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Abstract 

Background Pathological complete response (pCR) is an established surrogate marker for prognosis in patients 
with breast cancer (BC) after neoadjuvant chemotherapy. Individualized pCR prediction based on clinical information 
available at biopsy, particularly immunohistochemical (IHC) markers, may help identify patients who could benefit 
from preoperative chemotherapy.

Methods Data from patients with HER2‑negative BC who underwent neoadjuvant chemotherapy from 2002 to 2020 
(n = 1166) were used to develop multivariable prediction models to estimate the probability of pCR (pCR‑prob). The 
most precise model identified using cross‑validation was implemented in an online calculator and a nomogram. Asso‑
ciations among pCR‑prob, prognostic IHC3 distant recurrence and disease‑free survival were studied using Cox regres‑
sion and Kaplan–Meier analyses. The model’s utility was further evaluated in independent external validation cohorts.

Results 273 patients (23.4%) achieved a pCR. The most precise model had across‑validated area under the curve 
(AUC) of 0.84, sensitivity of 0.82, and specificity of 0.71. External validation yielded AUCs between 0.75 (95% CI, 
0.70–0.81) and 0.83 (95% CI, 0.78–0.87). The higher the pCR‑prob, the greater the prognostic impact of pCR status 
(presence/absence): hazard ratios decreased from 0.55 (95% central range, 0.07–1.77) at 0% to 0.20 (0.11–0.31) at 50% 
pCR‑prob. Combining pCR‑prob and IHC3 score further improved the precision of disease‑free survival prognosis.

Conclusions A pCR prediction model for neoadjuvant therapy decision‑making was established. Combining pCR 
and recurrence prediction allows identification of not only patients who benefit most from neoadjuvant chemotherapy, 
but also patients with a very unfavorable prognosis for whom alternative treatment strategies should be considered.
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Background
Pathological complete response (pCR) after neoadjuvant 
chemotherapy is a surrogate marker for prognosis in 
patients with early breast cancer (BC) [1, 2]. Particularly 
in patients with triple-negative or HER2-positive breast 
cancer, a pCR is strongly associated with a favorable prog-
nosis [1, 2]. Some hormone receptor–positive, HER2-
negative patients have an excellent prognosis despite 
low pCR rates [1, 2]. Ideally, biomarkers can help iden-
tify patients who have a good response to chemotherapy 
and serve to justify such treatment, especially when the 
presence or absence of a pCR has a substantial impact 
on survival. A survey among physicians confirmed the 
general interest in a prediction tool for pCR[3]. The pre-
sent study focuses on HER2-negative disease because, for 
HER2-positive patients, the indication for chemotherapy 
is usually established independently of biomarker values: 
most of these patients have been shown to benefit from 
combined chemotherapy with trastuzumab[4].

Although many molecular biomarkers have been 
shown to be associated with pCR, and some mRNA-
based multigene assays have been used to predict the 
response to chemotherapy[5], the full potential of immu-
nohistochemistry (IHC) may not yet have been fully 
explored.

IHC markers, including estrogen receptor (ER), pro-
gesterone receptor (PgR), HER2, and in some institutions 
Ki-67 as well, are often used for clinical decision mak-
ing. Although ER, PgR, and Ki-67 assessments are usu-
ally reported as the percentage of positively stained cells, 
dichotomized information (positive vs negative) is mainly 
used in clinical trials and scientific analyses. For routine 
clinical use, some cutoff values have been discussed, but 
these cut-off points have changed in some cases. The cut-
off points for ER/PgR, for example, have decreased from 
10% to 1% over time [6–10]. These cutoff values were 
chosen in relation to responsiveness to antihormonal 
therapy but have nevertheless also been used to predict 
the efficacy of chemotherapy [1, 2, 11–14].

Combined information allows individualized predic-
tion of pCR that goes beyond the single dichotomized 
biomarker approach currently used. The primary objec-
tive of this study was to develop various prediction tools 
to estimate a patient’s likelihood of pCR on the basis of 
clinical predictors and the IHC biomarkers ER, PgR, and 
Ki-67—either as assessed during routine clinical work or 
categorically using established or newly identified thresh-
olds. The most precise tool is described in detail and has 
been validated in several independent external samples.

