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Abstract
Recent evidence indicates that endocrine resistance in estrogen receptor-positive (ER+) breast cancer is closely 
correlated with phenotypic characteristics of epithelial-to-mesenchymal transition (EMT). Nonetheless, identifying 
tumor tissues with a mesenchymal phenotype remains challenging in clinical practice. In this study, we validated 
the correlation between EMT status and resistance to endocrine therapy in ER+ breast cancer from a transcriptomic 
perspective. To confirm the presence of morphological discrepancies in tumor tissues of ER+ breast cancer 
classified as epithelial- and mesenchymal-phenotypes according to EMT-related transcriptional features, we trained 
deep learning algorithms based on EfficientNetV2 architecture to assign the phenotypic status for each patient 
utilizing hematoxylin & eosin (H&E)-stained slides from The Cancer Genome Atlas database. Our classifier model 
accurately identified the precise phenotypic status, achieving an area under the curve (AUC) of 0.886 at the tile-
level and an AUC of 0.910 at the slide-level. Furthermore, we evaluated the efficacy of the classifier in predicting 
endocrine response using data from an independent ER+ breast cancer patient cohort. Our classifier achieved a 
predicting accuracy of 81.25%, and 88.7% slides labeled as endocrine resistant were predicted as the mesenchymal-
phenotype, while 75.6% slides labeled as sensitive were predicted as the epithelial-phenotype. Our work introduces 
an H&E-based framework capable of accurately predicting EMT phenotype and endocrine response for ER+ breast 
cancer, demonstrating its potential for clinical application and benefit.
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Introduction
The estrogen receptor-positive (ER+) subtype accounts 
for approximately 80% of all breast cancers [1]. The 
issue of endocrine resistance poses a major challenge in 
curing ER+ breast cancers, despite this particular sub-
type consistently having a better prognosis [2]. A high-
mesenchymal cell state observed in cancer cell lines and 
human tumors has been associated with resistance to 
multiple treatment modalities across diverse cancer lin-
eages [3]. Recent evidence has emerged that transition 
from an epithelial to a mesenchymal phenotype during 
cancer progression converts ER+ breast cancer into a 
state insensitive to ERα targeted agents [4–6]. Based on 
single-cell transcriptomics data, a subpopulation of “pre-
adapted” treatment-naive cells was detected in luminal 
breast cancer [7]. These cells harbored features of epithe-
lial-to-mesenchymal transition (EMT) and exhibited a 
survival advantage during short-term endocrine therapy 
[7]. Therefore, identifying cases with a mesenchymal 
phenotype among ER+ breast cancers could be a criti-
cal approach to discern patients with endocrine resis-
tance. However, the existing EMT stratification systems 
are mostly based on complex molecular experiments or 
EMT-related gene signatures [8–11]. Currently, in clini-
cal practice, there is still lack of a straightforward and 
efficient method to differentiate between the epithelial 
and mesenchymal phenotypes in tumor tissues.

In vitro data revealed that tamoxifen-resistant MCF7 
cells exhibited higher expression of genes associated 
with EMT and invasiveness, compared to parental cells 
[4, 6]. Simultaneously, these cells displayed noticeable 
morphological changes [4]. Therefore, we hypothesized 
that endocrine-resistant ER+ breast cancers with a mes-
enchymal phenotype may exhibit distinct yet indiscern-
ible morphological features in clinical hematoxylin & 
eosin (H&E) pathology images, which could be well 
distinguished via deep learning (DL) approaches. Deep 
neural networks, particularly convolutional neuronal 
networks (CNNs), are widely used algorithms for image 
classification [12]. In this study, we firstly established an 
EMT score to confirm the correlation between the EMT 
process and endocrine resistance in ER+ breast cancers. 
Based on the transcriptional classification, we trained a 
CNN-based deep learning network to accurately identify 
the phenotypic status of ER+ breast cancers and assist in 
predicting their endocrine response.

Methods
Cell culture and endocrine-resistant cell model
T47D cell line was obtained from ATCC and cultured 
according to ATCC’s recommendations in Dulbecco’s 
modified Eagle’s medium (DMEM; Gibco) with 10% 
FBS (Gibco) and 1% penicillin/streptomycin (P/S). The 
fulvestrant-resistant T47D (T47D-FulvR) cell model 

was induced referring to previous research method [13], 
using a concentration of 0.5 µM of fulvestrant (Fulv, 
S1191, Selleck). All cells were maintained in a 5% CO2 
incubator at 37 ℃.

