (in > 300 samples). Lipid species with missing 
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observations in < 300 samples were imputed using the 
10-nearest neighbor method [22]. We had complete 
data available after imputation for 857 lipid species. 
Metabolon (Durham, NC) also performed untargeted 
metabolomic profiling on samples from the same women 
utilizing ultrahigh performance liquid chromatography/
mass spectrometry (UHPLC/MS) [23]. A recently pub-
lished article from our lab provides a detailed descrip-
tion of the methodology and process of UHPLC/MS as 
well as the quality control techniques performed in this 
study population [15]. Through the untargeted metabo-
lomic profiling the global assay was able to detect 1,074 
metabolites, but we excluded 246 metabolites because 
they were missing > 300 observations. Metabolites miss-
ing < 300 observations were imputed using the 10-nearest 
neighbor methods [22]. Imputations for metabolites and 
lipids were done separately using the “impute” package 
in R and using the 10-nearest neighbor method (kNN) 
which uses a Euclidean metric to identify the 10 nearest 
neighbors, then averages the values from those observa-
tions to impute the missing value [24]. There were very 
few missing observations (in total 0.4% for lipids and 
1.3% for metabolites) since we excluded metabolites or 
lipid species with > 300 missing observations. To mitigate 
batch effect, peak area metabolite data were normalized 
using ComBat [25]. Since we were provided with concen-
trations for the lipid species data we did not normalize 
with ComBat. Lipid species concentrations and metabo-
lites peak area data were  log10 transformed to improve 
homoscedasticity and were standardized to reflect a 
unit change equal to the standard deviation of the lipid 
species/metabolite.

Mammographic breast density measurement
Mammographic breast density was measured volumetri-
cally using Volpara version 1.5. Volumetric percent den-
sity (VPD) was quantified by dividing maximum dense 
volume  cm3 (DV), represented as the fibroglanduar tissue 
in the breast by total breast volume. Non-dense volume 
 cm3 (NDV) is calculated by subtracting the amount of 
DV from the total breast volume. Volpara identifies the 
amount of fibroglanduar tissue in the breast, by taking 
the maximum value between the mediolateral oblique 
and cranial-caudal views of both breasts. Of the 705 
women in the study, we were able to calculate MBD for 
700, which was the final analytic sample. All measures of 
MBD were  log10 transformed for analysis to conform to 
the normality assumption.

Statistical analyses
We examined the distribution of BMI at ages 10 and 18 
by presenting the means and standard deviations across 
age at enrollment, age at menarche, race, and family 

history of breast cancer. We performed multivariable lin-
ear regression to assess the associations between BMI at 
ages 10 and 18 across all lipid species and metabolites. 
We adjusted for age (continuous), race (non-Hispanic 
white, non-Hispanic black, other), and family history of 
breast cancer (yes, no) when investigating the associa-
tions between BMI at age 10 and the lipid species/metab-
olites. We additionally adjusted for age at menarche 
(continuous) and BMI at age 10 when assessing the rela-
tionship between BMI at age 18 and the lipid species/
metabolites. Although there was very little missingness 
across variables (< 12%), if the BMI measures or any 
covariate were missing observations, they were imputed 
using multivariate imputation by chained equations [26]. 
There were also very few missing values for BMI at age 10 
(N = 43) BMI at age 18 (N = 3).

Based on this a priori knowledge, we determined 
whether lipid species and metabolites mediate the asso-
ciations of BMI at age 10 and BMI at age 18 with MBD 
through a high dimensional mediation analysis (HIMA) 
using the HIMA R package [27]. HIMA performs media-
tor screening by calculating the marginal correlations 
between mediators (metabolites or lipid species) and 
outcome (MBD) after adjusting for confounders. HIMA 
requires that all the mediators are included in the model 
at the same time (metabolite models include metabo-
lites N = 828 and lipid species models include lipid spe-
cies N = 857). It relies on sure independent screening and 
minimax concave penalty techniques to simultaneously 
incorporate multiple mediators, and uses a joint signifi-
cance test for their mediation effect. Denote the k-th of 
the p mediators (i.e. lipid species or metabolites) as Mk 
and covariates as Z, the model is formulated as