Methods
Primary study population
This retrospective, single-center, hospital-based obser-
vational study included 1166 patients with HER2-neg-
ative BC from the Erlangen Neoadjuvant Study Breast 
(ERNEST-B) study [12] who underwent neoadjuvant 
chemotherapy from 2002 to 2020, were ≥ 18  years of 
age, and had available information about their pCR sta-
tus. Patients with metastases or contralateral breast can-
cer at primary diagnosis and patients with incomplete 
biomarker information were excluded. Approval for the 
analyses was obtained from the ethics committee of the 
University of Erlangen–Nuremberg. Further information 
is provided in Fig. 1 and the Supplement.

Data were collected prospectively in accordance with 
the breast center certification requirements of the Ger-
man Cancer Society. Follow-up data were collected 
for ≤ 10 years after the primary diagnosis.

All histopathological parameters were documented 
from the original pathology reports. Tumor grade, tumor 
type, HER2 status, ER/PgR expression, and Ki-67 stain-
ing were assessed as part of clinical routine testing on 
formalin-fixed, paraffin-embedded tumor tissue at initial 
diagnosis. The staining procedures are described in the 
Supplement.

Study outcome
pCR was defined as a complete absence of tumor cells 
from the breast (ypT0) and lymph nodes (ypN0) after 
chemotherapy at the time of surgery.

Disease-free survival (DFS) was defined as the period 
from the date of diagnosis to either the earliest date of 
disease progression (ie, distant metastasis, local recur-
rence, or death from any cause) or to the last date the 
patient was known to be disease free within the 10-year 
maximum observation time.

Univariable statistical analyses
The possibly nonlinear relationship between the bio-
markers ER, PgR, and Ki-67 (each continuous, 0% to 
100% of positively stained cells) and pCR (yes vs no) was 
described using natural cubic spline functions. Optimal 
cutoff values for these biomarkers were calculated using 
the minimum p value approach. Full details are provided 
in the Supplement.

Developing pCR prediction models
Several logistic regression models were fitted to assess 
different usages of the biomarkers ER, PgR, and Ki-67 
for predicting a patient’s likelihood of pCR. A logistic 
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regression model (hereafter referred to as the basic 
model) was set up with established predictors for pCR: 
age at diagnosis (continuous), inverse body mass index 
(1/BMI, continuous), tumor stage (ordinal, cT1–cT4), 
grade (ordinal, grade 1–grade 3), lymph node status 
(categorical, cN0 vs cN +) and tumor type (categorical; 
ductal, lubular, other). Continuous predictors (age, 1/
BMI) were used as cubic spline functions in which the 
degrees of freedom (df; 1 or 2) were determined using 
the Akaike information criterion (AIC). Missing pre-
dictor values were substituted by predicted expected 
values based on nonmissing data. All other prediction 
models were extensions of the basic model, including 
the biomarkers of interest.

Two logistic regression models were fitted with the 
biomarkers of interest as binary categorical predictors, 
one using established cutoff points (1% for ER and PgR 
[9], 14% for Ki-67 [15]) and the other using optimal 
cutoff points from the univariable analyses mentioned 
in the Univariable Statistical Analyses subsection. The 

biomarkers ER, PgR and Ki-67 were used continuously 
(0% to 100% of positively stained cells) as natural cubic 
spline functions, with 1 to 3 df in 27 (ie,  33) further 
regression models considering all combinations of df. 
To improve prediction, shrinkage of regression coeffi-
cients after estimation was applied [16].

Internal assessment of prediction models
The performance of the models in relation to calibration 
and discrimination was assessed using the mean squared 
error (MSE), receiver operating characteristic (ROC) 
curve, and area under the ROC curve (AUC). These 
measures were obtained by threefold cross-validation 
with 100 repetitions in order to obtain stable and realis-
tic results [17–19]. In particular, all model-building steps 
were performed using training data, and the performance 
of the model was assessed using validation data that had 
not been used for model building. Apparent measures on 
the complete dataset were calculated to assess overfitting. 

Fig. 1 Patient flow diagram for the primary study population (CONSORT diagram). BC, breast cancer; ER, estrogen receptor (expression); PgR, 
progesterone receptor (expression)
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In addition, the AIC was used as an alternative model 
performance measure. It was applied to the complete 
dataset and took overfitting into account by penalizing 
complex models.