Gene expression datasets
Both T47D parental and T47D-FulvR cell samples 
were sequenced on an BGISEQ platform following the 
manufacturer’s instructions. Publicly available gene-
expression data and their corresponding clinical annota-
tions for breast cancer patients were downloaded from 
the METABRIC [14] and The Cancer Genome Atlas 
(TCGA) databases [15]. The FPKM values were con-
verted into transcripts per kilobase million. Besides, 
additional gene-expression profiles and clinical data 
from eight breast cancer cohorts, including GSE125738, 
GSE85536, GSE111563, GSE20181, GSE147271, 
GSE87411,  GSE59515 and E-MTAB-9917 (details pro-
vided in Supplementary Table S1), were gathered from 
the Gene Expression Omnibus (GEO) and ArrayExpress 
databases [16, 17]. PAM50 subtypes were determined 
using the PAM50 classifier [18].

Generation of the EMT-score
Milena P. Mak and colleagues previously identified a 
pan-cancer EMT-related gene signature consisting of 77 
genes [8]. From this signature, we selected the 75 genes 
that are most specific to breast cancer, including 52 ‘mes-
enchymal’ genes and 23 ‘epithelial’ genes (Supplementary 
Table S2), to form the EMT-related gene signature in 
this study. The EMT score for each breast cancer sample 
was calculated as the average mRNA expression level of 
‘mesenchymal’ genes subtracted from that of ‘epithelial’ 
genes. The ER+ breast cancers, in both TCGA-BRCA and 
METABRIC cohorts, were then classified according to 
trisection of their EMT scores as epithelial (Epi-, defined 
by EMT score ≤ lowest 1/3), intermediate (defined by 
lowest 1/3 < EMT score < highest 1/3) or mesenchymal 
(Mes-, defined by EMT score ≥ highest 1/3) subtype [19].

Clinical logistic regression model
To investigate the predictive power of clinicopathologic 
characteristics in distinguishing between the Epi- and 
Mes-phenotypes, we developed a logistic regression 
model incorporating age, histological type, ER level, 
HER2 status, and PAM50 subtype. These features were 
extracted from the TCGA database and selected based 
on their significant differences between the two tran-
scriptome phenotypes.

Gene set enrichment analysis (GSEA)
GSEA was performed to explore enriched pathways and 
to annotate RNA-seq data by utilizing predefined hall-
mark gene sets from the Molecular Signatures Database 
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version 2023.2.Hs, employing the “clusterProfiler” pack-
age for enrichment analyses of functional annotation 
estimates to each sample.

Pathological cohorts
TCGA-BRCA image cohort  A total of 536 ER+ breast 
cancer patients in the TCGA-BRCA cohort were classified 
as either Mes- or Epi-phenotype based on their transcrip-
tional EMT scores. We collected a total of 1,076 eligible 
H&E-stained whole slide images (WSIs) corresponding 
to the aforementioned 536 cases from The Cancer Image 
Archive (TCIA) tissue slide dataset [20], with 534 labeled 
as Epi-phenotype and 542 as Mes-phenotype. The WSIs 
were scanned at 40× or 20× magnification.

ZEYY endocrine response cohort  Patients with ER+ 
breast cancer who underwent core biopsy or surgery at 
the Second Affiliated Hospital of Zhejiang University 
between 2015 and 2021 were retrospectively identified 
from the database of the Department of Pathology. In this 
cohort, patients with more than 10% of invasive cancer 
cells positive for ER expression were designated as ER+ 
and received endocrine therapy with selective estrogen 
receptor modulators or aromatase inhibitors ± ovarian 
function suppression, according to the recommenda-
tion of the clinical physicians. Resistance to endocrine 
therapy encompassed both intrinsic and acquired resis-
tance [21, 22]. Therefore, eligibility criteria for tumor tis-
sues defined as endocrine resistance were as follows: (1) 
early breast cancers with a disease-free interval (DFI) of 
less than 24 months; (2) recurrent lesions that developed 
during endocrine therapy; (3) advanced or metastatic 
diseases that progressed after endocrine therapy. ER+ 
Cases with pathologically confirmed lymph node metas-
tasis but without distant metastasis, who had achieved a 
DFI of more than 12 months after completing more than 
5 years of adjuvant endocrine therapy, were classified 
as the endocrine-sensitive subgroup. After thoroughly 
reviewing the initial pathology reports, slide quality, treat-
ment modalities, and prognostic information of eligible 
patients, a total of 63 cases with 144 H&E-stained WSIs 
were retrospectively collected for this study, including 25 
resistant cases with 62 slides and 38 sensitive cases with 
82 slides. The CONSORT diagram is shown in Supple-
mentary Fig.  1. WSIs were scanned using digital slide 
scanner KF-PRO-400 (Jiangfeng Bio-Information Tech-
nology Co, Ningbo, China) at 40× magnification. Images 
with low quality, owing to extreme fading, low-resolution, 
or the absence of invasive tumor regions, were excluded.