where αk ′s are the coefficients of the association of the 
BMI exposure with mediators, βk ’s are the coefficients of 
the association of the mediators with MBD, γ ∗ and γ are 
the “total effect” and “direct effect” of the exposure on the 
outcome respectively, and δ∗y , δk , δy are the coefficients of 
the association of the covariates and the outcome with-
out adjusting for the mediators, the mediators, and the 
outcome adjusting for the mediators, respectively. The 
variables adjusted for include age, race, and family his-
tory of breast cancer for BMI at age 10, and additionally 
age at menarche and BMI at age 10 for BMI at age 18. 
HIMA adjusts for multiple comparisons by Bonferroni’s 

MBD = c∗ + BMI × γ ∗
+ Z × δ∗y + ǫ1,

Mk = ck + BMI × αk + Z × δk + ek , k = 1, . . . , p,

MBD = c + BMI × γ +

∑p

k=1
Mk×βk + Z × δy + ǫ2,
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method to control the false discovery rate (FDR). We use 
the FDR p-value < 0.1 as a cut point to identify lipid spe-
cies and metabolites that significantly mediate the asso-
ciations between BMI exposures and MBD. Moreover, we 
quantify the magnitude of the mediation effects by calcu-
lating the proportion of total effects being mediated by 
the k-th mediator as αkβk/γ ∗.

Results
Characteristics of the study population were previously 
published, but briefly, the average age of participants 
was 46  years old, and the majority of women identified 
as non-Hispanic White (~ 72%) [17]. After imputation, 
mean BMI was 17.4 kg/m2 and 22.1 kg/m2 at age 10 and 
age 18, respectively. Having experienced menarche below 
the median age (< 13  years old) was associated with a 
slightly higher BMI at ages 10 and 18. (Table 1) Non-His-
panic black women had higher BMI at age 18 than non-
Hispanic White women. (Table 1).

Associations of BMI at ages 10 and 18 across metabolites
BMI at age 10 was significantly associated with 10 
metabolites. Five metabolites (mannose, mannonate, 
cysteinylglycine disulfide, 16alpha-hydroxy DHEA 3-sul-
fate, and butyrylcarnitine (C4)) were positively associ-
ated and 5 metabolites (carotene diol (1), 3-formylindole, 
carotene diol (2), I-urobilinogen and picolinate) were 
inversely associated (Fig. 1). A total of 25 (18 positive and 

7 inverse) metabolites were associated with BMI at age 
18. The metabolites were from the amino acid (N = 10), 
nucleotide (N = 5), lipid (N = 3), xenobiotic (N = 4), vita-
min/cofactor (N = 1), carbohydrate (N = 1), and energy 
(N = 1) super pathways (Fig. 2).

Associations of BMI at ages 10 and 18 across lipid species
BMI at age 10 was significantly associated with 7 lipid 
species; 6 inversely: (diacylglycerol (DAG(14:0/20:0)), 
(phosphatidylcholine (PC(18:2/18:3)), PC(14:0/18:1), 
PC(18:1/18:2), PC(16:0/14:0), PC(18:2/18:2)) and 1 posi-
tively: (sphingomyelin (SM(18:1))) (FDR p-value < 0.1) 
(Fig.  3). BMI at age 18 was associated with 139 lipid 
species (127 positive associations, mostly neutral com-
plex lipids (N = 111); and 12 inverse associations, mostly 
phospholipids (N = 10)). (Fig. 4).

Metabolites mediate the associations of BMI at ages 10 
and 18 with MBD
Four metabolites from the amino acid (glutamate), vita-
min/cofactors (β-cryptoxanthin), xenobiotic (phytanate), 
and lipid (cortolone glucuronide (1)) super pathways 
mediated the association of BMI at age 10 with VPD; and 
2 metabolites (glutamate, β-cryptoxanthin) mediated the 
association of BMI at age 18 with VPD (Table  2). Glu-
tamate was the strongest mediator across time points. 
Glutamate mediated 6.7% (FDR p-value = 0.06) and 9.3% 
(FDR p-value = 0.008) of the total effect of BMI at age 10 
and 18, respectively, on VPD. β-cryptoxanthin mediated 
4.1% (FDR p-value = 0.06) and 6.3% (FDR p-value = 0.04) 
of the total effect of BMI at age 10 and 18, respectively, 
on VPD.