The model with the smallest cross-validated MSE was 
considered the final model, which had the best usage of 
the biomarkers ER, PgR, and Ki-67 in comparison with 
the other usages [17, 18]. It was fitted on the complete 
dataset and analyzed in greater detail. An explicit formula 
for a patient’s predicted pCR probability (pCR-prob) was 
derived, implemented in an online calculator, and graphi-
cally presented as a nomogram. Model performance was 
also assessed using the Hosmer–Lemeshow calibration 
plot and χ2 test, as previously done [20]. Cross-validated 
sensitivities and specificities are presented. Spearman 
correlation coefficient ρ was calculated for pCR-prob 
and the IHC3 + C score, which incorporates ER, PgR, and 
Ki-67 (IHC3) and clinical predictors (C) and provides 
prognostic information on the risk of distant recurrence 
[21]. The IHC3 score is virtually identical to IHC4 when 
HER2 is negative [21].

The association between pCR-prob and the impact of 
pCR on the prognosis was analyzed using a Cox regres-
sion model with the following predictors: observed pCR 
status (yes vs no), pCR-prob obtained from the final 
logistic regression model as a cubic spline function with 
2 df, and the interaction between the two predictors. To 
obtain hazard ratios for pCR (yes vs no) as a continuous 
function of pCR-prob, 20,000 random sample splittings 
were carried out in which the final model was fitted on 
half the data first and the Cox regression analysis was 
then performed on the remaining half.

Kaplan–Meier curves for DFS are shown in accordance 
with recently suggested pCR probability groups [3] and 
IHC3 + C risk classes.

External validation of the final prediction model
The observational Hannover Breast Cancer Study 
(HaBCS [22], n = 338, see Supplement) and two rand-
omized clinical trials (GeparSepto [23], n = 781; Gepa-
rOcto [24], n = 269; see Supplement) were each used to 
validate the final prediction model that had been fitted on 
the primary study dataset. The discrimination ability was 
assessed using the AUC. Its 95% CI was estimated using 
10,000 bootstrap samples. Calibration was checked using 
a calibration plot in addition to a simple logistic regres-
sion model with observed pCR as the outcome and the 
logit of pCR-prob as the only predictor (hereafter termed 
the calibration model). If the intercept significantly 
(p < 0.05) differed from 0, or if the slope significantly dif-
fered from 1, then the calibration intercept and slope 
were used to update the original prediction model for 
future application in the validation cohort [19, 25].

The final prediction model was further assessed (AUC) 
in subgroups according to hormone receptor status 
to control for heterogeneity within and across study 
populations.

Calculations were carried out using the R system for 
statistical computing (version 4.1.1; R Foundation for Sta-
tistical Computing, Vienna, Austria).

RESULTS
Patients
In the primary study cohort, 273 (23.4%) of the 1166 
patients achieved a pCR. In the validation cohorts, 
pCR rates ranged from 17.1% to 32.7% (Supplementary 
Table  S1). The patient characteristics grouped by pCR 
status are shown in Table  1, and biomarker distribu-
tions in the primary cohort are shown in Supplementary 
Fig. S1.

Optimal cutoff points for biomarkers
The unadjusted relationship between ER, PgR, and Ki-67 
and the pCR was best described as cubic spline functions 
with 1, 2, and 2 df, respectively (Supplementary Fig. S2a). 
The df obtained from cross-validation were confirmed 
using the AIC. The functions were monotonic and there-
fore  enabled the determination of cut-off points. The 
optimal cut-off points for ER, PgR, and Ki-67 were 40%, 
9%, and 30%, respectively (Supplementary Fig. S3).

Comparison of pCR prediction models
The prediction model with linear usage of biomark-
ers (ER, PgR, Ki-67; 0% to 100% of positively stained 
cells) was most accurate (Table  2; cross-validated MSE, 
0.1336). Additionally, all other models with continuous 
usage of the biomarkers were more accurate (0.1338–
0.1347)—with decreasing accuracy correlating to increas-
ing model complexity—than the model with established 
biomarker categories (0.1392) and the model with cate-
gories related to newly determined cutoff values (0.1356). 
These MSE results were confirmed by the AIC and AUC 
statistics (Table 2).