Pathological image preprocessing and patch generation
Otsu’s thresholding was utilized to separate the back-
ground from the foreground tissue using high-resolution 
(40×) H&E digital pathology images. Subsequently, all 

slides were tessellated into non-overlapping patches at 
1024 × 1024 pixels and then downsampled by a factor of 
2, resulting in patches of 512 × 512 pixels with a depth of 
3 channels, while preserving the integrity of the patho-
logical information.

Tumor tissue filtration
To train a filter for non-tumor tissues, we manually 
curated a subset of patches from 60 WSIs, purposefully 
selecting those that predominantly contained stroma, 
necrosis, lymphocytes, and blood vessels, which are typi-
cally considered non-tumorous for our analysis. Then 
we employed an EfficientNetV2B2 architecture as the 
backbone for the classifier capable of sifting through 
all patches to exclude these non-target elements. The 
entire datasets were processed through the filter to retain 
patches containing more than 50% of tumorous lesions.

Mes- and Epi-phenotype classification
For Mes- and Epi-phenotype classification, we devel-
oped another model based on EfficientNetV2B2 using 
patches detected above. Each patch was assigned either 
the Mes or Epi label of its corresponding slide based on 
the patient’s EMT signature score. After classifying all 
tumor patches from the same slide, the mean prediction 
value of these patches determined the slide’s final predic-
tion result. Subsequently, all slides were classified using 
binary cross-entropy loss. We assessed the classifier’s 
performance using an internal test set from the TCGA-
BRCA cohort and validated it on an independent ZEYY 
endocrine response cohort. Specifically, for the TCGA-
BRCA dataset, we split the data into training and inter-
nal test sets in a 9:1 ratio, with 90% of the samples used 
for training and the remaining 10% serving as the inter-
nal test set. Threshold optimization was not performed 
within the ZEYY cohort to avoid potential data leakage, 
which could overestimate model performance. Instead, 
pre-established thresholds from the TCGA-BRCA train-
ing set were used, ensuring an unbiased and robust eval-
uation of the model’s generalizability to the independent 
ZEYY cohort. Performance metrics included area under 
the curve (AUC), accuracy, positive predictive value 
(PPV), and negative predictive value (NPV).

Model architecture and training details
The non-tumor tissue filtration and EMT phenotype 
classification models were both based on EfficientNetV2, 
trained using a transfer learning approach by fine-tun-
ing from pre-trained weights on the ImageNet dataset 
to leverage learned features and accelerate convergence. 
To enhance model robustness and prevent overfitting, 
we implemented various data augmentation techniques, 
including random rotations, flips, and color jittering, to 
simulate the variability in real-world pathology images. 
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A cosine decay learning rate schedule with warm restarts 
was employed, allowing the learning rate to decrease in a 
cosine curve manner, resetting periodically to avoid local 
minima and ensure thorough exploration of the loss land-
scape. Weight decay and dropout were applied as regu-
larization strategies to prevent overfitting, and a batch 
size of 8 was selected after empirical evaluation for opti-
mal memory usage and convergence speed. The initial 
learning rate was set at 1e-5, carefully chosen to balance 
convergence rate and training stability. The cross-entropy 
loss function was utilized for training the classifier.

Heatmap generation for WSIs
To provide a comprehensive tissue assessment, we uti-
lized the trained phenotypic status classifier on WSIs. 
The classifier analyzed the images in strides of 128 pixels, 
producing detailed heatmaps that visually depicted the 
model’s activation levels, effectively emphasizing pheno-
typic statuses throughout the tissue.

Statistical analysis
For statistical analysis, the Mann-Whitney U test was 
used for numeric data, Pearson’s chi-squared test and 
Fisher’s exact test were used for categorical data. Box-
and-whisker plots indicate the median, 25th and 75th 

percentiles, with whiskers representing the minima and 
maxima of the distributions through the ggplot2 R pack-
age. A two-sided p value of <0.05 was considered sta-
tistically significant. Analyses were performed using R 
software version 4.1.0 and SPSS version  20 (SPSS Inc., 
Chicago, IL).