Ten metabolites and 5 metabolites significantly medi-
ated the associations of BMI at ages 10 and 18 with NDV, 
respectively. Four of the 10 metabolites that mediated 
the association of BMI at age 10 with NDV are from 
the amino acid super pathway (citrulline, isovalerylgly-
cine, cysteinylglycine disulfide, and hydroxyasparagine), 
3 are from the lipid super pathway (glycerol, cortolone 
glucuronide (1) and tetrahydrocortisone glucuronide 
(5)), 2 are from the xenobiotic super pathway (phytan-
ate and 2,6-dihydroxybenzoic acid) and 1 from the car-
bohydrate super pathway (mannose). Mannose, glycerol, 
and 2,6-dihydroxybenzoic acid also significantly medi-
ated the association of BMI at age 18 with NDV, as well 
as urate (nucleotide super pathway) and N2,N5-diacety-
lornithine (amino acid super pathway). Mannose was 
the strongest mediator for both time points; it mediated 
10.1% of the total effect of BMI at age 10 and NDV, FDR 
p-value = 0.004 and 8.0% of the total effect of BMI at age 

Table 1 Characteristics of premenopausal women recruited 
during annual screening mammogram by body mass index at 
ages 10 and 18

BMI Body mass index, N Number, SD Standard deviation

BMI (kg/m2) at 
age 10

BMI (kg/m2) at 
age 18

N Mean (SD) Mean (SD)

Overall 700 17.4 22.1

Age, year

  < 46 years old 336 17.7 (3.0) 22.4 (4.7)

  ≥ 46 years old 364 17.1 (2.6) 21.8 (4.1)

Age at menarche, year

  < 13 years old 345 17.7 (2.9) 22.9 (4.7)

  ≥ 13 years old 355 17.0 (2.7) 21.3 (4.0)

Race

 Non-Hispanic 
white

507 17.3 (2.7) 21.7 (4.0)

 Non-Hispanic 
black

162 17.8 (3.2) 23.5 (5.5)

 Other Race 31 16.8 (2.0) 21.5 (3.4)

Family history of breast cancer

 Yes 153 17.7 (2.9) 22.2 (4.6)

 No 547 17.3 (2.8) 22.0 (4.4)
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18 with NDV, FDR p-value = 0.006 (Table 2). No signifi-
cant associations were observed for DV.

Lipid species mediate the associations of BMI at ages 10 
and 18 with MBD
The association of BMI at age 10 with VPD was sig-
nificantly mediated by 4 lipid species; 2 of the species 
were from the phospholipid super pathway (LPC(18:1) 
and PC(18:1/18:1)), 2 were from the sphingolipid super 
pathway (ceramide (CER(18:0)) and (lactosylceramide 

(LCER(14:0)). The strongest mediator was PC(18:1/18:1), 
which mediated 9.7% of the total effect of BMI at age 10 
and VPD, FDR p-value = 0.009. Additionally, CER(18:0), 
LCER(14:0), and LPC(18:1) mediated 8.7% (FDR 
p-value = 0.009), 7.9% (FDR p-value = 0.03) and 1.6% 
(FDR p-value = 0.08) of the association of BMI at age 
10 with VPD, respectively. Five lipid species mediated 
the association of BMI at age 18 with VPD, including 
CER(18:0), LCER(14:0), PC(18:1/18:1), TAG56:5-FA22:5, 
and TAG52:2-FA16:0. TAG56:5-FA22:5 was the 

Fig. 1 Covariate adjusted associations between metabolites and body mass index at age  10a. aModel was adjusted for age at enrollment, race 
(non-Hispanic white, non-Hispanic black and other), and family history of breast cancer (yes, no). FDR False Discovery Rate
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strongest—mediating 16.1%, (FDR p-value = 0.01) of the 
association between BMI at age 18 and VPD (Table 3).