The final prediction model
The regression coefficients of the final model and a for-
mula for calculating a patient’s pCR-prob are presented 
in Table  3. Using an alternative definition of pCR gave 
similar results (Supplementary Table  S2). The online 
calculator and the nomogram generate pCR-prob in a 
user-friendly format (see Supplement). Examples of ways 
in which biomarkers influence pCR-prob are shown 
in Supplementary Fig.  S2b. Most patients in the pri-
mary study population had a low pCR-prob, particularly 
hormone receptor–positive patients (Supplementary 
Fig.  S4). The final model was well calibrated (p = 0.90; 
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Hosmer–Lemeshow χ2 test; Supplementary Fig.  S5a). 
The apparent AUC was 0.009 units larger than the cross-
validated AUC (0.845 versus 0.836, Table 2), indicating a 
small amount of overfitting. Cross-validated subgroup-
specific AUC values were similar to the overall AUC 
for hormone-receptor positive (0.836) and ER-positive 

(0.834), but not for triple-negative breast cancer (TNBC) 
patients (0.662, Supplementary Table S4).

The cross-validated ROC curve is shown in Supple-
mentary Fig. S6. For cutoff points between 17 and 27%, 
sensitivities were between 0.80 and 0.89 at specificities 
of ≥ 0.65 (Supplementary Table S3). pCR-prob correlated 

Table 2 Overall performance of the prediction models for pCR

AIC, Akaike information criterion; AUC, area under the curve; df, degrees of freedom; ER, estrogen receptor (expression); MSE, mean squared error; pCR, pathological 
complete response; PgR, progesterone receptor (expression)
* The null model did not contain any predictors. The basic model included age at diagnosis, body mass index, tumor stage, grade, lymph node status, and tumor type. 
All other models were extensions of the basic model
a The models were fitted on the complete dataset. Confidence intervals were not calculated because model building and application to the same dataset might result 
in overoptimistic measures. A 95% confidence interval for the AUC would not then cover the true AUC with a 95% likelihood
b Summary statistics (mean and standard deviation in brackets) of MSE and AUC were obtained by threefold cross-validation with 100 repetitions
c Only three out of 27 continuous biomarker models are shown. These are the models with 1 (i.e. linear), 2, or 3 degrees of freedom for all three biomarkers, 
representing different levels of complexity
d The AIC is not a reliable measure for this model because it was applied to data that had already been used to identify the cutoff points

Prediction model* Apparent  measurea Cross-validated  measureb

AIC MSE AUC MSE AUC 

Null model 1271.1 0.1793 0.500 0.1797 (0.0094) 0.500 (0.000)

Basic model 1100.8 0.1525 0.759 0.1556 (0.0084) 0.748 (0.021)

Basic + ER, PgR, Ki‑67  linearc 942.1 0.1292 0.845 0.1336 (0.0079) 0.836 (0.017)

Basic + ER, PgR, Ki‑67 cubic spline, 2 dfc 946.4 0.1291 0.846 0.1343 (0.0078) 0.833 (0.017)

Basic + ER, PgR, Ki‑67 cubic spline, 3 dfc 952.2 0.1290 0.846 0.1346 (0.0078) 0.832 (0.017)

Basic + ER, PgR, Ki‑67 established categories 991.5 0.1350 0.825 0.1392 (0.0084) 0.814 (0.019)

Basic + ER, PgR, Ki‑67 new  categoriesd 948.1 0.1294 0.844 0.1356 (0.0080) 0.828 (0.018)

Table 3 The final logistic regression model for predicting pCR

Regression coefficients with standard errors from the final regression model, associated odds ratios with 95% confidence intervals, and p values for Wald tests are 
shown. The p values and confidence intervals should be regarded as measures of importance within the regression model rather than measures of significance, 
especially since the conditions for statistical testing may not be fulfilled after a model selection process. The predicted probability Prob for pCR can be calculated using 
the following formula: Prob = exp(Z)/(1 + exp(Z)) with Z =  − 0.0190 + 0.9714 X and X =  − 1.9686 − 0.0108 age − 29.51/BMI − 0.4824 tumor stage + 0.4206 grade − 0.2430 
cN − 0.1559 ductal − 0.4229 lobular − 0.0137 ER − 0.0190 PgR + 0.0170 Ki-67. Note that cN, ductal, and lobular values are one when present and zero when absent. 
0.9714 is the shrinkage factor, and − 0.0190 is a correction term. Multiplying the result by 100 provides percentage values

BMI, body mass index; ER, estrogen receptor (expression); pCR, pathological complete response; PgR, progesterone receptor (expression); SE, standard error;  CI, 
confidence interval