Results
The correlation between endocrine resistance and EMT 
status in ER+ breast cancer
In vitro data from three independent datasets 
(GSE125738, GSE85536 and our data datasets) of T47D, 
a representative ER+ breast cancer cell line, showed that 
the transcriptional EMT scores were notably higher in 
both tamoxifen- and fulvestrant-resistant T47D cells, 
compared to parental cells (Fig.  1A). As was reported, 
there are morphological differences between the parental 
and tamoxifen-resistant MCF7 cells [4], a transition from 
tightly packed parental T47D cells to independently dis-
tributed cells was similarly observed in fulvestrant-resis-
tant cells (Fig.  1B). Clinical data from four ER+ breast 
cancer cohorts (GSE111563, GSE20181, GSE147271 and 
GSE87411 datasets) also revealed increased EMT scores 
for residual lesions following neoadjuvant endocrine 
therapy, as compared to the initial samples (Fig. 1C). As 

Fig. 1  The correlation between endocrine resistance and EMT status in ER+ breast cancer A Transcriptional EMT scores in parental and tamoxifen/
fulvestrant-resistant T47D cells. B Morphological characteristics of the parental (T47D-P) and fulvestrant-resistant T47D cells (T47D-FulvR). C EMT scores in 
primary and residual lesions following neoadjuvant endocrine therapy from ER+ breast cancers. D EMT scores in ER+ breast cancer samples that exhibit 
response to endocrine therapy and those with intrinsic and acquired resistance. E The distribution of EMT scores in all and ER+ breast cancers from the 
TCGA-BRCA cohort. F Hallmark gene sets enriched in ER+ breast cancers with high- and low-EMT scores in both the TCGA-BRCA and METABRIC cohorts. 
For figures C and D, box-and-whisker plots indicate median; 25th and 75th percentiles; whiskers, minima and maxima of the distributions; the Wilcoxon 
signed rank test
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illustrated in Fig.  1D, ER+ breast cancer samples with 
intrinsic and acquired resistance exhibit higher EMT 
scores compared to those that respond to endocrine ther-
apy (GSE59515, GSE87411 and E-MTAB-9917 datasets).

In the TCGA-BRCA cohort, there was no difference in 
the distribution of EMT scores between all or ER+ breast 
cancers (Fig.  1E). Utilizing a trichotomy of the EMT 

scores, ER+ breast cancers from TCGA-BRCA were 
categorized into three phenotypes: mesenchymal (Mes, 
268), intermediate (Int, 267) and epithelial (Epi, 268). 
The baseline clinical characteristics of patients across 
three phenotypes were detailed in Table 1. The mean age 
(± standard deviation) was 61 ± 14 years for patients with 
the Epi-phenotype, and 57 ± 13 years for those with the 

Table 1  Comparison of clinicopathologic characteristics and molecular subtypes among estrogen receptor-positive breast cancers 
stratified into epithelial, intermediate, and mesenchymal phenotypes within the TCGA-BRCA cohort
Cases Total

(803)
Epithelial
(268)

Intermediate
(267)

Mesenchymal
(268)

P-value

Age (years) Mean ± SD 59 ± 13 61 ± 14 59 ± 13 57 ± 13 0.002
Menopausal status Pre 163 (20.3%) 44 (16.4%) 62 (23.2%) 57 (21.3%) 0.095

Post 526 (65.5%) 191 (71.3%) 170 (63.7%) 165 (61.6%)
Others 114 (14.2%) 33 (12.3%) 35 (13.1%) 46 (17.1%)

Histological type Ductal 538 (67.0%) 192 (71.6%) 183 (68.5%) 163 (60.8%) < 0.001
Lobular 190 (23.7%) 39 (14.6%) 68 (25.5%) 83 (31.0%)
Others* 75 (9.3%) 37 (13.8%) 16 (6%) 22 (8.2%)

Clinical T stage T1 212 (26.4%) 57 (21.3%) 72 (27%) 83 (31.0%) 0.124
T2 452 (56.3%) 154 (57.5%) 156 (58.4%) 142 (53.0%)
T3 111 (13.8%) 44 (16.4%) 33 (12.4%) 34 (12.7%)
T4 26 (3.2%) 11 (4.1%) 6 (2.2%) 9 (3.3%)
unknown 2 (0.2%) 2 (0.7%) 0 (0%) 0 (0%)

Clinical N stage N0 354 (44.1%) 120 (44.8%) 112 (41.9%) 122 (45.5%) 0.784
N1 284 (35.4%) 96 (35.8%) 96 (36%) 92 (34.3%)
N2 90 (11.2%) 27 (10.1%) 30 (11.2%) 33 (12.3%)
N3 59 (7.3%) 18 (6.7%) 22 (8.2%) 19 (7.1%)
unknown 16 (2.0%) 7 (2.6%) 7 (2.6%) 2 (0.8%)