PC(18:1/18:1), the strongest mediator of the associa-
tion of BMI at age 10 with NDV, mediating 11.9% of the 
total effect (FDR p-value = 0.01) (Table  3). Six lipid spe-
cies (CER(18:0), DAG(16:0/18:1), PC(18:1/18:1), TAG49:2-
FA18:2, TAG56:6-FA22:5, TAG56:6-FA20:4) mediated 
the association ofBMI at age 18 and NDV with TAG56:6-
FA22:5 (− 13.8%, FDR p-value = 0.04) and DAG(16:0/18:1; 
11.0%, FDR p-value = 0.002), being the strongest media-
tors. (Table 3). No lipid species mediated the associations 

of BMI at ages 10 and 18 with DV, which is validated by our 
previous study that demonstrated no significant associa-
tions of the lipidome and DV [17].

Discussion
We identified metabolites, specifically glutamate and 
β-cryptoxanthin and lipid species, PC(18:1/18:1), 
CER(18:0), and LCER (14:0) that mediated the asso-
ciations of BMI at ages 10 and 18 with VPD. This is the 
first study,  to our knowledge, to perform a comprehen-
sive lipodomic analysis to investigate the mediating role 

Fig. 2 Covariate adjusted associations between metabolites and body mass index at age  18a. aModel was adjusted for age at enrollment, race 
(non-Hispanic white, non-Hispanic black and other), family history of breast cancer (yes, no), BMI at age 10, and age at menarche. FDR False 
Discovery Rate
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of lipid species on the associations of BMI in childhood 
with MBD.  As well  the first to use a high dimensional 
approach to investigate the mediating role of metabolites 
on the associations of BMI at 10 and 18 with MBD.

A previous study in 182 young women (25–29  years) 
reported that that an unnamed metabolite, “X-16576”, 
mediated the relationship between childhood adipos-
ity and percent dense volume [18]. Our study brings 
important new insights by utilizing a high dimensional 

approach among a larger study population (N = 700 vs 
N = 182) of premenopausal women attending annual 
screening mammogram [18]. Further, our high-dimen-
sional analysis and more complete characterization of the 
metabolites could have enabled us to identify metabolites 
that they did not observe in their analysis. For instance, 
230 of the 880 biochemicals they profiled in their study 
were unnamed biochemicals. Also, metabolomics is an 
evolving field in which new metabolites are identified 

Fig. 3 Covariate adjusted associations between lipid species and body mass index at age  10a. aModel was adjusted for age at enrollment, 
race (non-Hispanic white, non-Hispanic black and other), and family history of breast cancer (yes, no). PC Phosphatidylcholine, LPC 
Lysophosphatidylcholine, PE Phosphatidylethanolamine, LPE Lysophosphatidylethanolamine, PI Phosphatidylinositol, CER Ceramide, DCER 
Dihydroceramide, HCER Hexosylceramide, LCER Lactosylceramide, SM Sphingomyelin, CE Cholesteryl ester, DAG Diacylglycerol, TAG  Triacylglycerol, 
MAG Monoacylglycerol, FDR False discovery rate
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regularly; the metabolites included in the untargeted 
global panel at the time of our study may differ from 
other studies.

The metabolite that most strongly mediated the rela-
tionships between BMI at ages 10 and 18 in our study 
was glutamate. Glutamate was positively associated 
with BMI at age 10 and age 18, but inversely associ-
ated with VPD. These findings are consistent with sev-
eral studies where glutamate was positively associated 

with various measures of adiposity in adults.[6–8, 28], 
as well as among adolescents/children [29, 30]. Gluta-
mate is positively associated with visceral adipose tissue 
and metabolic syndrome [31]. Studies by Maltais-Pay-
ette et  al. suggest branched-chain-amino-acid (BCAA) 
catabolism may play a role in this relationship because 
glutamate is a by-product of this process [31, 32]. Gluta-
mate is produced by various tissues in the body, including 
adipose tissue. An animal study found that obese mice 