Predictor Coefficient (SE) Odds ratio (95% CI) p value

Intercept  − 1.9686 (0.9268) – –

Age (years) Per year  − 0.0108 (0.0069) 0.99 (0.98–1.00) 0.12

100/BMI Per 100  m2/kg 0.2951 (0.1141) 1.34 (1.07–1.68)  < 0.01

Tumor stage Per stage  − 0.4824 (0.1212) 0.62 (0.49–0.78)  < 0.0001

Grade Per grade 0.4206 (0.2274) 1.52 (0.98–2.38) 0.06

Lymph node status cN0 0 1 –

cN +  − 0.2430 (0.1701) 0.78 (0.56–1.09) 0.15

Tumor type Other 0 1 –

Ductal  − 0.1559 (0.1924) 0.86 (0.59–1.25) 0.42

Lobular  − 0.4229 (0.5363) 0.66 (0.23–1.87) 0.43

ER Per percent  − 0.0137 (0.0031) 0.99 (0.98–0.99)  < 0.0001

PgR Per percent  − 0.0190 (0.0053) 0.98 (0.97–0.99)  < 0.01

Ki‑67 Per percent 0.0170 (0.0044) 1.02 (1.01–1.03)  < 0.01
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moderately with IHC3 + C (ρ = 0.61, Supplementary 
Fig. S7).

A high pCR-prob not only indicated the efficacy of 
chemotherapy but also corresponded with the impact of 
pCR status on the prognosis. The greater the pCR-prob, 
the larger the benefit of a pCR in relation to DFS (Fig. 2). 
The hazard ratios for pCR presence vs absence improved 
from 0.55 (95% central range, 0.07–1.77) at a pCR-prob 
of 0% to 0.20 (0.11–0.31) at 50%.

Patients with a low pCR-prob (5-year DFS rate, 0.77; 
95% CI, 0.74–0.81) and patients with a high pCR-prob 
(0.77; 0.72–0.81) had a better prognosis than patients 
with an intermediate pCR-prob (0.66; 0.59–0.74, Fig. 3a). 
This result was examined in more detail using the 
IHC3 + C score (Supplementary Fig.  S8): The IHC3 + C 
score separated patients within patient groups defined by 
pCR-prob (Fig. 3b–d). Patients with a low pCR-prob and 
a high IHC3 + C value had an extraordinarily unfavora-
ble DFS prognosis (10-year DFS rate, 0.21; 95% CI, 0.10–
0.42) in comparison with patients with a high IHC3 + C 
but intermediate (0.45; 0.33–0.63) or a high pCR-prob 
(0.59; 0.51–0.70, Fig. 3b).

External validation of the final prediction model
The AUC of the final prediction model was 0.827 (95% 
CI, 0.779–0.871) in the HaBCS. Sensitivities and specifi-
cities were similar to those in the primary cohort (Sup-
plementary Table  S3). The model was well calibrated 
(Supplementary Fig. S5b). The intercept and the slope of 
the calibration model were 0.26 (95% CI, –0.14–0.67) and 
1.09 (95% CI, 0.77–1.42) and did not significantly differ 
from 0 and 1, respectively. Hence, updating of the model 
was not necessary.

The AUC was between 0.754 and 0.795 in the three 
analyzed treatment arms of GeparSepto and GeparOcto 
(Table  4). pCR-prob was satisfactorily precise in the 
GeparOcto-ETC arm, in patients with low pCR-prob in 
the GeparSepto-paclitaxel arm, and in those with high 
pCR-prob in the GeparSepto-NAB-paclitaxel arm. It was 
systematically too high and too low, respectively, for the 
other patients in the GeparSepto arms (Supplementary 
Fig.  S5c–e), suggesting that the model should be recali-
brated before application to data from GeparSepto-like 
treated patients (Table 4). The online calculator and the 
nomogram provide updated pCR-prob for such patients.

Subgroup-specific validations are shown in Supplemen-
tary Table S4. AUC values for hormone receptor-positive 
patients were between 0.789 and 0.810 in the validation 
cohorts, and the AUC values for TNBC patients (0.614 to 
0.683) were similar to the value in the primary cohort.