Clinical M stage M0 651 (81.1%) 222 (82.8%) 212 (79.4%) 217 (81.0%) 0.429
M1 16 (2.0%) 2 (0.8%) 8 (3%) 6 (2.2%)
unknown 136 (16.9%) 44 (16.4%) 47 (17.6%) 45 (16.8%)

Clinical stage I 140 (17.4%) 41 (15.3%) 50 (18.7%) 49 (18.3%) 0.333
II 442 (55%) 157 (58.6%) 139 (52.1%) 146 (54.5%)
III 190 (23.7%) 64 (23.9%) 66 (24.7%) 60 (22.4%)
IV 15 (1.9%) 1 (0.4%) 8 (3%) 6 (2.2%)
unknown 16 (2.0%) 5 (1.8%) 4 (1.5%) 7(2.6%)

ER level (%) ≥ 90 191 (23.8%) 71 (26.5%) 71 (26.6%) 49 (18.3%) 0.020
≥ 50 and<90 83 (10.3%) 16 (6.0%) 28 (10.5%) 39 (14.6%)
≥ 10 and<50 42 (5.2%) 13 (4.9%) 10 (3.7%) 19 (7.1%)
<10 16 (2.0%) 5 (1.9%) 5 (1.9%) 6 (2.2%)
unknown 471 (58.7%) 163 (60.8%) 153 (57.3%) 155 (57.8%)

PR expression Positive 604 (75.2%) 189 (70.5%) 211 (79%) 204 (76.1%) 0.191
Negative 112 (13.9%) 42 (15.7%) 34 (12.7%) 36 (13.4%)
unknown 87 (10.8%) 37 (13.8%) 22 (8.2%) 28 (10.4%)

HER2 status Positive 141 (17.6%) 36 (13.4%) 49 (18.4%) 56 (20.9%) 0.073
Negative 507 (63.1%) 169 (63.1%) 174 (65.2%) 164 (61.2%)
unknown 155 (19.3%) 63 (23.5%) 44 (16.5%) 48 (17.9%)

PAM50 subtype LumA 393 (48.9%) 125 (46.6%) 132 (49.4%) 136 (50.7%) 0.008
LumB 216 (26.9%) 92 (34.3%) 69 (25.8%) 55 (20.5%)
HER2 87 (10.8%) 20 (7.5%) 31 (11.6%) 36 (13.4%)
Basal 51 (6.4%) 20 (7.5%) 14 (5.2%) 17 (6.3%)
Normal 56 (7.0%) 11 (4.1%) 21 (7.9%) 24 (9.0%)

*Other histological types: metaplastic, mucinous, mixed and other type carcinoma

ER, estrogen receptor; PR, progesterone receptor
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Mes-phenotype, P = 0.001. A higher prevalence of inva-
sive lobular breast cancer, decreased ER level and HER2-
enriched subtype was observed in patients categorized 
as Mes-phenotype. There was no significant difference 
between patients classified as Mes- and Epi-phenotypes 
in menopausal status, tumor stage or PR expression. The 
clinical logistic regression model incorporating age, his-
tological type, ER level, HER2 status, and PAM50 subtype 
demonstrated a limited capacity to differentiate between 
the Epi- and Mes-phenotypes, achieving an accuracy 
of 64.9% and an AUC of 0.690 (Supplementary Fig.  2). 
To investigate the biological functions of differentially 
expressed genes (DEGs) between Mes- and Epi-pheno-
types, the hallmark modular of GSEA was performed. 
As expected, the DEGs were significantly enriched in the 
EMT, estrogen response early and late pathways (Fig. 1F). 
We further verified the above findings using data from 
the independent METABRIC cohort (Fig. 1F and Supple-
mentary Table S3).

Taken together, these results indicated that both 
acquired and intrinsic endocrine resistance in breast can-
cer are correlated with a mesenchymal molecular pheno-
type. Nevertheless, clinical characteristics alone were not 
sufficient in distinguishing between the Epi- and Mes-
phenotypes for ER+ breast cancer.