Fig. 4 Covariate adjusted associations between lipid species and body mass index at age  18a. aModel was adjusted for age at enrollment, 
race (non-Hispanic white, non-Hispanic black and other), family history of breast cancer (yes, no), BMI at age 10, and age at menarche. PC 
Phosphatidylcholine, LPC Lysophosphatidylcholine, PE Phosphatidylethanolamine, LPE Lysophosphatidylethanolamine, PI Phosphatidylinositol, CER 
Ceramide, DCER Dihydroceramide, HCER Hexosylceramide, LCER Lactosylceramide, SM Sphingomyelin, CE Cholesteryl ester, DAG Diacylglycerol, TAG  
Triacylglycerol, MAG Monoacylglycerol, FDR False discovery rate
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produced higher levels of glutamate from their adipose 
tissue compared to lean mice, but similar amounts of glu-
tamate were produced from other tissues [33]. It is possi-
ble that the relationship between BMI and glutamate may 
reflect similarly to the composition of breast tissue, given 
that NDV in the breast mainly consists of fatty tissue.

β-cryptoxanthin also significantly mediated the rela-
tionship between BMI at ages 10 and 18 with VPD but 
was inversely associated with BMI at ages 10 and 18, 
and positively associated with VPD. A similar inverse 
relationship between β-cryptoxanthin and BMI was 
also identified in the McClain et  al. [6] study. A study 
of postmenopausal women found that provitamin A 
carotenoids, including β-cryptoxanthin, were strongly, 

inversely associated with BMI even when controlling 
for total energy intake [34]. β-cryptoxanthin can be 
found in citrus, and results from an animal study where 
β-cryptoxanthin was administered to mice found a reduc-
tion in adipocytes as well as an immune and inflamma-
tory response [35]. This relationship is further validated 
by a trial performed in Japanese women who consumed 
β-cryptoxanthin supplement and, although did not see 
a difference in weight, found changes in adipocytokines 
[36]. Indications of the potential anti-inflammatory prop-
erties of β-cryptoxanthin support the inverse relationship 
with BMI, but further research is necessary to explore 
how β-cryptoxanthin mediates the relationship between 
BMI and MBD.

Table 2 Metabolites mediating the association between body mass index at ages 10 and 18 with mammographic breast density

a Model was adjusted for age at enrollment, race (non-Hispanic white, non-Hispanic black and other), family history of breast cancer (yes, no)
b Model was adjusted for age at enrollment, race (non-Hispanic white, non-Hispanic black and other), family history of breast cancer (yes, no), BMI at age 10, and age 
at menarche
c α̂ is the coefficient of the relationship between the exposure (BMI measure) and mediator (metabolite)
d β̂ is the coefficient of the relationship between the mediator (metabolite) and outcome (mammographic breast density) adjusted for the exposure (BMI measure)
e % Total Effect= α̂ * β̂ /γ , where γ is the coefficient of the relationship between the exposure (BMI measure) and the outcome (mammographic breast density). BMI 
Body mass index, FDR False discovery rate, NDV Non-dense volume, VPD Volumetric percent density

Metabolite α̂ c β̂ d % Total  Effecte FDR p‑value Super pathway

VPD

 BMI at age  10a

  Glutamate 0.036 − 0.049 6.65 0.06 Amino Acid

  β-cryptoxanthin − 0.036 0.030 4.09 0.06 Cofactors/Vitamins

  Cortolone glucuronide (1) 0.033 − 0.016 2.03 0.07 Lipids (2)

  Phytanate − 0.034 0.020 2.58 0.06 Xenobiotics

 BMI at age  18b

  Glutamate 0.043 − 0.039 9.29 0.008 Amino Acids

  β-cryptoxanthin − 0.040 0.028 6.34 0.04 Cofactors/Vitamins

NDV

 BMI at age  10a

  Citrulline − 0.031 − 0.012 1.56 0.08 Amino Acids

  Phytanate − 0.034 − 0.050 7.10 0.05 Xenobiotics

  Mannose 0.050 0.047 10.11 0.004 Carbohydrates

  Glycerol 0.029 0.039 4.72 0.09 Lipids (1)