Discussion
This study developed and compared several predic-
tion models for pCR after neoadjuvant chemotherapy in 
patients with HER2-negative BC, using clinical predic-
tors and the molecular biomarkers ER, PgR, and Ki-67 
assessed by IHC during routine clinical work. Integrating 
the molecular predictors as linear variables (0%–100%) 
yielded the best prediction of pCR. The validation of 
the prediction model in other populations yielded good 
results in patient groups with similar standard-of-care 
treatments. An online calculator and a nomogram are 
provided for user-friendly application of the prediction 
model.

To predict pCR, immunohistochemical markers were 
usually used categorically (positive vs negative), with 
predefined cutoff points that did not originate from pCR 
prediction [26, 27]. In the present study, the model with 
newly identified cutoff points performed better than the 
model with established cutoffs. However, the prediction 
model that did not use any cutoff points was favored 
overall.

Fig. 2 Disease‑free survival HR for patients with pCR and patients 
without pCR (reference) as a continuous function of predicted pCR 
probabilities using data from the primary study population. The 
lower the value on the y axis, the higher the impact of pCR status 
on the prognosis. The solid curve shows mean HR values obtained 
from 20,000 random sample splittings. Dashed curves show 
the corresponding pointwise 95% central range (2.5th and 97.5th 
percentiles) of the HR distribution. The gray vertical lines indicate 
the first, second, and third quartiles of the predicted pCR probability 
in the primary study population. HR, hazard ratio; pCR, pathological 
complete response
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With regard to prognosis, ER, PgR, and Ki-67 were 
also continuously incorporated into the IHC4 score in an 
adjuvant study on postmenopausal hormone receptor–
positive patients [21]. The IHC4 score was also analyzed 
relative to predicting pCR after neoadjuvant chemo-
therapy [28, 29]. Good associations were found between 
IHC4 and pCR rates, but the AUC was 0.665 when IHC4 

was combined with the Nottingham prognostic index 
[28]. Some multigene assays have also been analyzed in 
relation to predicting chemotherapy responsiveness, but 
none of these tests has been directly compared with clas-
sic IHC markers in a joint study, and the reported results 
do not indicate any superiority for the multigene tests [5].

Fig. 3 Kaplan–Meier estimates for disease‑free survival relative to pCR probability classes (low, 0%–10%; intermediate, 10%–30%; high, 30%–100%) 
and IHC3 + C classes (low, < 210, first quartile; intermediate, 210–350, interquartile range; high, ≥ 350, third quartile): a for the complete primary study 
cohort, b for patients with a low pCR probability, c for patients with an intermediate pCR probability, and d for patients with a high pCR probability. 
The curves for low IHC3 + C and intermediate pCR are not shown because the sample size was small (n = 18). No patients had a low IHC3 + C 
with a high pCR. IHC3 + C = estrogen receptor, progesterone receptor, Ki‑67, and clinical predictors; pCR, pathological complete response
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pCR probability has not previously been considered in 
decision making for or against neoadjuvant chemother-
apy. A survey among physicians with long-term experi-
ence showed that 84% would welcome the opportunity 
to use probability of pCR in decision making [3]. Using 
pCR-prob may be reasonable because the present study 
shows that the higher the pCR-prob, the greater the 
impact of pCR on the prognosis. This finding ensures 
not only consideration of the number of patients achiev-
ing a pCR but also the selection of a patient group with 
a greater prognostic benefit from achieving a pCR. We 
have shown that patients with high pCR-prob have a 
more favorable prognosis than patients with interme-
diate pCR-prob, which supports the view that patients 
with high pCR-prob can be treated with neoadjuvant 
chemotherapy.

A meta-analysis of randomized studies comparing neo-
adjuvant with adjuvant chemotherapy showed that the 
mortality rate in patients who do not respond to neoadju-
vant chemotherapy was much higher (33.5% at 10 years) 
than in all patients who received adjuvant chemotherapy 
(22.7% at 10 years) [30]. This finding may largely reflect 
patient selection rather than a treatment effect [30]. Since 
the analyses were adjusted for clinical tumor size and 
nodal status, it might also indicate that some patients not 
only derive no benefit from neoadjuvant chemotherapy 
but also have prognoses that are poorer than expected. 
In the present study, this group of patients may corre-
spond to patients with a low pCR-prob and a high risk of 
recurrence.