Deep learning framework distinguishes Mes- and Epi-
phenotypes in ER+ breast cancer exclusively from H&E 
histopathology images
For clinical practice, it is too complicated and costly to 
uniformly predict the ER+ breast cancers to be Mes- or 
Epi-phenotype using transcriptional EMT-related gene 
signatures. Recently, deep learning has outperformed 
humans in certain tasks of medical data analysis, par-
ticularly in discerning morphological and genetic infor-
mation for tumors using H&E-stained histopathology 
images efficiently and economically [23–27]. Next, we 
investigated whether deep learning could accurately 
recognize the Mes- and Epi-phenotypes categorized by 
our EMT score for ER+ breast cancers in TCGA-BRCA 
cohort. The overall workflow is shown in Fig.  2. WSIs 
were randomly divided into a training and a testing set, 
with a distribution of 90% for training and 10% for test-
ing. The eligible 1076 WSIs were tessellated into a total 
of 917,934 non-overlapping patches of 512 × 512 pixel 
at a magnification of 20×. We first applied a non-tumor 
tissue filtration step, as described in the Methods sec-
tion. Using a classifier based on the EfficientNetV2B2 
architecture, patches with more than 50% of irrelevant 
features, such as necrosis, benign stroma, lymphocytes, 
and blood vessels, were excluded to ensure that the data-
set primarily consisted of tumor-relevant regions. This 
process yielded 558,877 remaining patches, with an aver-
age of 519 patches per slide. With a total of 49,197 test-
ing patches, our model attained a patch-level AUC of 
0.886, along with a PPV of 0.807 and an NPV of 0.806 

Fig. 2  Pipeline for preprocessing slides and training the model for ER+ breast cancer phenotype classification
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for the identification of the Mes-phenotype (Fig. 3A, C). 
After removing images with low quality or deficient tis-
sue information, 96 WSIs were deployed in the testing 
set at the slide-level, and our model achieved an AUC of 
0.910, a PPV of 0.868 and an NPV of 0.860 for the identi-
fication of the Mes-phenotype, indicating that the model, 
by aggregating information from multiple patches, sub-
stantially achieved superior performance (Fig.  3B, D). 
To address the limitations of manual exclusion, we con-
ducted additional evaluations on an augmented test set, 
which included 52,271 testing patches from 102 WSIs 
without manually excluding low-quality or irrelevant 
images. On this unfiltered dataset, the model achieved a 
patch-level AUC of 0.864 and a slide-level AUC of 0.889 
for identifying the Mes-phenotype. These results high-
light the importance of evaluating the model on datasets 
with varying levels of manual intervention to assess its 
robustness and potential for clinical application. Then we 

generated heatmaps using patch-predicted probabilities 
to visualize the prediction made by our model. The H&E 
slides and their corresponding predicted heatmaps from 
four representative cases were shown in Fig. 4.

Our classification model accurately predicts endocrine 
therapy response in ER+ breast cancer
Next, we evaluated whether our Epi- and Mes-phenotype 
classification model could directly predict the outcome of 
endocrine therapy for patients with ER+ breast cancer. In 
this test, the H&E stains with endocrine therapy response 
data from the ZEYY patient cohort were used as input 
to the phenotype-classifier, and the predictions (Epi- or 
Mes-phenotype) were tabulated against the response 
labels. The clinicopathological variables for this cohort 
were provided in Table  2. As depicted in the confusion 
matrix in Fig. 5A, our classification model achieved a pre-
dicting accuracy of 81.25% (117/144), and 55/62 (88.7%) 

Fig. 3  The DL-based classification model distinguishes the Mes- and Epi-phenotypes in ER+ breast cancer based on H&E histopathology images. A 
Patch-level ROC curve and C confusion matrix of the phenotype classifier. B Slide-level ROC curve and D confusion matrix of the phenotype classifier. The 
Mes-phenotype was defined as the positive class in the ROC curves
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slides labeled as endocrine resistant were predicted as 
the Mes-phenotype, while 62/82 (75.6%) slides labeled as 
endocrine sensitive were predicted as the Epi-phenotype. 
The H&E slides and their corresponding predicted heat-
maps from two representative cases were displayed in 
Fig. 5B. These results illustrated that the phenotype dis-
tinguished by our deep learning method can effectively 
predict the benefit of endocrine therapy for ER+ breast 
cancer patients.

Discussion
In this study, we validated the correlation between EMT 
status and resistance to endocrine therapy in ER+ breast 
cancer from a transcriptomic perspective. Subsequently, 
we trained a DL model for tumor tissue filtering and 

phenotypic classification according to transcriptomic 
phenotypes, utilizing H&E-stained histologic images. 
Our method can automatically detect informative regions 
without the necessity for annotation of interest region-
level. Leveraging data from an independent patient 
cohort that furnished details on endocrine responses, our 
classification model demonstrated outstanding perfor-
mance in predicting the benefits of endocrine therapy in 
ER+ breast cancer.