  Isovalerylglycine − 0.042 − 0.035 6.30 0.02 Amino Acids

  Cysteinylglycine disulfide* 0.048 0.022 4.48 0.03 Amino Acids

  Cortolone glucuronide (1) 0.033 0.051 7.10 0.07 Lipids (2)

  Hydroxyasparagine** 0.038 0.047 7.51 0.04 Amino Acids

  2,6-dihydroxybenzoic acid − 0.029 − 0.011 1.35 0.08 Xenobiotics

  Tetrahydrocortisone glucuronide (5) 0.032 − 0.049 − 6.65 0.08 Lipids (2)

 BMI at age  18b

  Mannose 0.033 0.050 8.01 0.006 Carbohydrates

  Urate 0.034 0.022 3.56 0.02 Nucleotide

  Glycerol 0.024 0.024 2.76 0.08 Lipids (1)

  N2,N5-diacetylornithine − 0.023 − 0.035 3.83 0.09 Amino Acids

  2,6-dihydroxybenzoic acid − 0.023 − 0.003 0.30 0.08 Xenobiotics
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LPC(18:1) mediated 1.59% of the total effect of BMI 
at age 10 and VPD, FDR p-value = 0.09. Although this 
is modest mediation compared to the other lipid spe-
cies, LPC(18:1) has been consistently identified as being 
inversely associated with BMI and adiposity among 
adults and adolescents/children [10–13, 37]. Studies sug-
gest the inverse association of LPC with obesity may be 
related to the transfer of PC to cholesterol by lecithin-
cholesterol acyltransferase (LCAT) or LPC catabolism, 
resulting in lower levels of LPC present in the blood [11, 

37]. Findings from both mediation analyses imply poten-
tial inflammatory mechanisms as well as the possible 
influence of metabolic dysregulation. Additional research 
to further elucidate the underlying biological mechanism 
behind these associations is necessary.

Strengths and limitations
Our study has many strengths including a relatively large 
and diverse study population. We are also the first to our 
knowledge to investigate the mediating role of lipid spe-
cies and metabolites on the association of childhood/
early adulthood adiposity with MBD utilizing a high 
dimensional mediation analysis approach. This method is 
unique because it considers the relationship between the 
mediators when calculating the total percent mediated. 
We collected data on reproductive, demographic, and 
behavioral characteristics that were used as confounders 
in our analysis.

Although this study has many strengths, it has some 
limitations. BMI at ages 10 and 18 are both based on self-
reported measures, the Stunkard figure rating scale, and 
self-reported weight from age 18. Although self-reported 
measures of adiposity are often underestimated, they 
are often highly correlated with measured weight and 
BMI, this is consistent with adults recalling BMI from 
childhood as well [38, 39]. The Stunkard pictogram has 
been validated in many studies and found to be a reli-
able estimate of BMI at age 10 [40–42]. For instance, a 
validation study from a Boston-area longitudinal study 
of school children reported a high correlation between 
participants’ adult-recalled body size at age 10 and their 
measured BMI at age 10 (r = 0.65). We have also validated 
it in our previous studies within the same study popula-
tion and observed strong positive correlations between 
adiposity at age 10 and BMI at age 18. Further, a system-
atic review and meta-analysis that explored the validity of 
early-life recall of BMI reported strong correlations with 
prospective measures with a mean pooled difference of 
only 0.06  kg/m2 (95% CI − 0.62–0.73) between recalled 
BMI and prospective measures [39]. Another potential 
limitation is that BMI may not reflect an accurate meas-
ure of adiposity due to differences in body composition, 
but findings from a study that compared the metabo-
lomic profiling of BMI to percent body fat and fat mass of 
the body found strong correlations across many metab-
olites and suggests that BMI may be a good proxy for 
measures of adiposity such as body fat percent [43]. Also, 
BMI and body fat percent that were measured at study 
initiation were highly correlated in our study participants 
(r = 0.88).