The most precise external prediction was obtained 
in a hospital-based cohort (HaBCS) that underwent 
preoperative chemotherapy very similar to that of the 

primary cohort (ie, an anthracycline-based agent fol-
lowed by a taxane). The predictor showed good results 
in patients whose treatments were close to standard care 
(GeparSepto; NCT01583426; paclitaxel or nab-paclitaxel 
followed by anthracycline-based chemotherapy). The 
prediction model did not take treatments into account, 
and the significant treatment effect in GeparSepto might 
therefore have led to overestimated predictions in one 
arm and underestimated predictions in the other, neces-
sitating correction by recalibration.

Differences in performance between the primary and 
validation cohorts are unavoidable and were expected 
[19]. More external validation studies that cover various 
geographic regions, time periods, and healthcare institu-
tions may be able to further clarify such differences and 
possibly improve the prediction model. Adding other 
novel biomarkers, such as tumor-infiltrating lympho-
cytes, to the prediction model might also improve accu-
racy. The pCR prediction in patients with rare tumor 
types such as lobular breast cancer could be improved by 
using additional, sufficiently large specific cohorts.

The AUC values for hormone-receptor positive 
patients—i.e., patients for whom the use of the prediction 
tool is primarily intended—were around 0.80 and only 
slightly smaller than in the primary study population. 
The AUC values in TNBC patients were similar across 
all cohorts, however poorer (around 0.65) than in other 
patient groups, but still within the range of published 
studies. This may not be of great importance clinically as 
therapy decisions for chemotherapy in TNBC patients (as 
in HER2-positve patients) are usually made without con-
sidering further tumor-related characteristics because 

Table 4 Performance of the final prediction model for pCR in validation cohorts

HaBCS, hannover breast cancer study; pCR, pathological complete response; AUC, area under the receiver operating characteristic curve
*  The 95% CI was estimated using 10,000 bootstrap samples
a 95% CIs were calculated using regression coefficients and standard errors of the calibration model (logistic regression model)
b "Yes" means that, according to the specified criteria, the final prediction model needs to be recalibrated before it is applied to treatment arm–like patients. To 
recalibrate a model, replace the linear term X in the formula for the predicted pCR (see the footnote in Table 3) with the calibration intercept plus X multiplied by 
the calibration slope. For instance, replace X with − 0.78 + 0.68X for patients treated similarly to those in the GeparSepto paclitaxel arm. The AUC is not affected by 
recalibration

HaBCS GeparSepto
paclitaxel arm

GeparSepto
nab-paclitaxel arm

GeparOcto
ETC arm

AUC 
(95% CI)*

0.827
(0.779 to 0.871)

0.766
(0.704 to 0.822)

0.795
(0.746 to 0.840)

0.754
(0.695 to 0.811)

Calibration intercept
(95% CI)a

0.30
(− 0.06 to 0.65)

− 0.78
(− 1.10 to − 0.47)

0.05
(− 0.25 to 0.35)

− 0.27
(− 0.56 to 0.02)

Calibration slope
(95% CI)a

1.06
(0.79 to 1.33)

0.68
(0.46 to 0.90)

0.74
(0.55 to 0.92)

1.08
(0.70 to 1.46)

Model update  necessaryb No Yes Yes No
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therapy efficacy is high and there is a lack of alternative 
treatment options.

The final prediction model was assessed both internally 
by cross-validation and externally in independent valida-
tion cohorts in accordance with the TRIPOD statement 
[19]. In both cases, prediction performance was meas-
ured with data not used for model building in order to 
obtain realistic results. Data splitting was also applied in 
survival analyses with actual and predicted pCR values in 
order to avoid biased predictions in which the upcoming 
event was already known. Both the AIC and cross-vali-
dation provided very similar model selection and model 
complexity results. It follows that using the AIC instead 
of cross-validation may be appropriate in complex set-
tings. In the present study, the AIC rather than cross-
validation was applied in the model development process 
to some extent in order to keep the number of potential 
models manageable.

Conclusions
This study provides a prediction model for pCR after 
neoadjuvant chemotherapy using clinical parameters 
and continuous IHC markers. The good performance 
of the model suggests that therapy decisions could be 
based on predicted pCR probabilities. Considering both 
the likelihood of pCR and the prognosis not only identi-
fies patients who may benefit from neoadjuvant chemo-
therapy but also patients in whom the prognosis was 
unexpectedly unfavorable. It may be necessary to develop 
novel treatment strategies for these patients.
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