In current clinical practice, breast cancer patients 
with ER+ tumors are expected to benefit from receiving 
endocrine therapies. However, ER status alone is not an 
adequate predictive indicator for the response of endo-
crine therapy. Previous studies reported that endocrine 
resistance in ER+ breast cancer is commonly driven by 

Fig. 4  Four representative H&E slides from TCGA test set and their predicted heatmaps
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ligand-independent ER reaction [2]. Genetic aberrations 
in the ESR1 gene were identified as one important mech-
anism, but they did not alter the percentage or intensity 
of ER expression in either primary tumors or metastasis 
[28]. Only about 10% of endocrine-resistant breast can-
cers were reported to lose ER expression [29]. In vitro 
data demonstrated that endocrine-resistant ER+ breast 
cancer cells acquired an EMT-related transcriptional fea-
tures [2]. In the present study, we established an EMT-
related transcriptional gene score and confirmed that 
both intrinsic and acquired endocrine resistance in ER+ 
breast cancer is correlated with a mesenchymal pheno-
type. Nevertheless, clinical characteristics cannot well 
distinguish between the epithelial and mesenchymal phe-
notypes in ER+ breast cancer. Our results indicated that 
an EMT-related multi-gene-based assay could be effec-
tive in predicting response to endocrine therapy for ER+ 
breast cancers. However, such an assay is expensive and 

challenging to calibrate for application in broader patient 
populations. Accordingly, there is an urgent medical 
demand for a cost-effective and simplified method to dif-
ferentiate ER+ breast cancers into epithelial or mesen-
chymal phenotypes.

DL-based artificial intelligence has been developed 
and applied in tumor pathology, including for diagnosis, 
subtyping, prognostic prediction, as well as identifica-
tion of specific pathological features [30]. Recent stud-
ies have addressed aspects of accurate determination of 
histologic grade, ER and HER2 status for breast cancer 
via DL approaches with affordable H&E stains [26, 27, 
31–34]. Naik et al. [27], designed a multiple instance 
learning-based deep neural network called Receptor-
Net, which achieved an AUC of 0.92 on the test set for 
the estimation of ER status. The DeepGrade model devel-
oped by Wang et al. [26] stratified the intermediate-risk 
Nottingham histological grade 2 cases into DG2-low 

Table 2  Clinicopathologic characteristics of 63 estrogen receptor-positive breast cancers from the ZEYY endocrine response cohort
Cases Sensitive (38) Resistant (25) P-value
Age (years, mean ± SD) 51 ± 9 50 ± 11 0.658
ER level (%)
  ≥ 90 27 (71.1%) 17 (68.0%) 1.000
  ≥ 50 and<90 10 (26.3%) 7 (28.0%)
  ≥ 10 and<50 1 (2.6%) 1 (4.0%)
PR expression
  positive 36 (94.7%) 23 (92.0%) 1.000
  negative 2 (5.3%) 2 (8.0%)
HER2 status
  positive 4 (10.5%) 2 (8.0%) 1.000
  negative 34 (89.5%) 23 (92.0%)
Histological type
  Ductal 27 (71.1%) 22 (88.0%) 0.034
  Lobular 3 (7.9%) 3 (12.0%)
  Others* 8 (21.0%) 0 (0.0%)
Ki-67 expression
  >20% 15 (39.5%) 12 (48.0%) 0.328
  ≤ 20% 23 (60.5%) 13 (52.0%)
Clinical T stage
  T1 15 (39.5%) /
  T2 20 (52.6%) /
  T3 and T4 3 (7.9%) /
Clinical N stage
  N1 17 (44.7%) /
  N2 15 (39.5%) /
  N3 6 (15.8%) /
Clinical stage
  I and II 17 (44.7%) /
  III and IV 21 (55.3%) /
Resistance type(22)
  intrinsic / 19 (76.0%)
  acquired / 6 (24.0%)
*Other histological types: neuroendocrine, mucinous, tubular, micropapillary, and mixed carcinoma

ER, estrogen receptor; PR, progesterone receptor
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and DG2-high subgroups with significant prognostic 
difference (HR = 2.94, 95% CI: 1.24–6.97, P = 0.015). Far-
ahmand and colleagues [34] trained a CNN-based clas-
sifier for estimating HER2 status on H&E-stained WSIs 
that were manually annotated for tumor regions of inter-
est (ROIs). Their classifier achieved an AUC of 0.90 at 
the slide-level and an AUC of 0.81 on an independent 
TCGA test set. In light of these above, certain biological 
traits influence the morphological features of breast can-
cer cells that are imperceptible to the naked eye, and DL 
methods can be an effective way to accurately recognize 
these subtle features.