Metabolites and lipid species were measured at a sin-
gle time point, which may not provide an accurate depic-
tion of longitudinal exposure over time. Also, the blood 

Table 3 Lipid species mediating the association between 
body mass index at ages 10 and 18 with mammographic breast 
density

a Model was adjusted for age at enrollment, race (non-Hispanic white, non-
Hispanic black and other), family history of breast cancer (yes, no)
b Model was adjusted for age at enrollment, race (non-Hispanic white, non-
Hispanic black and other), family history of breast cancer (yes, no), BMI at age 10, 
and age at menarche
c α̂ is the coefficient of the relationship between the exposure (BMI measure) 
and mediator (lipid species)
d β̂ is the coefficient of the relationship between the mediator (lipid species) 
and outcome (mammographic breast density) adjusted for the exposure (BMI 
measure). BMI Body mass index, FDR False Discovery rate, CER Ceramide, DAG 
Diacylglycerol, LCER Lactosylceramide, LPC Lysophosphatidylcholine, NDV 
Non-dense volume, PC Phosphatidylcholine, TAG  Triacylglycerol, VPD Volumetric 
percent density
e % Total Effect= α̂ * β̂ /γ , where γ is the coefficient of the relationship between 
the exposure (BMI measure) and the outcome (mammographic breast density)

α̂ c β̂ d % Total  Effecte FDR p‑value

VPD

 BMI at age  10a

  CER(18:0) 0.044 − 0.052 8.73 0.009

  LCER(14:0) − 0.032 0.065 7.86 0.03

  LPC(18:1) − 0.038 0.011 1.59 0.08

  PC(18:1/18:1) − 0.040 0.064 9.72 0.009

 BMI at age  18b

  CER(18:0) 0.030 − 0.059 10.07 0.01

  LCER(14:0) − 0.027 0.053 8.14 0.01

  PC(18:1/18:1) − 0.021 0.064 7.66 0.04

  TAG56:5-FA22:5 0.027 0.106 − 16.14 0.01

  TAG52:2-FA16:0 0.031 − 0.062 10.79 0.008

NDV

 BMI at age  10a

  CER(18:0) 0.044 0.044 8.21 0.01

  LPC(18:1) − 0.038 − 0.038 6.09 0.01

  PC(18:1/18:1) − 0.040 − 0.071 11.92 0.01

 BMI at age  18b

  CER(18:0) 0.030 0.039 5.65 0.01

  DAG(16:0/18:1) 0.037 0.062 11.02 0.002

  PC(18:1/18:1) − 0.021 − 0.080 8.13 0.04

  TAG49:2-FA18:2 0.023 − 0.073 − 8.06 0.04

  TAG56:6-FA22:5 0.022 − 0.128 − 13.82 0.04

  TAG56:6-FA20:4 0.023 0.059 6.57 0.04



Page 11 of 12Getz et al. Breast Cancer Research           (2025) 27:18  

sample provided for metabolomic and lipidomic analy-
sis was collected on the same day as mammographic 
imaging which may impact temporal associations. Nev-
ertheless, we evaluated the associations of early-life adi-
posity measures which were collected via recall, rather 
than current BMI. Although participants provided this 
information on the day of their mammogram, they do 
not reflect the BMI of the women on the day the mam-
mogram was performed. We acknowledge that this 
approach still has limitations, and our findings will need 
to be interpreted within the context of using recalled 
data, which has been validated. The ideal study would be 
one where samples are collected from girls at ages 10 and 
18, stored for several years and they are then followed for 
30–40 years when they undergo screening mammogram. 
This approach is however challenging in the real setting; 
hence, our study helps to bridge fundamental gaps.

Lastly, we did not assess for the potential interaction 
between the exposure and mediators since we utilized 
high dimensional data for the mediators (metabolites 
N = 828 and lipid species N = 857) and there is also the 
possibility of residual or unmeasured confounding that 
was not controlled for in the analyses because models 
with the same exposure used the same covariate set.

Conclusions
Metabolites in amino acid, lipid, cofactor/vitamin, and 
xenobiotic super-pathways as well as lipid species in 
phospholipid, neutral complex lipid and sphingolipid 
super-pathways mediate the associations of early-life 
BMI with VPD/NDV in premenopausal women. This 
innovative study offers insight into the biological mecha-
nisms underlying the associations of early-life adiposity 
and MBD, and can support future research into breast 
cancer prevention.
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