In vitro data from Bi et al. [4] and our study showed 
that parental ER+ breast cancer cell lines displayed char-
acteristic epithelial cell morphology, forming tightly 
packed cobblestone-like clusters. In contrast, endocrine-
resistant cells started to spread as individual cells and 
acquired a phenotype resembling mesenchymal cells. 
To confirm the presence of morphological differences in 
tumor tissues of ER+ breast cancers classified as Epi- and 
Mes-phenotypes based on EMT-related transcriptional 
features, we developed an EfficientNetV2-based classifier 
model to assign the phenotypic status of ER+ breast can-
cer utilizing H&E-stained histologic images. Our classi-
fier accurately identified the specific phenotypic status, 

achieving an AUC of 0.886 at the tile-level and an AUC 
of 0.910 at the slide-level. Furthermore, we evaluated the 
accuracy of the classifier model in predicting the response 
to endocrine therapy in ER+ breast cancer patients with 
data from an independent patient cohort that provided 
response information. The results indicated that 89.9% 
of samples classified as the Epi-phenotype by our clas-
sifier responded to endocrine treatment, while 73.3% of 
those predicted as the Mes-phenotype showed resistance 
to endocrine therapy. Considering that patients in this 
test set could have several pathological slides from dis-
tinct tumor lesions, we assessed the consistency of clas-
sification across slides from the same patient. We found 
a 92.0% agreement rate for endocrine-resistant patients 
and a 68.4% agreement rate for endocrine-sensitive cases. 
The inconsistencies in classification results among dif-
ferent slides from the same patient suggest a potential 
correlation with intratumoral heterogeneity. Indeed, our 
phenotype classifier for ER+ breast cancer, trained to 
detect morphological features within histological images, 
has proven to be a dependable predictor of endocrine 
therapy response, offering particularly valuable insights 
for patients who exhibit resistance to this treatment.

The EfficientNetV2 architecture we utilized is indeed 
a state-of-the-art CNN designed for scalability and 

Fig. 5  The DL-based classification model predicts endocrine therapy response in ER+ breast cancer based on H&E histopathology images. A Confusion 
matrix of the phenotype classifier used as endocrine therapy response predictor. B Two representative H&E slides and corresponding predicted heat-
maps. C Clinical characteristics of the two representative ER+ breast cancer cases. IDC, invasive ductal carcinoma; SLNB, sentinel lymph node biopsy; LN, 
lymph node; IHC, immunohistochemistry; ER, estrogen receptor; PR, progesterone receptor; E, epirubicin; C, cyclophosphamide; T, docetaxel
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efficiency in image classification tasks. It incorporates 
advancements such as progressive learning, where the 
network begins with a smaller model and gradually 
increases both depth and width during training, enabling 
the network to effectively capture fine-grained fea-
tures from pathology images. The EfficientNetV2 model 
employs a compound scaling method that uniformly 
scales network width, depth, and resolution using a set of 
fixed scaling coefficients. This methodology enhances the 
model’s adaptability to various computational budgets 
and image resolutions. In the realm of digital pathology, 
EfficientNetV2’s scaling capabilities empower it to handle 
large image sizes typical of WSIs. In this study, our tumor 
tissue filter and phenotype classifier model based upon 
the EfficientNetV2 algorithm can automatically identify 
informative tumor regions, recognize subtle morpho-
logical traits to distinguish between epithelial and mes-
enchymal phenotypes, and predict endocrine treatment 
response in ER + breast cancer. The heatmaps produced 
by our model showed a remarkable agreement with 
tumor ROIs annotated by pathologists.

This study also has several limitations. First, it was 
retrospective with convenience samples, and the exten-
sibility of our classifier in predicting endocrine therapy 
response for ER+ breast cancer was validated using solely 
single-center retrospective data. Further validation and 
optimization of the model should be pursued via pro-
spective data. Second, the quality of pathological images 
could potentially impact the robustness and accuracy of 
our model. Third, our classifier model was trained and 
tested with a binary classification system. Variability in 
cut-off values may yield disparate in classification out-
comes, potentially rendering our model unsuitable for 
tumors exhibiting substantial heterogeneity or those in 
an intermediate EMT state.

In summary, our work demonstrated the potential to 
enhance theragnosis for ER+ breast cancer by harnessing 
biological morphological characteristics imperceptible 
to clinicians via deep learning. The phenotype predicted 
by our classifier model is a useful indicator to augment 
ER status for endocrine treatment recommendation. This 
paves new avenues for the translating transcriptional 
classification into a DL model based on H&E stains, 
which could soon be implemented in clinical practice. 
This approach has the potential to enhance the accessibil-
ity of molecular stratification, especially in low-resource 
settings.
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